
 

Instructions for use

Title Dynamic reaction coordinate in thermally fluctuating environment in the framework of the multidimensional
generalized Langevin equations

Author(s) Kawai, Shinnosuke; Komatsuzaki, Tamiki

Citation Physical Chemistry Chemical Physics, 12(47), 15382-15391
https://doi.org/10.1039/c0cp00543f

Issue Date 2010-12-21

Doc URL http://hdl.handle.net/2115/46927

Rights Phys. Chem. Chem. Phys., 2010, 12(47), 15382-15391 - Reproduced by permission of the PCCP Owner Societies

Type article (author version)

File Information PCCP12-47_15382-15391.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Dynamical Reaction Coordinate in Thermally Fluctuating Environment in the Framework of

Multidimensional Generalized Langevin Equations

Shinnosuke Kawai1∗ and Tamiki Komatsuzaki1,2

1Molecule & Life Nonlinear Sciences Laboratory,

Research Institute for Electronic Science,

Hokkaido University, Kita 20 Nishi 10,

Kita-ku, Sapporo 001-0020, Japan

and
2Core Research for Evolutional Science and Technology (CREST),

Japan Science and Technology Agency (JST),

Kawaguchi, Saitama 332-0012, Japan

* Research Fellow of the Japan Society for the Promotion of Science

Nonlinear generalized Langevin equation with memory due to thermal environment is equivalent

to a memoryless equation with increased dimensionality

A framework recently developed for the extraction of a dynamic reaction coordinate to mediate reactions

buried in multidimensional Langevin equation is extended to the generalized Langevin equations without a priori

assumption on the forms of the potential (in general, nonlinearly coupled systems) and the friction kernel. The

equation of motion with memory effect can be transformed into an equation without memory at the cost of an

increase in the dimensionality of the system, and hence the theoretical framework developed for the (nonlinear)

Langevin formulation can be generalized to the non-Markovian process with colored noise. It is found that the

increased dimension can be physically interpreted as effective modes of the fluctuating environment. As an

illustrative example, we apply this theory to a multidimensional generalized Langevin equation for motion on

the Müller-Brown potential surface with an exponential friction kernel. Numerical simulations find a boundary

between the highly reactive region and the less reactive region in the space of initial conditions. The location

of the boundary is found to depend significantly on both the memory kernel and the nonlinear couplings. The

theory extracts a reaction coordinate whose sign determines the fate of the reaction taking into account the

thermally fluctuating environments, the memory effect, and the nonlinearities. It is found that the location of

the boundary of reactivity is satisfactorily reproduced as the zero of the statistical average of the new reaction

coordinate, which is an analytical functional of both the original position coordinates and velocities of the

system, and of the properties of the environment.

I. INTRODUCTION

Many chemical reactions and arrangements of the confor-

mation of biomolecules occur in condensed phase under the

influence of stochastic random forces and the friction exerted

by the surrounding solvent molecules. Since the pioneer-

ing work by Kramers,1 the Langevin equation has been of-

ten utilized to represent the dynamical processes in condensed

phase. The chemical reaction was originally modeled as a

stochastic motion surmounting a barrier on a one-dimensional

potential surface along a chosen coordinate considered to de-

scribe the progress of the reaction. In his pioneering work

Kramers found that the rate constant is proportional to the in-

verse of the friction constant γ in the case of high viscosity

whilst it is proportional to γ in the case of low viscosity, re-

sulting in a turn over in the dependence of the rate constant

on γ. Later, Grote and Hynes2 reformulated the theory of

Kramers under the existence of memory by using a general-

ized Langevin equation. In a generalized Langevin equation,

the acceleration of the position coordinate is determined by

the gradient of the potential of mean force, the friction, and

the external force arising from the environment. The friction

depends linearly on the history of the velocity of the system,

resulting in memory effects. If the friction kernel decays much

more rapidly than the typical timescale of the reaction, the

equation can be approximated by a Langevin equation with-

out memory.

It was shown3 by using the projection operator method that

any high-dimensional Hamiltonian system can formally be

cast into a generalized Langevin equation with a small number

of variables. All the detailed dynamics of the “solvent” modes

that are projected out are reflected in a time propagation of

the external force and the friction kernel. The time evolution

of the external force is also given by a form of generalized
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Langevin equation4, which then contains an external force of

the next order. This procedure can be repeated until sufficient

degrees of freedom have been taken and one can make some

approximation to the remaining “random force.” Zwanzig5

showed that, if the solvent can be expressed as a collection of

harmonic oscillators and the coupling with the system is bilin-

ear, the random force can be regarded as a Gaussian random

variable.

Supposing the shape of the potential at the barrier top is an

inverse parabola along the chosen reaction coordinate, theory

by Kramers1 and by Grote and Hynes2 can provide analytical

formula for the rate constant dependent on the friction. Re-

cently, Grote-Hynes theory has been successfully applied to

complex systems with many degrees of freedom, such as en-

zymatic reactions.6 In particular, it was shown that Kramers

theory severely underestimates the transmission coefficient,

implying the necessity of including the memory term in the

generalized Langevin equation. The interplay of the multiple

vibrational modes in the environment with the naïvely chosen

reaction coordinate was also pointed out, although the anal-

yses were performed only at the normal mode level. When

the system contains multiple degrees of freedom, the effect

of the nonlinear couplings within the system on the reaction

dynamics should also be taken into account. It is a nontrivial

issue whether we can construct the concept of “reaction co-

ordinate,” as a single one-dimensional coordinate (decoupled

from other coordinates) that can describe the progress of the

reaction and, in principle, predict the destination of the reac-

tion, that is, reactants or products.

Bartsch et al.7–10 scrutinized the geometrical structure of

reaction in the framework of a multidimensional Langevin

equation within the harmonic approximation, that is, each

mode coupled bilinearly with each other. They introduced

a shifted coordinate system that can take into account time-

dependent fluctuating force. They showed that one can ex-

tract the reaction coordinate decoupled from the other nonre-

active coordinates and hence extract the non-recrossing divid-

ing surface (=transition state) in that shifted system. They also

extended the treatment to the case of a generalized Langevin

equation.8 However, the existence of their reaction coordinate

crucially depends on the harmonic approximation for the po-

tential, and therefore could be validated only at very low tem-

perature.

Recently, in order to extract the reaction coordinate and the

no-return transition state for nonlinearly coupled multimode

systems in a fluctuating environment, we have presented a

theory11–14 based on the concept of normal form15 with the

time-dependent formulation16 within the framework of the

multidimensional Langevin formulation. It was shown that,

under certain conditions, a nonlinear coordinate transforma-

tion can be performed to provide a new reaction coordinate

independent of all the other coordinates similarly to the case

of Hamiltonian systems in the region of saddles.17–36 The sign

of this reaction coordinate solely can determine whether the

reaction system proceeds to from the products or is reflected

back to the reactants. The nonlinear formulation, however,

was so far restricted to multidimensional Langevin equations

without memory effects.

In this paper we generalize the theory11–14 to generalized

Langevin equations without postulating the forms of the po-

tential or the friction kernel. We exploit the equivalence be-

tween the generalized Langevin equation with memory ker-

nel and a memoryless equation of motion containing larger

number of dimensions, which can be physically interpreted

as a set of effective modes of the environment that affect the

reaction dynamics. As an example, we analyze the reaction

dynamics represented by a generalized Langevin equation on

Müller-Brown potential37 with an exponential friction kernel

with several different damping timescales. It is found that

the reaction coordinate and the reaction boundary determin-

ing the reactivity can be extracted from nonlinearly coupled

multimode systems with thermal fluctuation even when there

is memory.

II. THEORY

A. Generalized normal mode transformation

In this paper we use a generalized Langevin equation to

describe chemical reactions under the effect of colored noise.

q̈ j = −
∂U

∂q j

−

∫ t

0
dτ

d

∑
i=1

γi j(τ )q̇i(t − τ )+ ξ j(t), (1)

where q1,q2, . . . ,qd are position coordinates of the system (d

is the number of degrees of freedom of the system), U(q) the

potential of mean force, γi j(τ ) the friction kernel and ξ j(t)
the random force exerted by the solvent. The friction kernel

and the random force are related to each other through the

fluctuation-dissipation theorem,

〈ξi(t)ξ j(t
′)〉 = 2kBTγi j(|t − t ′|), (2)

where 〈·〉 denotes the ensemble average at equilibrium, kB is

Boltzmann constant and T temperature. The potential force is

decomposed into the harmonic and the anharmonic terms:

−
∂U

∂q j

= −
d

∑
i=1

ai jqi +
∞

∑
k=1

εk ∑
|m|=k+1

α j,mq1
m1 · · ·qd

md , (3)

where ai j and α j,m are the expansion coefficients of the lin-

ear and the higher order terms, respectively. The origin of the

coordinate system is set to be at a stationary point on the po-

tential U(q). We introduce a formal parameter ε to employ

the so-called normal form perturbation theory as in our recent

work on multidimensional Langevin formulation.11 The k-th

order perturbation consists of the polynomial of degree (k+1)
in q. The crux to handle the nonlinearity is to regard the non-

linear term as a function of time through the time dependence

of q j’s:

f j(t)
def
=

∞

∑
k=1

εk ∑
|m|=k+1

α j,mq1
m1(t) · · ·qd

md (t). (4)

We also define

g j(t)
def
=ξ j(t)+ f j(t). (5)
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Then Eq. (1) can be expressed as

q̈ j = −
d

∑
i=1

ai jqi −
∫ t

0
dτ

d

∑
i=1

γi j(τ )q̇i(t − τ )+g j(t). (6)

Note that Eq. (6) is a generalized Langevin equation being

nonlinear in q j’s, since the term g j(t) includes the nonlinear

force, and the time dependence in g j arises from ξ j and f j

where the time dependence originates from q j’s.

We now follow the treatment of Bartsch et al.8 with a mod-

ification which is necessary to include the nonlinearities. Let

us consider a formal solution of Eq. (6) by using Laplace

transform

q̂ j(λ ) =
∫ +∞

0
exp(−λ t)q j(t)dt, (7)

and its inverse

q j(t) =
1

2πi

∫ c+i∞

c−i∞
exp(λ t)q̂ j(λ )dλ , (8)

where the real constant c is taken on the right side of all the

singularities of q̂ j(λ ) on the complex plane. Eq. (6) is, then,

transformed into the following form,

λ 2q̂ j(λ )−λ q j(0)− q̇ j(0)

=−
d

∑
i=1

ai jq̂i(λ )−
d

∑
i=1

γ̂i j(λ ){λ q̂i(λ )−qi(0)}+ ĝ j(λ ).

(9)

In matrix form,

λ 2q̂(λ )−λ q(0)− q̇(0)

=−Aq̂(λ )− Γ̂ (λ ){λ q̂(λ )−q(0)}+ ĝ(λ ), (10)

where A = (ai j), Γ = (γi j), q = (q j), g = (g j), and the hat

means Laplace transform as usual. By rearranging the terms,

we have
{

λ 2 +λ Γ̂ (λ )+A
}

q̂(λ )

=
{

λ + Γ̂ (λ )
}

q(0)+ q̇(0)+ ĝ(λ ). (11)

We define

B(λ )
def
=λ 2 +λ Γ̂ (λ )+A, (12)

and the formal solution for q̂(λ ) is then given by

q̂(λ ) =B(λ )−1
[{

λ + Γ̂ (λ )
}

q(0)+ q̇(0)+ ĝ(λ )
]

=λ −1q(0)+B(λ )−1
[

−λ −1Aq(0)+ q̇(0)+ ĝ(λ )
]

.

(13)

By applying the inverse Laplace transformation, the formal

solution (13) is brought back to the time domain:

q(t) =
1

2πi

∫ c+i∞

c−i∞
dλ exp(λ t)

[

λ −1q(0)+B(λ )−1q̇(0)−λ −1B(λ )−1Aq(0)

+B(λ )−1
∫ +∞

0
dt ′g(t ′)exp(−λ t ′)

]

. (14)

The integration over λ is evaluated by a complex path in-

tegral using residues. The poles of the matrix B(λ )−1 =
{

λ 2 +λ Γ̂ (λ )+A
}−1

coincide with the solutions of the non-

linear eigenvalue equation

[

λn
2 +λnΓ̂ (λn)+A

]

vn = 0. (15)

To obtain the residues, we first diagonalize the matrix

B(λ ) =∑
i

βi(λ )wi(λ )wi(λ )T. (16)

The inverse matrix of B is then given by

B(λ )−1 = ∑
i

1

βi(λ )
wi(λ )wi(λ )T. (17)

At the eigenvalues λ = λn in Eq. (15), one of βi(λ ) be-

comes zero and the corresponding vector wi(λ ) coincides with

the eigenvector vn. If the poles are simple, we can assume

β1(λn) = 0 without loss of generality. We then make a Taylor

expansion around the pole λ = λn:

β1(λ ) = β ′
1(λn)(λ −λn)+O

(

(λ −λn)
2
)

, (18)

and obtain the residue

Res
λ =λn

B(λ )−1 =κnvnvT
n ,

κn
def
=β ′

1(λn)
−1. (19)

By using these residues, Eq. (14) is written as

q(t) =∑
n

vn

[

exp(λnt)κnvT
n

{

q̇(0)−λ −1
n Aq(0)

}

+κn

∫ t

0
dt ′ exp(λn(t − t ′))vT

n g(t ′)

]

. (20)

We now define normal mode coordinates un by the inside of

[ ] in this equation:

un
def
= exp(λnt)κnvT

n

{

q̇(0)−λ −1
n Aq(0)

}

+κn

∫ t

0
dt ′ exp(λn(t − t ′))vT

n g(t ′). (21)

Then q and u are related by

q =∑
n

vnun. (22)

The inverse of Eq. (22) at t = 0 (i.e., the initial condition of u)

is given by Eq. (21)

un(0) = κnvT
n

{

q̇(0)−λ −1
n Aq(0)

}

. (23)

>From Eq. (21), it can be shown that u obeys the following

equation of motion:

u̇n = λnun +κnvT
n g(t). (24)
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Here g(t) = ξ (t)+ f (q(t)) [Eq. (5)] and f is a polynomial of

q j’s [Eq. (4)]. Since q j’s are now linear combinations of un’s

[Eq. (22)], we can express f as polynomials of un’s. Then we

have

u̇n = λnun + ξ̃n(t)+
∞

∑
k=1

εk ∑
|m|=k+1

β j,mu1
m1 · · ·uN

mN , (25)

where N is the total number of the normal modes,

ξ̃n(t)
def
=κnvT

n ξ (t) is the random force projected onto the nth

normal mode, and β j,m’s are the expansion coefficients ob-

tained by substituting Eq. (22) into Eq. (4). The equation of

motion (25) has the same form as the equation for u in the

case of a multidimensional Langevin formulation11,12, which

allows us to follow the same normal form procedure38–40 as

presented in Refs. 11 and 12.

The only difference from the previous formulation11,12 is

the increase of dimension needed to describe the system, that

is, N can be larger than 2d for some friction kernels (In

Sec. II B, we demonstrate a case in which the friction ker-

nel is expressed as a linear combination of exponential de-

cays). The number and the values of the eigenvalues depend

on the specific form of the friction kernel and that of the po-

tential of mean force. We assume here that, as in the iso-

lated system,17–36 there is one eigenmode with a positive real

eigenvalue (i.e., an unstable mode corresponding to the mo-

tion sliding down the barrier). We number this unstable mode

as 1 (λ1 > 0).

The number of eigenmodes can be more than 2d. Note that

the friction kernel Γ arises from dynamical interactions be-

tween the system and the surrounding solvents. Such extra

eigenmodes can be regarded as normal modes of the extended

system consisting of solute and solvent molecules. Moreover,

the friction kernel does not necessarily contain all the motions

of the solvent molecules but includes those which affect the

motion of the solute. In Sec. II C, it is shown that the number

of the eigenmodes is finite if the friction kernel has a sim-

ple form like cosines or exponential decays with integer pow-

ers of time, which have been found in molecular dynamics

simulations.41,42 Therefore the above procedure is a way of

extracting the effective finite degrees of freedom from the vast

(practically infinite) dimensions of solvents.

The equation of motion [Eq. (25)] for the normal mode

coordinates u can be solved in terms of the time-dependent

normal form perturbation theory,11,38–40 which is a time-

dependent classical analog of the Van Vleck perturbation the-

ory studied in molecular spectroscopy. The details of the pro-

cedure are shown in previous works.11 Briefly, we introduce

a nonlinear coordinate transformation u 7→ y. The unstable

mode y1 can be expressed as a polynomial expansion of u:

y1 =u1 −S[λ1, ξ̃1](t)

+
∞

∑
k=1

εk ∑
|m|≤k+1

W
(k)
m [λ ,ξ ](t)u1

m1u2
m2 · · ·uN

mN ,

(26)

where the time-dependent coefficients S[λ1, ξ̃1](t) and

W
(k)
m [λ ,ξ ](t) are linear and nonlinear functionals of the ran-

dom force, respectively. The equation of motion for y1 is in-

dependent of the other modes y2,y3, . . . ,yN :

ẏ1 ≈ {λ1 + c1(t)}y1, (27)

with the coefficient c1(t) only depending on t and not on

y2, . . . ,yN . Under a moderate condition for c1(t), that is,

lim
t→+∞

∣

∣

∣

∣

1

t

∫ t

c1(t
′)dt ′

∣

∣

∣

∣

< λ1 (28)

(λ1 arises from the zeroth order of the perturbation theory

while the term c1 is from the higher orders) the sign of y1

solely determines the direction of the motion departing from

the barrier, that is, whether the system undergoes the reaction

to form the product or gets reflected back to the reactant. The

value of y1 as a function of the initial condition (q(0), q̇(0))
is given by substituting Eq. (23) into Eq. (26). The result can

also be expressed in the form of polynomials:

y1 =a1q1 +a2q̇1 −S[λ1, ξ̃1](t)+F0 [ξ ] (t)

+∑|m|≥2
wmq1

m1 · · ·qd
md q̇

md+1

1 · · · q̇
m2d

d

+ ∑
|m|≥1

Fm [ξ ] (t)q1
m1 · · ·qd

md q̇
md+1

1 · · · q̇
m2d

d . (29)

The first two terms correspond to the linear combination in

Eq. (23). When we introduce position space normal mode co-

ordinates, which diagonalize the Hessian matrix A, and the

friction kernel does not have off-diagonal elements, we have

only q1 and q̇1 in the expression of u1. In general cases, how-

ever, we should have a linear combination of all the q j’s and

q̇ j’s in the first parts of Eq. (29). The other terms in Eq. (29)

originate from the effects of nonlinearity, with the coefficients

F0 [ξ ] (t) and Fm [ξ ] (t), both nonlinear functionals of the ran-

dom force. The terms with wm (i.e., without ξ ) can be re-

garded as intrinsic nonlinear effects of the system, while oth-

ers are combinations of the nonlinearity and the external ran-

dom force. The transformation Eq. (29) depends on each spe-

cific instance of the random force ξ (t). Since it is impossible

to know the instance of the random force for all the time t in

advance, we have suggested11 to take the ensemble average of

y1 with respect to all the possible realizations of the random

force:

〈y1〉 =a1q1 +a2q̇1 + F̄0(kBT )

+∑|m|≥2
wmq1

m1 · · ·qd
md q̇

md+1

1 · · · q̇
m2d

d

+ ∑
|m|≥1

F̄m(kBT )q1
m1 · · ·qd

md q̇
md+1

1 · · · q̇
m2d

d , (30)

where F̄0(kBT ) and F̄m(kBT ) are the ensemble averages of the

corresponding coefficients in Eq. (29), and depend on the tem-

perature through Eq. (2) instead of each instance of ξ (t). Note

that the transformations Eq. (29) and Eq. (30) are valid only

for t = 0 because Eq. (23) is only for t = 0. For the purpose of

judging the reactivity for a given initial condition (q(0), q̇(0)),
these equations are sufficient.
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B. Proof of invertibility and noninvertibility of the normal

mode transformation

In this subsection, we investigate an application of the

present theory to a specific one-dimensional model coupled

bilinearly to a harmonic bath. For this system, the rela-

tion between the total Hamiltonian (system + bath) and the

generalized Langevin description has been established.5 The

goal of this subsection is to clarify the relation between the

method presented in Sec. II A, which starts from the gener-

alized Langevin equation, and the normal modes of the total

Hamiltonian system.

It has been shown5 that a generalized Langevin equation

with Gaussian random force can be exactly derived if the “sol-

vent” modes are harmonic oscillators and the interaction with

the “solute” is bilinear. In this case, the total system is de-

scribed in the region of a rank-one saddle by the following

Hamiltonian:

Htotal =
1

2
p0

2 −
1

2
b2q0

2 +UNL(q0)

+
N

∑
j=1

[

1

2
p j

2 +
1

2

(

ωjq j +
c j

ωj

q0

)2
]

, (31)

where q0 and q j for j = 1,2, . . . ,N are the position coordinates

of the solute (= reactive mode) and the solvent (= nonreactive

modes), respectively, p0 and p j their conjugate momenta. We

have divided the potential along the reactive mode q0 into the

quadratic (− 1
2
b2q0

2, with b being a real number) and the non-

linear (UNL(q0)) parts. The solvents are described as a set of

harmonic oscillators with frequencies ωj, interacting with the

solute with the coupling constants c j. Zwanzig5 showed that

this system is equivalent to a generalized Langevin equation

q̈0 = b2q0 −U ′
NL(q0)−

∫ t

0
γ(τ )q̇0(t − τ )dτ + ξ (t), (32)

with the friction kernel given by

γ(τ ) =
N

∑
j=1

c j
2

ωj
2

cos(ωjτ ), (33)

and the prime in U ′
NL denotes the derivative with respect to

q0. The purpose of this subsection is to prove that the full

phase space of the system, which is a 2(N + 1)-dimensional

space parametrized by (q0, q1, . . ., qN , p0, p1, . . ., pN), can

be completely recovered from the generalized Langevin equa-

tion, Eq. (32), if we know the exact form of the friction kernel

of Eq. (33).

The harmonic part of the total Hamiltonian is expressed in

matrix form

Htotal =
1

2
|p|2 +

1

2
qTKq+UNL(q0), (34)

where

q =









q0

q1

...

qN









, p =









p0

p1

...

pN









,

K =

















−b2 + c0 c1 c2 · · · cN

c1 ω1
2 0 · · · 0

c2 0 ω2
2

. . .
...

...
...

. . .
. . . 0

cN 0 · · · 0 ωN
2

















,

c0 =
N

∑
j=1

c j
2

ωj
2
. (35)

To find the relation between the method presented in Sec. II A

and this total Hamiltonian description, we first consider the

normal modes in the 2(N + 1)-dimensional Hamiltonian sys-

tem. Let en be eigenvectors of the matrix K:

Ken =−λn
2
en, (n = 0,1, . . . ,N), (36)

where we have written the eigenvalues as −λn
2

for conve-

nience in the following. λn is either pure imaginary (for non-

reactive or elliptic modes) or pure real (for reactive or hyper-

bolic mode). The eigenvalues are the solution to the following

equation43

λn
2

{

1+
N

∑
j=1

c j
2

ωj
2

1

λn
2 +ωj

2

}

−b2 = 0. (37)

The components of the eigenvectors are given by43

en =









e0n

e1n

...

eNn









,

e0n =

{

1+
N

∑
j=1

c j
2

(λn
2 +ωj

2)2

}−1/2

,

e jn =−
c j

λn
2 +ωj

2
e0n ( j = 1, . . . ,N).

(38)

Since the matrix K is symmetric, the eigenvectors form an

orthonormal set

eT
n em = δnm, (39)

where δ is Kronecker’s delta. By using these eigenvectors, we

define the phase space normal mode coordinates as

ũn =2−1/2
(

eT
n q+λ −1

n eT
n p
)

,

ũN+1+n =2−1/2
(

eT
n p−λneT

n q
)

(n = 0, . . . ,N),

(40)
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whose inverse transformation is

q =2−1/2
N

∑
n=0

en

(

ũn −λ −1
n ũN+1+n

)

,

p =2−1/2
N

∑
n=0

en (ũN+1+n +λnũn) . (41)

Substituting Eq. (41) into the Hamiltonian equation of motion

obeying Eq. (34) we obtain the equation of motion for ũ:

d

dt
ũn =λnũn −

1

21/2λn

e0nU ′
NL(q0),

d

dt
ũN+1+n =−λnũN+1+n −

1

21/2
e0nU ′

NL(q0). (42)

Here the argument q0 of U ′
NL is replaced by

q0 =2−1/2
N

∑
n=0

e0n

(

ũn −λ −1
n ũN+1+n

)

, (43)

resulting in the coupled differential equation of ũ only. The

terms U ′
NL(ũ) are O(ũ2). For a positive real value of λn, ũn

grows exponentially from the origin (ũn = ũN+1+n = 0) while

ũN+1+n asymptotically converges to it. In the harmonic ap-

proximation, these two modes correspond to the motions de-

parting from and converging to the barrier top along the nor-

mal mode reaction coordinate. On the other hand, for pure-

imaginary numbers of λn, ũn and ũN+1+n represent the mo-

tions of oscillation perpendicular to the reaction coordinate.

The question to be addressed here is whether these equa-

tions of motion in the full phase space can be reconstructed

solely from the generalized Langevin equation (32) with re-

spect to the single coordinate q0. The method presented in

Sec. II A can be applied to this system by substituting into

Eq. (12) the Laplace transform of the friction kernel Eq. (33)

given by

γ̂(λ ) =
N

∑
j=1

c j
2

ωj
2

λ
λ 2 +ωj

2
. (44)

Then we have

B(λ ) = λ 2

(

1+
N

∑
j=1

c j
2

ωj
2

1

λ 2 +ωj
2

)

−b2. (45)

The eigenvalue equation B(λ ) = 0 coincides with Eq. (37).

Note that the eigenvalues appear in pairs of opposite sign be-

cause Eq. (45) is symmetric for the sign of λ . We number

the eigenvalues such that λN+1+n =−λn for n = 0,1, . . . ,N so

as to be consistent with Eq. (42). Since the system is one-

dimensional, the eigenvector is vn = (1). We also find by

Eq. (19)

κ−1
n =

dB(λ )

dλ

∣

∣

∣

∣

λ =λn

= 2λne−2
0n . (46)

By defining the normal mode coordinates un according to

Eqs. (22)-(24) in Sec. II A, we then have

q0 =
2N+1

∑
n=0

un,

u̇n =λnun +
e2

0n

2λn

{

−U ′
NL(q0)+ ξ (t)

}

. (47)

In order to establish the equivalence of Eqs. (42) and (47),

we first note that the random force in this case can be ex-

pressed as in Ref. 5:

ξ (t) =
N

∑
j=1

(a j cosωjt +b j sinωjt) . (48)

Then one can see that substituting the following transforma-

tion from ũn to un into Eqs. (42) and (43) gives Eq. (47):

un =2−1/2e0nũn

+
N

∑
j=1

κn

λ 2
n +ω2

j

{

a j (−λn cosωjt +ωj sinωjt)

+b j (−λn sinωjt −ωj cosωjt)

}

,

uN+1+n =−2−1/2e0nũN+1+n

−
N

∑
j=1

κn

λ 2
n +ω2

j

{

a j (λn cosωjt +ωj sinωjt)

+b j (λn sinωjt −ωj cosωjt)

}

. (49)

In conclusion, we have proved that the whole (2N + 1)-
dimensional phase space is recovered from the generalized

Langevin equation (32) if the friction kernel Eq. (33) is known

exactly. In many cases, however, the friction kernel is ap-

proximated by exponential functions, exponentially damped

trigonometric functions, or a sum of a small number of such

terms. The approximation is often satisfactory. As we will

see in Sec. II C, the number of normal modes obtained by the

method in Sec. II A is relatively small for such simple forms

of the friction kernel. The normal modes in this case can

be regarded as representative modes that effectively describe

the motion of the solvent with a certain small dimensionality.

Thus, if the friction kernel is given only approximately, we

cannot, and do not need to, recover the true phase space that

involves many (practically infinite) solvent modes, but can ex-

tract a small number of modes that describe the solvent dy-

namics effectively whenever the friction kernel exerted by the

solvent is approximated well.

C. Dimensionality of the extended system

In Sec. II A, it was found that the generalized Langevin

equation with memory [Eq. (1)] is equivalent with the mem-

oryless equation of motion [Eq. (25)], with an increase in di-

mensionality. In Sec. II B, we showed an example of this in-
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creased dimensionality for the case of a friction kernel be-

ing a sum of cosine functions. In this subsection, we investi-

gate how much the dimension increases in the case of multi-

exponentially decaying kernels. In the case of uniform friction

expressed by the sum of exponentials, the equation is reduced

to polynomials, for which we definitely know the number of

solutions for the nonlinear eigenvalue equation (15). Suppose

the friction kernel has the following form:

γi j(τ ) = δi j

L

∑
ℓ=1

gℓ exp(−µℓτ ) , (50)

that is, a multi-exponentially decaying function. Here, δi j is

Kronecker’s delta, L a certain integer, and gℓ and µℓ some con-

stants (complex in general). The constants µℓ can take com-

plex values, so that Eq. (50) includes exponentially decaying

trigonometric functions as its special cases. As discussed in

Sec. II A and Sec. II B, the expression by Eq. (50) may not

be exact, but can be regarded as an approximate fit to the true

friction kernel. It is expected that many functions that decay

for large τ can be fitted satisfactorily if the number L is taken

sufficiently large.

The Laplace transform of Eq. (50) is

γ̂i j(λ ) = δi j

L

∑
ℓ=1

gℓ
1

λ + µℓ
. (51)

By introducing position space normal mode coordinates in ad-

vance, we can diagonalize the Hessian matrix A of the poten-

tial function:

A = diag(−ω‡2
,ω2

2,ω3
2, . . . ,ωd

2), (52)

where ω‡, and ω2, . . . ,ωd are real numbers whose squares cor-

respond to the curvature of the potential at the saddle points,

and we have assigned the unstable direction as mode 1. In

order for Eq. (15) to have a solution vn 6= 0, we have

det
(

λn
2 +λnΓ̂ (λ )+A

)

=

(

λn
2 +λn

L

∑
ℓ=1

gℓ
1

λn + µℓ
−ω‡2

)

×
d

∏
j=2

(

λn
2 +λn

L

∑
ℓ=1

gℓ
1

λn + µℓ
+ωj

2

)

=0. (53)

By multiplying
(

∏L
ℓ=1(λn + µℓ)

)d
on both sides, We have a

polynomial equation with degree (L + 2)d, with (L + 2)d so-

lutions in general. Without the effect of environment (Γ = 0),

the system has 2d dimensions corresponding to the positions

and the velocities. The addition of one exponential term in

Eq. (50) increases the effective dimension of the system by d.

If the eigenvalue λn satisfies

λn
2 +λn

L

∑
ℓ=1

gℓ
1

λn + µℓ
−ω‡2

= 0, (54)

the corresponding eigenvector is given by vn = (1,0, . . . ,0),
and if

λn
2 +λn

L

∑
ℓ=1

gℓ
1

λn + µℓ
+ωj

2 = 0, (55)

we have vn = (0, . . . ,0,
j

1̆,0, . . . ,0).
The above can easily be extended to the case of exponential

decays multiplied by integer powers (kℓ) of time:

γi j(τ ) = δi j

L

∑
ℓ=1

gℓτ kℓ exp(−µℓτ ) , (56)

whose Laplace transform is

γ̂i j(λ ) = δi j

L

∑
ℓ=1

gℓ
kℓ!

(λ + µℓ)
1+kℓ

, (57)

The nonlinear eigenvalue equation gives a polynomial of de-

gree
(

2+∑L
ℓ=1(1+ kℓ)

)

d, which is the dimension of the ex-

tended system.

III. A MODEL SYSTEM

As an illustrative example to demonstrate our theory we an-

alyze a model system with Müller-Brown potential,37 which

has three minima and two saddle points. The detailed descrip-

tion of the potential surface can be found in Ref. 37 and also

in Refs. 11–14. For the friction kernel, we use a single expo-

nential function:

γi j(τ ) = δi jγ0 exp(−µτ ), (58)

with γ0 = 900 and µ = 30. Here, the value of µ = 30 is set

to be of the same order as the normal mode frequency of the

system. The value γ0 = 900 = 302 is also chosen to be of

the same time scale as the system. [Note that the physical

dimensionality of γ0 is square of inverse time, as seen from

Eqs. (1) and (58) ].

In this paper we focus on the saddle with the higher en-

ergy, which was found to be subject to larger nonlinearity.12

To compare the present theory with the results of numeri-

cal simulations, trajectory calculations are performed by the

method of Ref. 44. For calculating reaction probabilities, tra-

jectories are judged to have settled in the well region when the

energy (kinetic plus potential) becomes less than 2kBT above

the minima. The factor 2 corresponds to the fact that this sys-

tem has two degrees of freedom.

IV. RESULTS AND DISCUSSION

Figure 1 shows the reaction probability Preaction as a func-

tion of the initial value of q1 with the initial values of the other

coordinates (q2, q̇1, q̇2) fixed to zero. In the case kBT = 0,

the random force is zero because of Eq. (2). Therefore the
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trajectory is uniquely determined for each single initial con-

dition. The value of the reaction probability is then either

0 or 1. The boundary between the reactive (Preaction = 1)

and the nonreactive (Preaction = 0) initial conditions coin-

cides with q1 = 0, showing negligible nonlinear effect due to

(q2, q̇2)|t=0 = (0,0). As the temperature increases [Fig. 1(b)],

the reaction probability is no longer 0 or 1, due to the stochas-

tic nature of the random force. We can still find the distinc-

tion between the regions with mainly reactive (Preaction > 1/2)

and mainly nonreactive (Preaction < 1/2) initial conditions. The

boundary of the two regions migrates toward the positive q1.

As the temperature further increases [Fig. 1(c)], the boundary

moves further. This migration of the reaction boundary with

the temperature was found in the case of a Langevin equa-

tion with white noise,12 in which the physical interpretation

was also given: The nonreactive mode (q2, q̇2) is thermally

excited by the kick from the environment. The vibrational ex-

citation then affects the reactivity through nonlinear couplings

with the reactive mode. The nonlinear coupling between the

reactive and the nonreactive modes originates from the curved

shape of the ridge of the potential. Here we have found that

a similar phenomenon occurs in the case of the generalized

Langevin equation.

The thermal average of the reaction coordinate y1 taken

over realizations of random force [Eq. (30)] can be re-

garded as a function of (q1,q2, q̇1, q̇2)|t=0. Since we set

(q2, q̇1, q̇2)|t=0 = (0,0,0), we can calculate 〈y1〉 as a function

of q1 only. The vertical lines in Fig. 1 shows the value of q1

at which 〈y1〉 becomes zero. On one side of the line we have

〈y1〉 > 0, and on the other side 〈y1〉 < 0. The arrows in the

figure indicate which region is which. It is seen that the posi-

tive (negative) sign of 〈y1〉 corresponds to high (low) reaction

probability. In other words, the results of the normal form

calculation reproduces the numerical results for the reactivity,

including the migration of the reaction boundary.

We next check the dependence on the friction kernel by

changing the parameter µ . Figure 2 shows similar plots with

different values of µ . The temperature is kBT = 3, corre-

sponding to Fig. 1(c). Comparing Fig. 2(a), Fig. 1(c), and

Fig. 2(b) (in the order of increasing µ), we can see that the

migration from the origin q1 = 0 to the actual reaction bound-

ary (defined by 〈y1〉 = 0) projected onto the positive q1axis is

less pronounced as µ increases. This can be understood from

the fact that the excitation of the non-reactive mode by the ex-

ternal force becomes enhanced due to Eq. (2) as the value of µ
decreases. The figure shows that the extent of the migration of

the reaction boundary is correctly reproduced by the present

theory for all the values of µ shown here.

Figure 3 shows the reaction probability as a function of

(q2, q̇2)|t=0. with (q1, q̇1)|t=0 = (0,0.4). Different values

of (q2, q̇2)|t=0 lead to different reaction probabilities due to

nonlinear couplings between the nonreactive and the reactive

modes. The set of points for which 〈y1〉= 0 is indicated by the

purple curve. Here also we can see that the set 〈y1〉 = 0 ob-

tained by the present theory gives the correct reaction bound-

ary subject to nonlinearity and thermally fluctuating force in

the generalized Langevin equation.

FIG. 1: Reaction probabilities as functions of q1|t=0 with the ini-

tial values of other coordinates fixed to zero. The temperature is

(a)kBT = 0, (b)kBT = 1, and (c)kBT = 3. Diamonds show the re-

sults of numerical simulations. Vertical lines indicate the value of

q1 for which the averaged reaction coordinate 〈y1〉 becomes zero.

Arrows show the regions where 〈y1〉 > 0 and 〈y1〉 < 0.

V. SUMMARY AND OUTLOOK

The theoretical framework recently developed for the anal-

ysis of reaction dynamics of nonlinearly coupled systems in a

thermally fluctuating environment expressed by white noise,

was generalized to the case of colored noise by using the (non-

linear) generalized Langevin equation. The equation of mo-
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FIG. 2: Reaction probabilities as functions of q1|t=0 with the initial

values of other coordinates fixed to zero. The parameters are set as

kBT = 3 and (a) µ = 10, (b) µ = 60, with the other parameters set

equal to the values in Fig. 1. Diamonds show the results of numerical

simulations. Vertical lines indicate the value of q1 for which the

averaged reaction coordinate 〈y1〉 becomes zero. Arrows show the

regions where 〈y1〉 > 0 and 〈y1〉 < 0.

tion with memory effect can be cast into the equation without

memory, at the cost of an increase of the dimension of the sys-

tem. This fact enables us to utilize the same framework for the

Langevin equation to the non-Markovian process with colored

noise. It was found that the increased dimension can be phys-

ically interpreted as effective modes of the fluctuating envi-

ronment. To support this interpretation, we have investigated

the relationship between the effective modes thus found and

the underlying system-bath Hamiltonian in which the system

is bilinearly coupled with a bath represented by a collection

of harmonic oscillators. For a generalized Langevin equa-

tion derived from the system-bath Hamiltonian it was found

that there exists a one-to-one correspondence between these

two representations, if the exact form of the friction kernel

is known at least for such class of Hamiltonian systems. To

check the validity of the present theory we analyzed the reac-

tion dynamics represented by a generalized Langevin equation

on a Müller and Brown potential37 with a single exponential

friction kernel with several different damping timescales. The

reaction probability as a function of the initial condition in the

saddle region was calculated by trajectory simulations. The

FIG. 3: Reaction probability as a function of (q2, q̇2)|t=0 with the

initial values of the other coordinates fixed to (q1, q̇1)|t=0 = (0,0.4)
at kBT = 1. Solid curves indicate the set of points for which the

averaged reaction coordinate 〈y1〉 becomes zero.

whole position-velocity space of the system was found to be

divided into regions of mainly reactive and mainly nonreactive

initial conditions. Due to the effect of nonlinearity and mem-

ory, the reaction boundary does not coincide with the surface

q1 = 0 and migrates toward a region remote from the surface

of q1 = 0. It was found that the present theory can analytically

assign the migrating reaction boundary observed in the results

of numerical simulation, which is given as zero of the new re-

action coordinate y1 as a functional of both the positions and

velocities of the system as well as the colored noise and the

friction kernel.

In reality it is almost impossible to identify the precise form

of the friction kernel derived from the total Hamiltonian com-

posed of the system and the environment of infinitely many

dimensions. Even if it were possible, it would not shed light

on the mechanism of reaction dynamics because the amount

of information would be infinite. [in addition, the total Hamil-

tonian does not necessarily fall into the form of Eq. (31)].

Rather, it is more meaningful to extract an appropriate de-

scription by a lower-dimensional dynamical system that can

effectively represent the effects of the complexity of nonlin-

ear dynamics of the system in a thermally fluctuating media in

terms of an approximant of the friction kernel with a simple

functional form, such as a linear combination of exponentials

or exponentially damped trigonometric functions [Eq. (50) or

(56)]. For the practical application, it will be interesting to

evaluate the friction kernel from realistic molecular dynamics
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(MD) simulations,6,41,42 and fit the numerical friction kernel

to the form of Eq. (50) or (56). Such numerical evaluation of

friction kernel with the corresponding random force can then

be utilized as inputs to the present formulation. It is expected

that the extra modes with low dimensions compared with the

actual dimension of the environment, thus extracted with the

approximate friction kernel, capture the subset of the environ-

mental degrees of freedom exhibiting significant effects on the

dynamics of the system.
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