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ABSTRACT

The relative delay tolerance of data applications, together with the bursty traffic character-
istics, opens up the possibility for scheduling transmissions so as to optimize throughput.
A particularly attractive approach, in fading environments, is to exploit the variations in
the channel conditions, and transmit to the user with the currently ‘best’ channel. We
show that the ‘best’ user may be identified as the maximum-rate user when the feasible
rates are weighed with some appropriately determined coefficients. Interpreting the coef-
ficients as shadow prices, or reward values, the optimal strategy may thus be viewed as a
revenue-based policy, which always assigns the transmission slot to the user yielding the
maximum revenue.

Calculating the optimal revenue vector directly is a formidable task, requiring detailed
information on the channel statistics. Instead, we present adaptive algorithms for deter-
mining the optimal revenue vector on-line in an iterative fashion, without the need for
explicit knowledge of the channel behavior. Starting from an arbitrary initial vector, the
algorithms iteratively adjust the reward values to compensate for observed deviations from
the target throughput ratios. The algorithms are validated through extensive numerical
experiments. Besides verifying long-run convergence, we also examine the transient per-
formance, in particular the rate of convergence to the optimal revenue vector. The results
show that the target throughput ratios are tightly maintained, and that the algorithms
are well able to track sudden changes in the channel conditions or throughput targets.
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ondary).

Keywords € Phrases: dynamic rate control, fading channels, Quality-of-Service, target
throughput ratios, throughput optimization, varying channel conditions.
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1 Introduction

Next-generation wireless networks are expected to support a wide range of services, including
high-rate data applications. In contrast to voice users, data applications can usually sustain
some amount of packet delay, as long as the throughput over somewhat longer intervals is
sufficient. The relative delay tolerance of data applications, together with the bursty traffic
characteristics, opens up the potential for scheduling transmissions so as to optimize through-
put. A coordinated approach along these lines is proposed in [3].

A related approach may be advocated for low-mobility scenarios, such as indoor networks. In
such environments, Rayleigh fading frequencies can be quite low, and the fading levels can
even be anticipated to some extent. For example, fading can be measured by having the base
station provide a pilot signal which can be measured by all the users. These measurements
can be fed back to the base station, and used to estimate fading levels and hence user rates
in subsequent slots. This is the approach proposed in Qualcomm’s High Data Rate (HDR)
scheme [4]. Clearly, it is then advantageous to exploit the variations in the feasible rates, and
in particular transmit to the currently ‘best’ user.

With a little simplification, let us suppose that at the start of each slot the base station has
perfect knowledge of the maximum feasible rate at which each user can receive and decode a
signal with some acceptably low error probability. The question then arises what the ‘best’
user is to be selected for transmission. We show that the ‘best’ user may be identified as
the maximum-rate user when the feasible rates are weighed with some appropriately deter-
mined coefficients. Interpreting the coefficients as shadow prices, or reward values, the optimal
strategy may thus be viewed as a revenue-based policy. Under a revenue-based policy, the
transmission slot is always assigned to the user yielding the maximum revenue. We prove that
revenue-based policies optimize throughput relative to pre-specified target ratios. These target
values may be set arbitrarily, taking into account the Quality-of-Service requirements of the
users, or possibly their current activity levels or locations.

Unfortunately, calculating the optimal revenue vector directly is a complicated problem, re-
quiring detailed information on the channel statistics. Although the feasible rates of the users
are assumed known slot by slot, the underlying probability distribution which is producing
these rates is unknown. Even if it were known, it would not be easy to use, since the feasible
rates might be dependent, so that the computations would be significantly hampered by the
curse of dimensionality.

To avoid these obstacles, we develop adaptive algorithms for determining the optimal revenue
vector on-line in an iterative fashion, without the need for explicit knowledge of the channel
behavior. Starting from an arbitrary initial vector, the algorithms iteratively adjust the re-
ward values to compensate for observed deviations from the target throughput ratios. The
corrections ensure that discrepancies in throughput cannot persist. To ensure convergence to
the optimal revenue vector, the size of the adjustments is gradually reduced.

The algorithms are validated through extensive numerical experiments. Besides verifying long-



run convergence, we also examine the transient performance, in particular the rate of conver-
gence to the optimal revenue vector. The results show that the target throughput ratios are
tightly maintained, and that the algorithms are well able to track sudden changes in the channel
conditions or throughput targets.

The application of these algorithms opens up two important possibilities to improve network
performance which deserve further investigation. The first is that admission control can be
applied by using a probing technique, an approach proposed in [2]. In parallel to the actual
control algorithm, a ‘dummy’ version of the control would be run with the new user added. The
impact of the new user would then be assessed on the basis of the new revenue values determined
by the dummy control. It should be noted that the decisions from the dummy control would
not be acted on, which means that existing users are unaffected. As an additional benefit, the
new revenue values would be immediately available in case the the user is admitted.

The second possibility is coordinated operation of the base stations in the network. Let us
suppose that the mobile receiver is equipped with more than one RF chain, so that it is
capable of receiving more than one signal at once. (This is akin to the approach employed
in IS-95, where the signal can be sent from distinct base station transmitters simultaneously
and detected as if it were multi-path.) This approach offers two major advantages. First, in
the Qualcomm HDR scheme, users on the periphery of the cell are at a disadvantage, because
they experience higher interference, and because their path loss is higher. It is exactly this
kind of user which is likely to be able to exploit connections between two base stations. The
user is thus supplied rate on the basis of two fading signals. Second, this approach allows for
coordinated operation of the base stations in the network via load sharing.

The remainder of the paper is organized as follows. In Section 2 we present a detailed model
description, and introduce a class of revenue-based scheduling strategies. We subsequently
prove that revenue-based policies optimize throughput relative to pre-specified target ratios,
for discrete rate distributions as well as for continuous rates in Sections 3 and 4, respectively.
In Sections 5, 6, and 7, we develop adaptive on-line algorithms for determining the optimal
revenue vector in an iterative fashion. In Section 8 we describe some numerical experiments
which we performed to examine the convergence properties of the proposed control algorithms.

We make some concluding remarks in Section 9.

2 Model description

We consider a base station serving M data users. The base station transmits in slots of some
fixed duration. In each slot, the base station transmits to exactly one of the users.

We assume that the feasible rates for the various users vary over time according to some
stationary discrete-time stochastic process {(Ri(n),...,Ry(n)),n = 1,2,...}, with R,,(n)
representing the feasible rate for user m in the n-th slot. We assume that the base station has

perfect knowledge of the maximum feasible rate R,,(n) for user m at the start of the n-th slot,



see also Remark 2.2 below. Let (Ry,..., Ry ) be a random vector with distribution the joint

stationary distribution of the feasible rates.

Remark 2.1 Notice that we allow for dependence between the feasible rates for the various
users. Independence may be a reasonable assumption in case of an isolated base station serving
a group of independent users. In case of several base stations, however, the feasible rates may
vary not only due to independent fading, but also because of the common impact of control
actions at adjacent base stations. For example, base stations may transmit at reduced power if
there are no backlogged users, inducing strong correlations in interference levels between users.

O

We assume that the slot duration (1.67 ms in the HDR scheme) is relatively short compared to
the relevant time scales in the traffic patterns and delay requirements of the data users. This
opens up the possibility for scheduling the data transmissions so as to enhance performance. In
particular, scheduling provides a potential mechanism for exploiting variations in the feasible
rates so as to optimize throughput.

The M data users may actually be thought of as the subset of active (backlogged) users
among a greater population, which may change over time. For scheduling purposes, however,
the separation of time scales allows us to think of the subset of active users as nearly static and
continuously backlogged. (In practice, flow control algorithms such as TCP will typically be
used to feed the data into the base station buffer at a relatively slow rate, comparable to the
actual throughput provided to the user over the wireless link. Thus, the bulk of the backlogs
will usually reside at the sender rather than the base station buffer.)

One of the most common performance objectives is throughput maximization. This can simply
be achieved by assigning each slot to the user with the currently highest feasible rate. The
disadvantage is that typically only a few strong users will ever be selected for transmission,
causing starvation of all others.

To alleviate that problem, an alternative option is to equalize the (expected) throughput of
the various users. This can easily be achieved by assigning each slot to the user with the
currently smallest cumulative throughput. The downside is that this strategy does not exploit
the variations in the feasible rates. Moreover, by insisting on equal throughput, a few weak
users may cause the throughput of all others to be dramatically reduced.

A further option is to equalize the proportion of slots allotted to the various users. This can
simply be realized by using a round-robin scheme. Again, however, this strategy fails to take
advantage of the fluctuations in the feasible rates. In addition, some users may end up with

extremely low throughput, despite receiving their fair share of the number of slots.

In the present paper we assume there are throughput targets aq, ..., ays defined for the various
users. These target values may be set arbitrarily, taking into account the Quality-of-Service

requirements of the users, or possibly their current activity levels or locations. For example,



the targets may be set lower for users with higher path losses, in order to prevent weak users
from dragging down the throughput of all other users. The targets may also be applied to the
proportion of slots allotted to the various users, see Remark 2.2 below.

Denote Y,,(n) := X,,(n)R(n), with X,,(n) a 0-1 variable indicating whether or not the

N
n-th slot is assigned to user m. Define y,,(N) := E[Y_ Y,,(n)/N] as the expected average
n=1

throughput received by user m after N slots.
We consider the problem of maximizing the minimum long-run expected average normalized

throughput z := min Y., /ay,, with y,, = iminfx_ o ym(N). The above problem may

m=1,...,
equivalently be formulated as maximizing z subject to the constraint z < y,,/q,, for all

m =1,..., M. The constraints may in fact be sharpened to z = ¥,/ since one can always

reduce the throughput for the users with a surplus. With the equality constraints in place, the
M

objective function may then be generalized to > wmYm /o, for any positive vector w € Rf .
m=1

In conclusion, the above-stated problem is equivalent to maximizing an arbitrary weighted

sum of the throughputs, subject to the normalized throughputs being equal. Thus, the crucial
observation is that any strategy which maximizes an arbitrary weighted combination of the
throughputs, while equalizing the normalized throughputs, is optimal.
To formalize the above insight, we now introduce a class of revenue-based scheduling strategies.
Suppose there were rewards wq, ..., wys per bit transmitted to the various users. A revenue-
based strategy assigns the n-th transmission slot to the user m*(n) with the current maximum
rate-reward product, i.e.,

m*(n) = arg _ max Wi Ry, ().
Clearly, the above principle maximizes the revenue earned in each individual slot, and thus
the total cumulative revenue, as well as the average revenue, hence the term revenue-based
strategy. (It usually also matters exactly how ties are being broken. Regardless of the tie
breaking rule, however, a revenue-based strategy will definitely not assign the n-th slot to any
user k with wgR(n) < max wmRm(n).) Now observe that revenue is simply a weighted
combination of the throughputs. From our earlier observation, we thus conclude that any
revenue-based policy which balances the throughputs, is in fact optimal, which provides the
key principle underlying our further approach.
Finally, observe that setting throughput targets is equivalent to normalizing the feasible rates
by the corresponding values. In the subsequent analysis, we therefore assume that the through-

put targets are discounted for in the rates, and take (aq,...,ay) = (1,...,1).

Remark 2.2 In practice, there is always a small probability that a transmission fails because
the signal cannot be successfully decoded. The results of the present paper then remain valid
if Ryn(n) is redefined to represent the expected feasible rate, and the 0-1 wvariable X,,(n)
1s amended to indicate both which user is selected and whether or not the transmission s

successful.



Instead of the (expected) feasible rate, one can also take R.,(n) := K, + Ry, (n), with the K, ’s
positive coefficients to obtain a weighted combination of received rates and slot allocations. By
choosing suitable values for the K,,’s, one can give weight to balancing the proportion of slots

allotted to the various users, besides achieving relative throughput targets.
O

3 Discrete rate distribution

In this section we consider the case where the feasible rates (Ri,...,Rys) have a discrete
distribution on some bounded set J € RM. Since the feasible rates are assumed stationary, we
restrict the attention to the class of stationary policies in order not to blur the presentation
with technicalities. The analysis may readily be extended however to deal with non-stationary
policies.

We first introduce some notation. Let p; be the stationary probability that the feasible rate
vector is j € J. We write R;; = j; for j = (j1,...,jm) € J. Let z7; be the probability that

policy 7 selects user ¢ for transmission when the feasible rate vector is j € J. Then the minimum

average throughput achieved under policy 7 is 2™ = Ilnin TT with T = > pjRija7;. Let
1=1,... 'GJ
7 be the revenue-based strategy corresponding to the vector w = (wy,...,wys). Without loss
M
of generality, we assume that ) w; = 1, since only the relative values of the revenues matter.
i=1

Lemma 3.1 Policy 7 is optimal iff x7., 2™ are an optimal solution to the following linear

@57

program:
max 2z (1)
sub zSijRijxij iZl,...,M
JjeJ
M
inj <1 jed
i=1
I‘ZJZO 1=1,....M,5 € J.
Proof
Let :U;-*j, z* be an optimal solution to the above linear program. Now consider the policy which

assigns the slot to user ¢ with probability xz‘j when the feasible rate vector is j € J. The
minimum average throughput achieved under this policy is Z:rlnln %‘; ijisz‘j > z*. Thus,
the optimal achievable throughput is at least z*. ’

Conversely, for any policy 7, x7;, 27 are a feasible solution to the above linear program. Thus,
the optimal achievable throughput is at most z*, and hence exactly z*. The statement then
easily follows.

a



The above lemma implies that for an optimal policy m at most |J| + M — 1 of the variables z7;
are non-zero, which forces most of the variables to be one. Thus, only for a limited number of

rate combinations the slots are shared among several users.

In Section 2, we observed that a revenue-based policy which balances the throughputs is
optimal. The next theorem shows that the revenue criterion is in fact a necessary optimality
condition, in the sense that there exists a revenue vector w* such that when user ¢ does not

have the maximum rate-reward product i.e., wi R;; < max wy, R;j, then 27, =0, i.e., user i

m=1,....M Y

should not be selected for transmission. Thus, any optimal strategy must be a revenue-based

policy associated with w*, see [1] for a related stability result.

Theorem 3.1 If policy w is optimal, then there exists a vector w* > 0 such that

zy; |w; Rij _Inax wy, Rmj| =0, (2)

foralli=1,...,M, j€eJ.

Proof
By Lemma 3.1, the z7; are an optimal solution to the linear program (1). Now let w}, y;‘ be

an optimal solution to the dual problem of (1):

min E Yj (3)

JjeJ

M
sub sz-Zl
=1
yjzijijwi 1=1,....M,5¢€J
w>0  i=1,....M
y;>0 e

Then the complementary slackness conditions imply z7;[y; — p;Rijw;] = 0, while optimality

forces y; = p; max wy, Ry, yielding (2).
m=1,...,

a

The dual problem (3) may be interpreted as follows. The variable y;‘ = pj maxw,, R,,; repre-

sents the revenue generated in state j, so that the objective function measures the total ex-
M

pected earned revenue. Also, optimality implies ) w; = 1. Thus, the dual problem amounts
i=1

to finding a revenue vector w* which minimizes the total expected earned revenue, subject to

M
the constraint ) w} = 1.
i=1
In conclusion, for policy 7" to balance the throughputs, the revenue vector w* must minimize

the total expected earned revenue, which may also be derived as follows. For any vector w



M M M .
with > w; = 1, the total expected earned revenue is R(w) = > w7 > S wT >
i=1 i=1 i=1

M . w* M . w* M Ul*
Yw; min T =Y w’ min T7 =Y wT" = R(w").
Z:1 m= Z:1 m:17..., Z:1

=1l,...

4 Continuous rate distribution

In this section we consider the case where the feasible rates (Ry,..., Ry) have a continuous
distribution on some bounded set U C RM.
We first introduce some notation. Let p(u) be the stationary density of the feasible rate

vector, i.e., the probability that the feasible rates are in some set V. C U is [ p(u)du. We
ueV
write R;(u) = u; for w = (u1,...,upn) € U. Let 27 (u) be the probability that policy 7 selects

user 4 for transmission when the feasible rate vector is v € U.

Lemma 4.1 Policy 7 is optimal iff x (u), 2™ are an optimal solution to the following mathe-

matical program:

max =z (4)

sub 2z < / p(u)R;(u)zi(u)du i=1,...,M

uelU

M
Zazz(u) <1 ueclU
i=1

x;(u) >0 i=1,...,M,ueU.

The proof of the above lemma is similar to that of Lemma 3.1.

In Section 2, we reasoned that a revenue-based policy which balances the throughputs is
optimal. The next theorem shows that the revenue principle is in fact a necessary optimality
criterion, in the sense that there exists a revenue vector w* such that if user ¢ does not have
the maximum rate-reward product on some set of non-zero measure, then user ¢ should not be
selected for transmission on that set. Thus, in the above sense, any optimal strategy must be

a revenue-based policy associated with w*.

Theorem 4.1 If policy w is optimal, then there exists a vector w* > 0 such that

m=1,...,

zf (u) |lwi R — max_ wy Ry (u)| p(u)du =0, (5)
[ o]
uelU

foralli=1,..., M.



Proof
By Lemma 4.1, the 27 (u) are an optimal solution to the mathematical program (4). Now let

wy, y*(u) be an optimal solution to the ‘dual’ problem of (4):

min / y(u)du (6)

uelU
M
sub Zwl >1
i=1
y(u) > p(u)R;(u)w; i=1,..., M,ueU
w; > i=1,....M

Then the complementary slackness conditions yield 7 (u)[y*(u) — p(u)R;(v)w}] = 0, while
optimality requires y*(u) = p(u) max o w, Ry, (u), giving (5). (Although strong duality does
m=1,...,

not directly apply, the complementary slackness properties may be derived via discretization.)
O

5 Adaptive algorithms

In the previous two sections we concluded that revenue-based policies optimize throughput rel-
ative to pre-specified target values. However, calculating the optimal revenue vector directly is
a complicated problem, requiring detailed information on the channel statistics in the form of
the joint stationary distribution of the feasible rates (Ry,..., Rar). Instead, we develop adap-
tive scheduling algorithms for determining the optimal revenue vector on-line in an iterative
fashion without the need for explicit knowledge of the channel behavior. Starting from an
arbitrary initial vector, the algorithms iteratively adjust the reward values to compensate for
observed deviations from the target throughput ratios. The corrections ensure that discrepan-
cies in throughput cannot persist. To ensure convergence to the optimal revenue vector, the
size of the adjustments is gradually reduced.

In the next two sections we assume that the channel state is governed by some discrete-time
irreducible Markov chain with a finite discrete state space S. When the channel state is
s € S, the feasible rates have some continuous M-dimensional distribution Fs(-) on R C
[Rumin, Rumax]™, 0 < Ruin < Rmax < 00, with zero probability measure in any set of Lebesgue
measure zero. In practice, the feasible rates will typically have to be selected from a limited
set of discrete values. However, we may adhere to the above assumptions by simply adding a
small random perturbation. By choosing the random perturbation sufficiently small, the true

achieved throughputs should be arbitrarily close to the perturbed ones.
M
Denote by W := {w € R¥ : 3~ w,, = 1} the set of all price vectors. For any w € W, denote

m=1
by E,,(w) the expected average throughput per slot received by user m under price vector w



in stationarity. Define Zyye(w) := % > En(w), Epin(w) ;= min  E,,(w), and Epax(w) =

m=1 m=1,...,

. irllax Em(w) as the average, the minimum, and the maximum expected throughput per slot
undé.r.’price vector w over all users, respectively.

The above assumptions ensure that the expected throughput vector (Zi(w),...,Zy(w)) is
completely determined by the price vector w (without the need to specify a tie breaking rule).
The assumptions further imply that the expected throughput vector (21 (w),...,ZEn(w)) is a
continuous function of the price vector w.

Denote by w* the optimal revenue vector, i.e., the price vector which balances the expected
throughputs. To facilitate the presentation, we assume that w* is unique. The analysis may

readily be modified for the case where there is a whole range of optimal price vectors.

6 Two users

We first focus on the case of two users. In the next section, we consider the situation with an

arbitrary number of users.

6.1 Algorithm description

Before describing the algorithm in detail, we first introduce some useful notation. With minor

abuse of notation, we write w = wy, so that we = 1 —w. Denote AY (n) := Yi(n) — Ya(n), and
N

define U(N) := > AY(n) as the difference in cumulative throughput between users 1 and 2
1

n=
after N slots. The absolute difference |U(N)| is referred to as the throughput gap. We say that
the throughput gap widens in the N-th slot if [U(N)| > max |U(n)|. User 1 is said to be
n=1,...N—

leading if U(N) > 0, and is referred to as lagging otherwise, and vice versa for user 2. We say
that a cross-over occurs in the N-th slot if the leading and lagging users exchange positions,
which means that the throughput gap changes sign, i.e., U(N)U(N — 1) < 0.

The algorithm may now be described as follows. In every slot, the user with the maximum
price-rate product, at the current price value, is selected for transmission. Thus, the n-th slot
is assigned to user 1 if w(n)Ri(n) > (1 — w(n))Ra2(n), and to user 2 otherwise (ties being
broken arbitrarily).

To drive the price sequence w(n) towards the optimal value w*, the price is adjusted over time
on the basis of the observed throughput realizations. As long as the throughput gap does not
widen, the price is left unaltered. However, if the throughput gap does widen, then the price
is changed in favor of the deficit user, thus at the expense of the surplus user. The price of
the leading user is decreased by dy(,), while the price of the lagging user is simultaneously
increased by the same amount.

To ensure convergence, a reset is triggered at every cross-over. The step size dy(,) is then
reduced by incrementing k(n), with {0x,k = 1,2,...} a pre-determined convergent sequence
(e.g. 61 = 010" with p < 1, or 6, = 01k % with 8 > 1).

10



6.2 Convergence proof

We now proceed to demonstrate convergence of the above-described algorithm. We first state

an important assumption.

Assumption 6.1 (Large-Deviations Assumption)

Let XN (s,w) be a random variable representing the average throughput per slot obtained by
user m over a period of N slots under price vector w, given that the initial state of the Markov
chain is s. Given a price vector w € W and § > 0, there exist numbers Cfn(w),D,gn(w) >0

such that for any initial state s
P{| XN (5,0) — Ep(w) | > €} < C&, (w) e PN
m=1,2.

It may be verified that the above assumption is satisfied for the feasible-rate process described

earlier.

Let Y,*"*¢(n) be random variables representing the throughput that user m would receive in
the n-th slot if the price were fixed at w* 4+ ¢, m = 1,2. Define AY% *¢(n) := Ylw*+e(n) -
Y2 t¢(n) as the difference in throughput between users 1 and 2 in the n-th slot. Define
€ = Z1(w* +¢€) — Za(w* + €) > 0 as the difference in expected throughput between users 1
and 2 in stationarity. For all N > ng > 0, the events

N

ST V) = (N = ng + 1)(E1 (0 +¢) — £/4)

n=ng

and

N
3 ¥ () < (N = ng + 1)(Za(w” + ) +€/4)

n=ng

imply the event

N
> AYYF(n) > (N = ng +1)¢/2.

n=ng

Assumption 6.1 then implies that there exist numbers C, D > 0 such that

N
P{Y - AYY e (n) < (N —ng + 1)&/2} < 2Ce” PN =m0t

n=ng

which means that

N
Z AYY T¢(n) — oo (7)

wp 1 as N — oo.

The next theorem establishes almost-sure convergence to the optimal revenue vector.

11



Theorem 6.1 For the scheduling algorithm described above, the price sequence w(n) converges
to the optimal price w* wp 1, and consequently the sequence z(n) converges to the optimal

value 2™ wp 1.
In preparation for the proof of the above theorem we first present two lemmas.

Lemma 6.1 The price sequence w(n) cannot get permanently trapped in either of the intervals
[0,w* — €] or [w* +¢,1].

Proof

We only prove the statement for the interval [w* +e¢, 1]. The statement for the interval [0, w* —¢]
follows from symmetry considerations.

The idea of the proof is as follows. As long as the price remains in favor of user 1, the
throughput difference continues to have a positive drift, and will wander off to infinity. As a
result, the price will keep decreasing in fixed steps, and will eventually turn negative, which is
not possible.

To formalize the above idea, suppose that at some point in time, let’s say the ng-th slot, the
price value enters the interval [w* + €, 1] to get permanently trapped there, i.e., w(n) > w* +¢
for all n > ng. Then Yi(n) > Y *¢(n) and Ya(n) < Yy T¢(n) for all n > ng, so that
AY (n) > AYY *¢(n) for all n > ng. Hence, (7) implies that JZV: AY(n) — oo wp 1 as

n=ng

N
N — oo. Consequently, the throughput gap U(N) = U(ng — 1)+ >, AY(n) — oo wp 1
n=ng
as N — oo as well, which means that (i) only finitely many cross-overs occur, and (ii) the

throughput gap will widen infinitely many times in favor of user 1. Thus, (i) the step size )
will only be reduced finitely many times, and (ii) the price will be decreased infinitely many
times, and increased only finitely many times. Hence, the price will eventually turn negative,
which is not possible.

O

Lemma 6.2 The price sequence w(n) cannot move from the interval [0, w* + €] to the interval
[w* + 2¢, 1] infinitely often. Similarly, w(n) cannot move from the interval [w* — €,1] to the

interval [0, w* — 2¢] infinitely often.

Proof

We only prove the first statement, The second one follows from symmetry considerations.
The idea of the proof is as follows. In order for the price sequence to move from the interval
[0, w* + €] to the interval [w* + 2¢,1], it must cross the interval [w* + ¢, w* + 2¢| from left
to right. For that to happen, the algorithm must make a number of e-wrong moves. By an
e-wrong move, we mean that the price is increased while the current price is at least € above
the optimal value w*. As will be shown below, the expected number of e-wrong moves before

a cross-over occurs is finite. However, as cross-overs occur, the step size will get smaller and

12



smaller, and the required number of e-wrong moves for the interval to be crossed will get larger
and larger. As a result, it will eventually become increasingly unlikely for the interval to be
crossed.

To make the above idea precise, we first introduce some helpful terminology. A cross-over is
referred to as an upward turn in case user 2 takes over the lead from user 1. Otherwise, a
cross-over is called a downward turn. Let K (¢) and L(t) be the total number and the total size
of e-wrong moves, respectively, between the ¢t-th upward turn and the subsequent downward
turn.

Note that the value of the step size between the t-th upward turn and the subsequent downward
turn is at most do;. Once the value of do; has dropped below €/2, we must have L(t) > €/2
in order for the interval [w* + €, w* + 2¢] to be crossed between the ¢-th upward turn and the
subsequent downward turn.

Also, note that the interval can be crossed at most once between the ¢t-th upward turn and the

subsequent downward turn, and cannot be crossed from left to right otherwise. Thus, in order

o0
for the interval to be crossed infinitely often, we must have Y L(t) = oc.
=0
Now suppose that at some point in time, let’s say the ng-th slot, the price value increases to

enter the interval [w* + €, w* + 2¢] for the first time between the ¢-th upward turn and the
subsequent downward turn in the N*-th slot. Then w(n) > w* + € for all n = ng,..., N*. As
a result, Yi(n) > Y ¢(n) and Ya(n) < Y3 *¢(n) for all n = ng,..., N*, so that AY (n) >
AY™ *€(n) for all n = ng, ..., N*, and thus

i AY (n) > i AV (n)

n=ni n=ni

N
for all ng < ny < nyg < N*. Hence, (7) implies that > AY(n) reaches only finitely many
n=ng

decreasing ladder heights for N = ng,..., N*. Consequently, the throughput gap U(N) =
N
U(np—1)+ >, AY(n) widens only finitely many times in favor of user 2 for N = ng,..., N*.

n=ng
Thus, the price is increased only finitely many times before the next downward turn occurs,

ie, EK(t) < K* < 0o, and

iEL(t) < iEK(t)52t <K* i(bt < 00,
0 =0

t= t=0
[e.e]
which implies that Y L(t) < co wp 1.

t=0

We conclude the section with the proof of Theorem 6.1.
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Proof of Theorem 6.1
Lemma 6.1 implies that the sequence w(n) spends infinitely many times in the interval [w* —e, 1]
wp 1. Lemma 6.2 shows that the sequence w(n) returns only finitely many times from the
interval [w* — ¢,1] to the interval [0,w* — 2¢] wp 1. Combining these two statements, we
find that the sequence w(n) spends only finitely many times in the interval [0, w* — 2¢] wp 1.
Similarly, we have that the sequence w(n) spends only finitely many times in the interval
[w* + 2¢,1] wp 1. Hence, for any € > 0, the sequence w(n) will eventually enter the interval
[w* — 2¢,w* + 2¢] wp 1, to never leave it again. Thus, the sequence w(n) converges to the
optimal price w* wp 1.
By continuity, the sequence E[Y,,(n)] converges to Z,,(w), m = 1,2. The convergence of z(n)
then immediately follows.

O

Remark 6.1 Some interesting related algorithms are proposed in [1], [8], [12], [13], [14], where
queue lengths instead of rewards are used as weight factors. These algorithms provide through-
put guarantees in terms of bounded expected queue lengths (if achievable) rather than target

ratios.
Od

7 Arbitrary number of users

We now turn to the situation with an arbitrary number of users. In principle, the algorithm
described in the previous section for the case of two users may be extended to several users. The
main subtlety lies in identifying a proper rule for when to trigger a reset. If a reset is triggered
at every cross-over of any pair of users, then resets may occur too rapidly. In that case, two
leapfrogging users may cause the step size to be quickly reduced, while still far removed from
the other users. The price sequence may then get trapped in a bias region, and never reach
the optimal point. A better rule is to trigger a reset only when every user has become leading
or lagging. Some care is then required though to show that resets occur frequently enough
compared to wrong moves, because otherwise the price sequence may continue to visit a bias

region indefinitely.

7.1 Algorithm description

In the remainder of the section, we consider a related but somewhat different algorithm, which
may be described as follows. The algorithm makes price updates based on sample periods
of pre-determined ever increasing size. Thus, the price updates occur at pre-determined
slots K (n), instead of randomly determined slots as before, with L(n) := K(n+1) — K(n) the
length of the n-th sample period. In every slot of the n-th sample period, the price vector w(n)
is used for selecting a user for transmission. (From now on we use n to index sample periods,

rather than transmission slots as before.)
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To drive the price sequence w(n) towards the optimal point w*, the price is adjusted over
time on the basis of the observed throughput realizations. The direction in which the price
vector is modified at the n-th update is determined by a random vector v(w(n)) based on the
throughput obtained during the n-th sample period when the price vector w(n) is used. The
size of the n-th update is 6(n) = (), with {0k, k = 1,2,.. .} a pre-determined convergent

sequence. Thus, at the (n + 1)-th update, the price vector is recursively determined as
w(n+1) =w(n) — d(n)v(w(n)).

To ensure convergence, the step size §(n) is reduced by incrementing k(n) every time a reset
is triggered. Intuitively, resets should occur rarely far away from the optimal point w*, but
occur readily once the price vector is close to w*.

It remains to specify the exact rules for (i) how to determine the update direction v(w(n)),
and (ii) when to trigger a reset.

(i) For every user the empirical average throughput over the sample period is computed. The
users are then partitioned into two groups: (a) those with above-average throughput; (b) those
with below-average throughput. The prices of the above-average users are decreased, while the
prices of the below-average users are increased. As the sample size grows, so that with high
probability the empirical average throughputs line up with the true expected throughputs, this
ensures that the price vector gets closer to the optimal point w* in some appropriate sense, as
will be shown later.

Formally, the procedure may be described as follows. Denote by X,,, the throughput received

by user m during a particular sample period in which price vector w is used. Define X, :=

M

ﬁ > X, as the average throughput over all users. Denote by Q= := {m : X, < Xawe}
m=1

and Q1 := {m : X,, > Xawe} the groups of below-average and strictly above-average users,

respectively. Then the price update direction v(w) is determined as

vi(w) = ﬁ e, (8)
mef)— m

vi(w) = S - jear. 9)
’ ZmEQ‘*‘ Wm

Note that 2~ is always non-empty, since it is impossible for all users to have strictly above-
average throughput. However, Q" may be empty in case all users have exactly equal through-
put. In that case, the price vector is simply left unaltered.

Also note that the price ratios within both 2~ and QT are maintained. This ensures that the
expected throughput of the below-average users increases, while the expected throughput of
the above-average users decreases, as may be deduced from Lemma 7.1 below.

Note that the above price update cannot be applied in case the price values of some of the users
in Q" are zero. To prevent that situation from happening, the price process will be restricted to
theset W, :={w e W :w, >viorallm=1,..., M}, with v := Ryin/(Rmin+ (M —1) Rpax)-

15



It is easily verified that if w,, < v, then Z,,(w) = 0, which implies that w* € W,. In order to
restrict the price process to the set W, the update is truncated at the boundary if necessary.
(ii) To ensure convergence, a reset is triggered under the condition that every user has been
a member of QT at least once during a consecutive sequence of updates. Once the reset has
occurred, the next one is not triggered until every user has been a member of Q7 at least once

again.

The next lemma shows that the above price update increases the throughputs of the users in

2~ and decreases the throughputs of the users in Q7.

Lemma 7.1 Let w,w’ € W be two price vectors and ©~,0" C {1,..., M} two groups of users
such that for all i € ©7, Z—z > Z—: for all k # i, and for oll j € ©7, Z—j < Z—: for all k # 7.
Then

Zi(w') > Ei(w) €0,

Ej(w') < Zjw) jeOT.
Proof
First consider a user i € ©~. For any given rate vector (Ry,...,Ry) € R, w;R; = max  wiRy
implies w;R; = max_ w; Ry. In other words, if user i is selected under the old price vector w,

=1,..,

then so is user ¢ under the new price vector w’. Thus, the throughput of user ¢ must increase
(in fact sample path wise). Similarly, the throughput of a user j € © must decrease.
O

7.2 Convergence proof

We now proceed to prove convergence of the above-described algorithm. We first discuss a few

important assumptions.

Large-deviations assumption

As described above, the algorithm works by making price updates based on samples of ever
increasing size. To ensure convergence, we need that as the sample size grows, a ‘correct’
price update direction is selected with sufficiently high probability. Given a price vector w €
W, user m is called {-below-average (respectively, {-above-average) if =,,(w) < Zave(w) — &
(respectively, E,,(w) > Zave(w) + £). We say that the price update direction is ‘¢-right’ if all
the &-below-average users belong to 2~ and have their price increased, and all the &-above-
average users belong to Q1 and have their price decreased. (Otherwise, the price direction
is ‘¢-wrong’.) This ensures that the price vector gets closer to the optimal point w* in some
appropriate sense, as will be shown later. Now remember that at each update, the prices of the

empirical below-average users are increased, while the prices of the empirical above-average
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users are decreased. Thus, for the price update direction to be ‘correct’, it is critical that
the empirical average throughputs line up with the true expected throughputs. This then

motivates the following assumption.

Assumption 7.1 (Large-Deviations Assumption)

Let X' (w) be a random variable representing the average throughput per slot obtained by user m
over a period of L(n) slots under price vector w in stationarity. Given a price vector w € W
and & > 0, there exist a (-neighborhood Nf(w) of w and numbers Cﬁz(w), Dfn(w) > 0 such that

IP){| X;;L"L(w/) - Em(w) | > f} < Cfn(w) engn(w)L("%
for all w' € Nf(w), m=1,...,M.

In Appendix A we prove that the above assumption is satisfied for the feasible-rate process

described earlier.

Boundary conditions

We further require that when a correct price direction is selected, the update cannot be trun-
cated to an arbitrarily small size. The following assumption implies that if a correct price
direction is chosen, then for small enough step size J, the price sequence will stay away from

the boundary.

Assumption 7.2 There exist positive constants §* > 0, £ > 0 such that for all price vectors
w € W,, for any &-right direction v(w), and for any 6 € (0,6%),

w + dv(w) € W,.

To check that the above assumption is satisfied, it suffices to verify that extremely low prices
cannot be decreased and that extremely high prices cannot be increased. First consider a
user i with a price w; < Rpin/(Rmin + (M — 1)Rmax). Then the throughput of user i is zero
and thus certainly &-below-average for some £ > 0, which means that the price of user i is
increased if the price direction is right. Similarly, the throughput of a user j with a price
wj > Rmax/(Rmin + Rmax) is &-above-average for some & > 0, so that the price of user j is

decreased if the price direction is right.

Function T'(-)

As indicated above, we also need that when a correct price update direction is selected, the
price vector gets closer to the optimal point w* by some definite amount. To measure distance
from w*, we introduce a function 7'(-) which attains a unique minimum at w*. Define T, :=
{w € W : Epax(w) — Epin(w) < €} as an ‘e-neighborhood’ of w*. The following assumption
implies that if a correct price update direction is chosen, then outside I'c the reduction in the

value of T'(+) for small enough step size 4, is at least ¢ times some constant of proportionality 7.
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Assumption 7.3 There exist positive constants 6* > 0, n > 0, £ > 0 such that for all price
vectors w & T, for any &-right direction v(w), and for any 6 € (0,5"),

T(w+ dv(w)) < T(w) — n.
We will consider two alternative choices for the function 7°(-). The first one is
T(w) = Emax(w) - Emin(w)y

i.e., the maximum difference in expected throughput between any pair of users. By definition
T(w*) = 0, and T(w) > 0 for all w # w*, with strict inequality in case the optimal price
vector w* is unique.

The second function that we will consider is
M
T(w) := Z Wi Em (W),
m=1

i.e., the total expected revenue earned. As found in Section 3, the optimal price vector w*
minimizes that quantity over all vectors in the set W, i.e., T(w*) < T(w) for all w € W,
w # w*, with strict inequality in case w* is unique.

In Appendix B we prove that Assumption 7.3 is indeed satisfied for the above two T'(-) func-
tions.

In contrast to the first one, the second 7'(-) function is also suitable to show that Assumption 7.3

is satisfied for various alternative options to select a price update direction, for example

v = 1=F>0 i* = arg nllin Xm, (10)
m=l,...,
vjr = —1 jF=arg max X, (11)
m=1,...,

and vy = B,/(M — 2) for all k # i*, 5%, for (3, a given positive sequence with lim 3, = 0.
n—oo

In the sequel this will be referred to as the ‘Update-Extreme’ algorithm, as opposed to the

procedure described earlier which will be called the ‘Move-to-Average’ algorithm.

The next theorem establishes almost-sure convergence to the optimal revenue vector w* for the
Move-to-Average algorithm. The proof for the Update-Extreme algorithm is mostly similar,

except for a somewhat different notion of a correct price update direction.

Theorem 7.1 The price sequence w(n) converges to the optimal price vector w* wp 1, and

consequently the sequence z(n) converges to the optimal value 2™ wp 1.

In preparation for the proof of the above theorem, we first introduce some terminology and
present some auxiliary lemmas. We say that the n-th sample is ‘¢-right’ if for every user the
empirical average throughput is within £ from the true expected throughput, i.e., | X;,(n) —

Em(w(n)) | <€ forallm=1,..., M. Otherwise the sample is ‘{-wrong’.
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Lemma 7.2 For any fized £ > 0, the total number of £-wrong samples is finite wp 1.

Proof
Consider some price vector w € W. By continuity of =,,(w) as a function of w, there exists
for any n > 0 a B-neighborhood Ng(w) of w such that

| Em(w') = En(w) | <1 (12)
for all w’ € Ng(w), m=1,...,M.
Now suppose that w(n) = w’ € Ng(w), and that

| Xm(n) = Em(w) [ <0 (13)
for all m =1,..., M. Then, using (12)-(13), taking n =60 = £/2,

| Xm(n) — E(w(n)) | < | Xm(n) = Em(w) [ + | Em(w(n)) = Em(w) [<n+0=¢

forallm=1,..., M.
In conclusion, if w(n) € Né/ 2 (w), then the event (13) implies that the n-th sample is &-right.
Thus, the probability that the n-th sample is £&-wrong is then

on) <1-P{| X;n(n) —En(w) |<E/2forallm=1,...,M}. (14)

The Large-Deviations Assumption 7.1 implies that there exist a (-neighborhood N f (w) of w
and numbers C%,(w) > 0, D&, (w) > 0 such that if w(n) € Ng(w), then

P{| X (n) — B (w) | > £/2} < C8,(w) e D)L (15)

forallm=1,..., M.

Define Né(w) := N§/*(w) N N§(w). Combining (14), (15), if w(n) € Né(w), then

M
o(n) < cs

€ (w) o~ D (w)L(n)

m=1
Since W is a compact set, there exists a finite covering of such sets NEW (w(k)), k=1,...,K.

Thus, deconditioning,

KM » k) (k)
o(n) < Z Z 8 (wk)) =P (W)L,
k=1m=1

o0

As L(n) = n?, with 8 > 0, we have Y o(n) < co. The statement then follows from the
n=1

Borel-Cantelli lemma, see for instance Feller [6].

By definition, if the n-th sample is £/2-right, then
| Xm(n) — Em(w(n)) [ < £/2
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for all m =1,..., M, which also implies
| Xave(n) — Eave(w(n)) | < &/2.

Hence, if user i is &-below average, i.e., E;(w(n)) < Zave(w(n)) — &, then X;(n) < Xave(n),
ie., i € Q7 (n). Similarly, if user j is {-above average, i.e., Zj(w(n)) > Eave(w(n)) + &, then
Xj(n) > Xave(n), ie., j € Q7 (n). Consequently, if a sample is £/2-right, then the Move-to-
Average algorithm will select a £-right price update direction. The above lemma thus implies
that from a certain time N on no &-wrong price updates will occur. It suffices to prove
convergence starting from the state of the process at that time. Now observe that we may
simply view the state of the process at that time as the initial state, which we allowed to
be completely arbitrary. To prove convergence, we may thus assume that no £-wrong price

updates occur at all.
Lemma 7.3 The total number of resets is infinite wp 1.

Proof

Assume that the total number of resets were finite, let’s say K, and that the K-th reset occurs
at the IN-th price update. Assumption 7.2 ensures that the price update is never truncated
to less than size 6*, unless the price direction were £*-wrong, which we may assume does not

occur. Thus,
d(n) > min{o*, dx } (16)

for all n > N. In view of the reset condition, there must also be some user ¢ which belongs
either to Q7 (n) or Q1 (n) for all n > N. Let’s say Q7 (n), thus, starting from the N-th update,

the price of user ¢ is constantly increased, i.e.,
wi(n+ 1) > w;(n) + vd(n) (17)

for all n > N.

Combining (16), (17), we conclude that w;(n) — oo as n — oo, which is not possible.

Lemma 7.4 The price sequence w(n) cannot converge to a point outside T'c.

Proof

Assume that the price sequence does converge to a point outside I, let’s say w. Define
€ = (Emax(w) — Zave(w))/2 > €/2M > 0. By continuity of =,,(w) as a function of w,
there exist a (-neighborhood Ng(w) of w and a user i such that i is &-below average for all
w' € Ng(w). Thus, if w(n) € Ng(w), then i € Q7 (n), unless the n-th price update were
&-wrong, which we may assume does not occur.

Now since w(n) converges to w, there exists an N such that w(n) € Ng(w) for all n > N. Thus,

user i belongs to Q7 (n) for all n > N. In other words, user i does not belong to Q% (n) for
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any n > N. That implies that no resets occur after the N-th price update, which contradicts
Lemma 7.3.
O

Lemma 7.5 The price sequence w(n) visits I'c infinitely often.

Proof
Assume that the price sequence visits I'c only finitely often. Lemma 7.4 then implies that the
total size of the price updates must be infinite, i.e.,

o0

> 6(n) = o (18)
n=1

For compactness, denote T, := T'(w(n)). Lemma 7.3 implies that at a certain time N the step
size §(NN) falls below 6*. Assumption 7.3 then gives that

Ty1 < T, —nd(n) (19)

for all n > N, unless the n-th price update were £*-wrong, which we may assume does not
occur.

Combining (18), (19), we conclude that T,, — —oo as n — oo, which is not possible.

Lemma 7.6 The price sequence w(n) cannot move from I'c to outside 'y infinitely often.

Proof
Let © be the minimum distance between I'c and any point outside I'o.
Lemma 7.3 implies that at a certain time N the step size §(/V) falls below ©. From time N on,
for the price sequence to move from I'. to outside I'y¢, at least price update is required from a
point w ¢ T'¢ to a point w’ with T'(w') > T(w). Assumption 7.3 then implies that that price
update must be £*-wrong, which we may assume does not occur.

O

The proof of Theorem 7.1 may now be completed as follows.

Proof of Theorem 7.1
Combining Lemmas 7.5, 7.6, we conclude that the sequence w(n) spends only finitely many
times outside the region I'yc wp 1. Hence, for any € > 0, the sequence w(n) will eventually
enter the region I'ee wp 1, to never leave it again. Thus, the sequence w(n) converges to the
optimal price vector w* wp 1.
By continuity, the sequence E[Y;,(n)] converges to =,,(w) for all m = 1,..., M. The conver-
gence of z(n) then immediately follows.

O
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Remark 7.1 In the present paper we focus on establishing almost-sure convergence to the
optimal revenue vector w*. This critically relies on the step sizes {0k, k = 1,2,...} being
a convergent sequence. As an alternative, the step sizes may be kept fized at some given
value §. We expect that the price sequence will then continue to oscillate around w*, but with
smaller amplitudes for smaller values of §. Observe however that there is an inherent trade-off
between the accuracy achieved on the one hand and the speed the convergence, and thus the
responsiveness to changing conditions, on the other hand. The value of 6 them may be used to
find the right balance between these two conflicting objectives.

O

8 Numerical results

In this section we describe some numerical experiments which we conducted to investigate
the convergence properties of the proposed control algorithms. Besides verifying long-run
convergence, we also examine the transient performance, in particular the rate at which the
prices converge to the optimal values.

In the first three experiments we consider continuous rate distributions. In the fourth exper-
iment we assume a discrete distribution where the feasible rates are determined by a fading
process via the signal-to-noise ratio. The fading process is modeled using a discrete number of
sinusoidal oscillators as described by Jakes’ model [7].

In the final three experiments, we examine how well the throughput ratios are maintained,
and how well the algorithms are able to track changes in the channel conditions or throughput

targets.

8.1 Two users with exponential rates

In the first experiment we consider a model of two users with independent rates.
The feasible rate for user ¢ is governed by a conditional exponential distribution on some

interval [Rumin, Rmax], 1-€-
E(T) = G;l[l - e—’Yi(T’—Rmin)]’ e [Rminy Rmax]y

with G; = 1 — e i(Bmax—Bmin) 3 pnormalization coefficient, i = 1, 2.

The corresponding density f;(-) for user i is
Jir) = Gl

The normalized expected throughput received by user 1 as a function of the price value w is

Rmax
=) (w) = a7 / Fy(—) fy (r)r,

1—w

Rmin

and similarly for user 2,

Rmax —w)r
) =ap' [ R e

Rmin w

1
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Figure 1: Normalized expected throughput =;(w) as function of w.

We take [Rumin, Rmax] = [10,400] Kbits/s and assume (y1,72) = (0.02,0.01). Thus, the feasible
rate for user 2 is about twice as large in distribution as for user 1. The throughput target for
user 2 is also set twice as large as for user 1, i.e., (a1, a2) = (1,2).

The values of Z;(w) for these parameters as a function of w are plotted in Figure 1. From the
figure, we see that the optimal price is w* &~ 0.6, which may more precisely be determined as
w* /= 0.593 using bisection.

We ran the control algorithm described in Section 6 for 1000 slots. We used step sizes 11 =
p*61, with initial value 6; = 0.5 and reduction factor p = 0.9. The resulting price trajectories
are graphed in Figure 2 for a period of 1000 slots. Observe that the prices converge to the
optimal values in roughly 300 slots, which corresponds to about 0.3 seconds of operation.

We repeated the above experiment for non-geometric step sizes 6, = 61k~?, with 3 successively
chosen as 1.5, 2.0, 3.0, 4.0. Note that the sum of the price changes is still convergent, although
the step sizes decay slower than before. The corresponding price trajectories are shown in
Figure 3 for a period of 1000 slots. We see that convergence is considerably slower for smaller

values of (3, i.e., slower decay of the step sizes.

8.2 Three users

In the second experiment we consider a scenario with three users. As before, the feasible
rate for user i follows a conditional exponential distribution on the interval [10, 400] with
parameters (71, 7v2,7v3) = (0.02,0.01,0.02). Thus, the feasible rate for user 2 is about twice as

large in distribution as for users 1 and 3.
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Figure 2: Price trajectory for 2 users over 1000 slots.
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Figure 3: Price trajectories for 2 users vs. w* (non-geometric step sizes).
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Figure 4: Price trajectories for 3 users over 5000 slots vs. w* (Move-to-Average algorithm).

The target throughput ratios for the three users are set equal, i.e., (a1, a9, a3) = (1,1,1). The
optimal revenue vector is w* ~ (0.424,0.152,0.424) as may be determined using numerical
integration and two-dimensional bisection. Observe that the optimal price for users 1 and 3
is higher than for user 1, as is required in order to obtain equal throughput, since the feasible
rate for user 2 is stochastically larger.

We ran the two control algorithms described in Section 7 for 5000 slots, or approximately
5 seconds of operation, with L(n) = 10n slots for the n-th update. This amounts to roughly
30 price updates. The initial revenue vector is set to w(1) = (0.3,0.6,0.1). We used step sizes
0 = k2 k=1,2,....
Figures 4 and 5. The revenue vector for the Update-Extreme algorithm after 30 price updates
is w(30) ~ (0.441,0.123,0.436), quite close to the optimal one.

We repeated the above experiment for the Update-Extreme algorithm using 40n and 60n slots

The resulting price trajectories are depicted as the solid curves in

for the n-th update, with the same power series for d;. The corresponding price trajectories
are reproduced as the the dashed lines in Figure 5 for user 1 in the first case and user 2 in the
second (with similar results for the remaining prices.) As expected, we see that using fewer
samples per price update leads to a slower and ‘noisier’ convergence to the optimal revenue

vector w*.

8.3 Eight users

In the third experiment we consider a situation with eight users. As before, the feasible rate for

user ¢ follows a conditional exponential distribution on the interval [10, 400]. The exponents
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Figure 5: Price trajectories for 3 users over 5000 slots vs. w* (Update-Extreme algorithm).

were chosen at random uniformly in [0.01, 0.05], and turned out to be approximately (0.0489,
0.0263, 0.0139, 0.0480, 0.0220, 0.0107, 0.0461, 0.0128).

The target throughput ratios are again set equal for all users. As before, we expect that a
larger value of the exponent ~, inducing smaller feasible rates, requires a higher price in order
to obtain equal throughput.

We ran the two control algorithms described in Section 7 for 15,000 slots, or approximately
15 seconds of operation, with L(n) = 30n slots for the n-th update. This amounts to roughly
55 price updates. The initial revenue vector is set at random. We used step sizes & = k=2,

k=1,2,.... The resulting price trajectories are graphed in Figures 6 and 7.

8.4 Discrete rates driven by a fading process

We now consider a case with discrete rates governed by independent fading processes as de-
scribed by Jakes’ model [7]. The mean received powers of user 1, 2 and 3 are -15.0 dB, 0.0 dB,
and -10.0 dB, respectively. The feasible rates per slot then follow from Table 1 using fading
realizations as shown in Figure 8.

The throughput target for user 2 is set twice as large as for users 1 and 3, i.e., (a1, a9, a3) =
(1,2,1).

We ran the two control algorithms described in Section 7 for 10,000 slots, with L(n) = n slots
for the n-th update. We used step sizes 6, = k=32 and 6, = k2, k=1,2,....

As explained earlier, the discrete rate values are perturbed by adding a small uniformly dis-

tributed random variable to obtain a continuous version of the problem. We thus ensure that
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Figure 8: Fading process with unit power.

Table 1: Feasible rate per slot as function of SNR.

Signal-to-Noise Ratio (dB) ‘ Rate (bits) ‘

-5.0 < SNR 1000
—10.0 < SNR < =5.0 200
—20.0 < SNR < -10.0 250
—-30.0 < SNR < -20.0 100

SNR < —30.0 30

28

1000



700 ¢ — User 1 ]

; *+—— User 2 ]
600 | +—+ User 3 3
500 % ]

Average Throughput (per slot)

T I
8000 9000 10000

O‘\HHHH\HH\H\HH\ TN ST EEEN SR PN TR ST T
0 1000 2000 3000 4000 5000 6000 7000
Slots (1000 = 1second)

Figure 9: Empirical average throughput for 3 users over 10,000 slots (Move-to-Average algo-
rithm with & = k=2).

the optimal control algorithm is determined by the revenue vector only.

The empirical average throughputs are depicted in Figures 9, 10, and 11. The achieved through-
puts under the Update-Extreme algorithm are approximately 130 bits per slot for both users 1
and 3 and 270 bits per slot for user 2, quite close to the target ratios. Under the Move-
to-Average algorithm the realized throughputs are reasonably close to the target ratios too,
provided the step size is reduced sufficiently slowly as in Figure 10.

The corresponding price trajectories are displayed in Figures 12, 13, and 14. We see that that
under the Update-Extreme algorithm the prices converge to the optimal values in about 5
seconds. Under the Move-to-Average algorithm the prices converge fairly quickly too, unless

the step size is reduced so fast that the process gets essentially overdamped as in Figure 12.

8.5 Comparison with a forcing scheme

We now compare the revenue-based algorithms with a forcing scheme. The forcing scheme
assigns the n-th transmission slot to the user m*(n) with the current minimum normalized
throughput, i.e.,

m*(n) =arg min  y,(n)/an.

m=1,....M

By construction, the forcing scheme realizes the target throughput ratios perfectly, in the sense
that with probability 1,

yi(N) o

N
yi(N)

, as N — oo (20)
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for all pairs of users 4,5 =1,..., M.

The downside of the forcing scheme of course, is that it generally achieves lower throughput
in absolute terms, as it does not take advantage of the variations in the feasible rates.

Under i.i.d. assumptions, the throughput obtained under the forcing scheme may in fact be
computed in closed form as follows. The decision as to whether or not the n-th slot is assigned
to user 7 is entirely determined by the normalized cumulative throughputs, which only depend
on the feasible rates in previous slots. Under i.i.d. assumptions, the feasible rate for user ¢
in the n-th slot is independent of the feasible rates in previous slots. Hence, the decision
variable X;(n) is independent of the feasible rate R;(n), so that

E[Yi(n)] = E[X;(n)|E[R;(n)] = E[Xi(n)|E[Ri],

and thus
N
Elyi(N)] = E[>_ Yi(n)/N] = pi(N)E[Ry), (21)

N
with p;(N) := E[>_ X;(n)/N] denoting the expected fraction of slots assigned to user i out of
n=1

the first N slots.
Combining (20), (21), we conclude

pi(N) _ ai/E[Ri]
pi(N)  oy/E[R;]

as N — oo
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Figure 15: Empirical average throughput for 3 users over 5000 slots (forcing algorithm).

for all pairs of users 4,5 =1,..., M.

M
Using the identity ) p;j(N) = 1, we obtain
=1

j
Q;
(N K—— N
pl( ) — E[RZ]’ as — 00,
with
Mo
K-l — i
jzl E[R;j]
and
Yi(N) — a; K, as N — oc.

We repeated the experiment of the previous subsection for the forcing scheme. The empirical
average throughputs are reproduced in Figure 15 for a period of 5000 slots. The achieved
throughputs are approximately 90 bits per slot for both users 1 and 3, and 180 bits per slot for
user 2. The results show how tightly the target throughput ratios are maintained under the
forcing scheme. In absolute terms however, the throughput for all users is about 30% smaller

than for the revenue-based algorithms.

8.6 Tracking capability

We now examine how well the algorithms are able to track sudden changes in the target

throughput ratios or channel conditions.
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Figure 16: Price adjustment to allow for data burst for user 3 (Move-to-Average algorithm).

In the first experiment, the throughput target for user 3 is initially set to some low value. After
80 seconds, the throughput target is suddenly incremented to allow for the transmission of a
data burst for user 3.

The resulting price trajectories are plotted in Figures 16 and 17. The optimal price values for
the new throughput ratios are also indicated as dashed straight lines. The results show that

after a few oscillations the prices quickly settle down to the new optimal values.

In the final set of experiments, the control is ‘cycled’ approximately every 5 seconds. To test
the tracking capability, the mean received SNR of user 3 is lowered at a rate of 5 dB/sec for
5 seconds. This is expected to lead to a rapid change in w*. The change in SNR is initiated
after 15 seconds of simulation time, and stopped 5 seconds later.

The results for the Move-to-Average algorithm are depicted in Figures 18 and 19. Similar
results for the Update-Extreme algorithm are displayed in Figures 20 and 21.

In the first from each of these two pairs of graphs, the size of the price adjustment varies

according to d; = k2, and in the second one according to &, = k—3/2

. It is thus expected
that the control will converge more slowly in the former case, and the results confirm this.
Indeed, with &, = k2, convergence to the new price occurs only after about 25 seconds. In
the latter case, the correct price is approached shortly after 20 seconds, but there are stronger
fluctuations around the optimal price.

A more subtle observation is that in the interval where the power is being changed, the price

adjustment remains fairly large, which is an advantage conferred by the reset conditions that
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Figure 17: Price adjustment to allow for data burst for user 3 (Update-Extreme algorithm).

we used. Standard control algorithms such as Robbins-Monro, in contrast, prescribe such
adjustments in advance, see [9], [10]. It should be stressed that no attempt has been made
here to design the sequences L(n), i, or the cycle interval in an optimal way. Also note that

the control signal could be filtered to remove high-frequency components if necessary.

9 Conclusion

We considered the problem of scheduling data users with varying channel conditions so as
to obtain the optimal long-run throughputs for given target ratios. We have shown that the
problem may be solved by selecting users for transmission according to an optimal revenue
vector w* which balances the expected throughputs. We presented a wide class of stochastic
control algorithms which ensure almost-sure convergence to w* and thus achieve the optimal
long-run throughputs. The algorithms require only a convergent sequence of step sizes to be
specified, in combination with an increasing sequence of sample sizes per price update.

Numerical experiments showed that the convergence to the optimal revenue vector is in practice
quite rapid (of the order of a few seconds), making the algorithms suitable for the Qualcomm
HDR scheme. In addition, the results demonstrated that the algorithms have the ability to
track changes in the channel conditions and throughput targets. Further experiments are
required to determine which form of the algorithm is most adequate for implementation in the
HDR scheme. The algorithms may also be enhanced by allowing the step sizes or the sample

sizes to be adapted in response to non-stationary changes in the feasible rate declarations
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Figure 18: Cycled control: lowered SNR, user 3 (Move-to-Average algorithm with & = k72).
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Since the control algorithms require only observations of the feasible rate, they may be used for
admission control purposes. This is reminiscent of channel probing, with the additional benefit
that the prospective user need not be allocated any resources until the admission control
decision has been made.

In the present paper we considered a scenario with only one user scheduled at a time and
a single rate sample per user per slot. These conditions, however, are actually not essential
for the underlying optimality principle to apply. Revenue-based policies which balance the
throughputs continue to be optimal in situations where several users may be scheduled at a
time and various auxiliary decisions may be taken.

As an illustrative example, consider a throughput optimization problem for two adjacent base
stations. Let R,, be the rate in a given slot for user m in cell 1 if both base stations transmit,
and let R;, be the rate for user m if only base station 1 transmits. Let R; and R be defined
similarly as the rate in a given slot for user [ in cell 2. A revenue-based policy then selects the

decision which maximizes revenue over all feasible options:

Wi, Ry + Wi By melle?2
Revenue = ¢ w} R}, me 1l
w R, le2.

Observe that the decisions as to which users are scheduled and which base station transmits (1
or 2 or both) are taken jointly. The revenue vector w* which balances the throughputs will be
optimal, and may be found using the stochastic control algorithms as before. This approach

may also be used in conjunction with antenna systems, for example.
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A Large-deviations assumption

In this appendix we show that Large-Deviations Assumption 7.1 is satisfied for the feasible-rate
process that we consider.

Given a price vector w € W, consider a closed neighborhood N¢(w) of w. Let X,,(w’) be
a random variable representing the throughput per slot that user m receives under the price

vector w’ in stationarity. Then X,,(w’) may be formally represented as

with (Ry,...,Ry) a random vector with distribution the joint stationary distribution of the
feasible rates.
Now define random variables

Yo (NC (’U))) = RmI{Vw’GNC (w):wéan:k:r{laxM wh Ry}

Thus, Y,,(N¢(w)) represents the rate that user m would receive in case it were only selected if
it has the maximum rate-reward product under all prices w' € N¢(w). Evidently, X,,(w') >
Y (Ne(w)) for all w’ € Ne(w).
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Similarly, define random variables

Thus, Z,,(N¢(w)) represents the rate that user m would receive in case it were assigned the
slot if it has the maximum rate-reward product under some price w' € N¢(w). Obviously,
X (W) < Zp(Ne(w)) for all w’ € Ne(w).

Denote by Er[Y,,(N¢(w))] and Ex[Z,,(N¢(w))] the respective expectations under the stationary
distribution 7(s), s € S, of the Markov chain governing the feasible-rate process. By dominated

convergence,
Er[Yin(Ne(w))] < Em(w) < Ex[Zmn(Ne(w))]

for all m =1,..., M, with E;[Y,,(N¢(w))] T ZEm(w) and Ex[Z,,(Ne(w))] | Em(w) as ¢ | 0.
Let X7 (w'), Y (N¢(w)), and ZJ}, (N¢(w)) be the throughput per slot obtained by user m in a
sample period of length n under the above three rules. For any w’ € N¢(w), sample path wise,
Y (Ne(w)) < X7 (w') < Z7 (Ne(w)), so in particular

P{| X7, (w")=Ep(w) [> &} < P{Yn(Ne(w)) < Epp(w)=EHP{ Z (Ne(w)) > Ep(w)+£}.(22)
Denote by
oy (nt) = log Eﬂ[etZ?ﬂ(NC(w))]

the log-moment generating function of Z7,(N¢(w)). Define

1
Om(t) ;= lim —¢ (nt).
n—oo N
We have that
1
liminf —log P{Z]}, (N¢(w)) > na} = I (),
n—oo N
with
I, (z) = sgp{tw —om(t)}.
We now compute I,,(x). For any s € S, denote

QZSm(t, S) _ Eﬂ[ etZm (N (w)) | 8]

as the log-moment generating function of Z,,(N¢(w)) conditional on the state s of the Markov

chain governing the feasible-rate process, and define the S x S-matrix

Hm(t) = {Q(Sl, 52)¢m(ta 51)}517527

with ) the S x S transition matrix of the Markov chain.
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It may be then shown that

=log » (I, 7(5)bml(t ),

seS

see Dembo & Zeitouni [5].

Hence,

Pm (t) = log p1 (Hm (t)),

with p; the Perron-Frobenius eigenvalue of the matrix II,,(¢), so that
Im(x) = sup{tz —log py (I (2))}-

It remains to be shown that I,,(x) > 0 for x > Ex[Z,,(N¢(w))].

Since I1,,,(t) is a compact family of non-negative matrices, we have
(I (¢))"py ™ = Ut )rT (") — 0,

componentwise, and uniformly for all ¢ € [0,t], with I(t') and r(¢') the left and right Perron

eigenvectors, normalized such that Y I5(#') = 1 and ) rs(#') = 1, see Seneta [11], Theo-
s€S s€S
rem 3.6.

Thus, ¢, (t) may be uniformly approximated by %gp”m(nt): for any given t > 0, 1) > 0, there

exists an n such that
1
| o) = pn(t) | < ¥
for all ¢/ € [0,¢].

Hence,

1
sgp{tx —log p1 (I (£))} 2 max {tx —log p1 (I (1))} = max {tz - —pm(nt’) — v} = Orgggtvn(t V).

However, since all moments exist, ¢! (t') may be expanded to third order using Taylor’s theo-

rem,
1 " , , t12 5 t/3
E‘Pm(”t ) =t (BxZm(Ne(w)) — wp) + 5 n + KE’
with lim,, .~ @, = 0, liminf U,% >0, and K < oc.

n—oo

For = Ex[Z(Ne(w))] + €, we may take t* = (€ — w,,)/o2. If n is sufficiently large and €
sufficiently small, then ~,(¢*,%) > 0, and hence I(x) > 0 for x > E;[Z,,(N¢(w))] because of
monotonicity in x.

It follows that there exist numbers Cy,(N¢(w), Z) > 0, Dy, (N¢(w), Z) > 0 such that

P{Zn(N¢(w)) > En[Zn(Ne(w))] + €} < Cr (N (w), Z) e P Ne(w)-2), (23)
Similarly,
P{Yon(Ne(w)) < Ex[Yin(Ne(w))] = €} < O, (Ne(w),Y) e PN ), (24)
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Now take e = £/2 and ¢ > 0 small enough so that E[Y,,(N¢(w))] > Ep(w)—£/2, Ex[Z(Ne(w))] <

B (W)+E/2, CS (w) = 2(C5 % (Ne(w), Y)+C5 (N (w), Z) > 0) and DS, (w) := min{ D5/ *(N¢(w),Y), D5*(N¢(w

0.
Combining (22), (23), (24), we then obtain

P{| X7 () = Ep(w) | > &} < C& (w) e (@),

as required.

B Function T'(+)

In this appendix we prove that Assumption 7.3 is satisfied for suitable functions 7'(-) under
certain assumptions on the feasible-rate process

For any subset S C R, denote by u(S) the Lebesgue measure of S, and denote by 7(5) the
stationary probability that the feasible rate vector is in S. We assume that there are fixed
constants K, Ky such that Kqpu(S) < 7(S) < Kou(S) for all S CR.

We will prove that Assumption 7.3 is satisfied provided K; > 0, Ky < oo. It may then be
shown that there exist n > 0, § < oo such that if w' = w + dv(w), with v(w) as in (8), (9),
then for all i € O,

Ei(w') — Ei(w) € d[n, 0],
and for all j € QT,
Ej(w') — Ej(w) € —d[n, ],

see also Lemma 7.1.
Now consider a price vector w ¢ I'.. By definition, if a price direction is &-right, then all the
&-below-average users will belong to 7, and all the -above-average users will belong to Q.
Thus, if i € Q7, then Z;(w) < Eae(w) + &, and if j € QF, then Zj(w) > Eave(w) — &.
As mentioned earlier, we consider two alternative choices for the function T'(-). The first one
is

T(w) = Epax(w) — Emin(w).
Define & := min{=ax(w) — Eave(w), Eave(w) — Emin(w)}/2 > €/2M > 0. Then
Epn(w") = min{min Z;(v’), min Z;(w’)} >

—_ / .
Emin(w') =  min
m=1,...M i€~ jeQt

min{ min Z;(w) 4+ dn, min =Z;(w) — 60} > min{Epin(w) + 01, Zave(w) — § — 60} >
1€Q™ jeQt
Emin(w) + min{on,§ — 60} > Epin(w) + min{on, €/2M — §0} > Epin(w) + 01
for 6 < e/2M(n+6).
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Similarly,

Emax(w') = mgllaXM Enw) = max{ggsaiz( Ei(w’),;‘rré%i( =y (W)} <

max{max =;(w) + 660, max Z;(w) — 6n} < max{Zave(w) + & + 08, Emax(w) — dn} <
1€Q~ jeNT

Emax(w) + max{—& + 60, —dn} < Epax(w) + max{—e/2M + 00, —on} < Epax(w) — dn

for § < e/2M(n+6).
Thus,

[1]

T(w') = Epax(w’) — Emin(w’) < Epax(w) — Epin(w) — 208 = T'(w) — 216

for all § € (0,0%) with * =¢/2M (n + 0).

The second choice that we consider is the function

M
T(w) =Y wmSm(w).
m=1

Define ¢ := ve/4(M — 1). For convenience, re-label the users such that Q= := {1,..., K},
with Z1(w) < ... < Eg(w), and QT = {K +1,...,M}, with Ex1(w) < ... < Epy(w).
Recall that if a price direction is &-right, then all £-below-average users belong to 27, and all

&-above-average users belong to QF, so that if i € Q~, j € QF, then
J

E](w) - EZ(U}) > —25.

K M
Denote vyt = > v; = Y, wvj. It may easily be verified that there exist numbers uy, ..., up—1 >
i=1 j=K+1

M-1
0, with > wup = viot, and integers i(k) € {1,..., K}, j(k) € {K +1,..., M}, such that
k=1

v; = E Uk

kui(k)=t
foralli=1,..., K,
Uj = — Z Uk
k:j(k)=j
forall j=K+1,..., M.
Without loss of generality, we may assume that i(1) = 1, j(1) = M, u; = min{v(1),v(M)} >
v >0, and that up < max v, <lforallk=1,..., M —1.

mzlv"'v
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1€~ kii(k)=i
M M-1
= Z W Em(w') =8 Z ug(
m=1 k=1
M M-1
< Z wm'—'m(w) -0 uk(
m=1 k=1

< T(w)—6[ve—2(M —2)¢ — 2(M — 1)09)]
< T(w)—6[ve—2(M —1)(ve/4(M — 1) + 69)]
< T(w) — dve/d

for all § € (0,0%) with 6* = ve/80(M —1).
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