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Minireview
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ABSTRACT

Dynamic reciprocity (DR) refers to the ongoing, bidirectional
interaction between cells and their microenvironment, specifi-
cally the extracellular matrix (ECM). The continuous remodeling
of the ECM exerts mechanical force on cells and modifies
biochemical mediators near the cell membrane, thereby
initiating cell-signaling cascades that produce changes in gene
expression and cell behavior. Cellular changes, in turn, affect the
composition and organization of ECM components. These
continuous interactions are the fundamental principle behind
DR, and its critical role throughout development and adult tissue
homeostasis has been extensively investigated. While DR in the
mammary gland has been well described, we provide direct
evidence that similar dynamic interactions occur in other areas
of reproductive biology as well. In order to establish the
importance of DR in the adaptive functioning of the female
reproductive tract, we present our most current understanding
of DR in reproductive tissues, exploring the mammary gland,
ovary, and uterus. In addition to explaining normal physiological
function, investigating DR may shed new light into pathologic
processes that occur in these tissues and provide an exciting
opportunity for novel therapeutic intervention.

breast, dynamic reciprocity (DR), extracellular matrix (ECM),
fibroids, folliculogenesis, mechanotransduction (MT), ovary,
ovulation, pathogenesis, uterine leiomyoma

INTRODUCTION

Throughout each reproductive cycle, as well as throughout
life, the female reproductive system undergoes extensive and
dynamic structural remodeling [1–4]. There are complex
biochemical signals that initiate and regulate remodeling that

affect both the extracellular matrix (ECM) and the cell,
resulting in tissue organization. This impressive dynamism is
achieved by changes in the ECM that lead to mechanotrans-
duction (MT), the cellular processes that translate mechanical
stimuli into biochemical signals, as well as soluble biochemical
signaling through hormones and cytokines, allowing cells to
adapt to their changing physical environment. These rapid,
transient cell-cell and cell-matrix interactions are bidirectional
and referred to as dynamic reciprocity (DR) [5–7]. Mammoto
and Ingber [8] as well as Mammoto et al. [9] substantiated this
concept in developmental biology, proving the role of
mechanical force is as critical as biochemical signaling in
embryogenesis, thereby transforming how we view the
extracellular environment. Mechanical signals are relayed
through the membrane and cytoskeleton to the nucleus by
integrins, cell adhesion molecules, cytoskeletal filaments, and
signaling cascades resulting in changes in gene transcription
and chromatin remodeling [10]. Furthermore, cell-cell and cell-
matrix interactions create intracellular contractile forces that
place the cell in a state of tension and can act to modify cell
form and function [11]. In this manner, cellular mechano-
chemical processes and changes in the ECM microenvironment
govern tissue morphogenesis and adult organ homeostasis.

Bissell and colleagues [5, 12, 13] extrapolated a role for DR
in reproductive biology by studying normal mammary gland
development and the progression of cell events leading to
malignancy. In addition, a number of earlier studies indicated
that stretching uterine tissues induced protein synthesis and
changes in cellular function and was significant in parturition,
validating a role for mechanical signaling in these tissues and
demonstrating how it contributed to cell form and behavior
[14–16]. More recently, there has been extraordinary expansion
in the field of matrix biology that has led to new insights into
DR and reproduction [9, 17–20]. Biochemical signaling alone
is not sufficient to explain the complexities that occur in
development and function of the breast, ovary, and uterus, and
there is now persuasive evidence for the critical role of
mechanical signaling in these tissues [21, 22]. Through further
advancement and integration of our understanding of mecha-
nochemical transduction events, we can gain valuable insights
into both normal and tumorigenic behavior of cells, tissues, and
organs and develop effective interventions for reproductive
tract functions and disease. Toward this goal, this is the first
review to focus on the significance of DR in the reproductive
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system. An overview of MT, a concept critical to appreciating
DR, will be discussed first. We next explore the mammary
gland where a more comprehensive picture of DR has been
demonstrated and highlight those studies that have contributed
most to our appreciation of this concept. We then review other
reproductive organs where an appreciation of DR is emerging,
focusing on the processes of folliculogenesis, ovulation, and
uterine fibroids (leiomyomas).

THE PROCESS OF MT

In the broader field of cell biology, Ingber and colleagues
[23, 24] described the importance of the cell cytoskeleton in
mechanical signaling and developed the concept of tensegrity
(tensorial integrity) to describe how this signaling exhibits the
properties of an integrated system. They demonstrated that
mechanical strain placed on integrins, located in the cell
membrane, immediately changed the shape and organization of
the nuclei, demonstrating a MT process dependent on
intermediate filaments and microfilaments [25, 26]. Integrins
are not static proteins but are expressed transiently on the cell
surface in a dynamic fashion and are involved in bidirectional
signaling from the cell to its microenvironment [27, 28].
Mechanical forces drive tissue homeostasis through cell-cell
junctions and cell-matrix adhesions mediated by integrins [8].
These forces can be quite small, resulting in compression or
stretch, external to the cell, such as movement or gravity or
generated through changes in cell contractility or shape. Force
changes are sensed or perceived by the cells as signals

(transduction) that produce changes in intracellular biochem-
istry and ultimately gene expression and chromatin remodeling
[9].

Many molecular pathways are signaled by the mechanical
forces exerted on the cell. Force transmitted across cell surfaces
by integrins is relayed to the cell cytoskeleton by focal
adhesions, an anchoring complex that functions as a mecha-
nochemical-signaling center [26]. This signaling complex can
transmit both internal and external forces and will assemble or
separate depending on the presence of stress [29, 30]. Other
integrin interacting-signaling molecules, including TRPV4 and
talin, undergo conformational changes to mediate downstream
signals [31, 32]. Mechanical stress acting through focal
adhesion kinase (FAK), a nonreceptor kinase in the cytoplasm,
activates the mitogen-activated protein kinase (MAPK) path-
way, leading to upregulation of collagen type I and other
critical ECM proteins that are involved in matrix composition
and remodeling [33–35]. Annexin A2, a multifunctional
bridging protein, conducts bidirectional informational flow
and is regulated by changes in the ECM and intracellular
calcium flux [36]. Thus MT, one aspect of DR, is a dynamic
process with many critical signaling factors responding to
mechanical force that play a role in the cell. In this manner, all
components of the system, both biomechanical and biochem-
ical, and not merely one paramount molecule, influence cell
behavior (Fig. 1A).

FIG. 1. A) Schematic diagram of the bidirectional interaction between the cell and its environment, specifically the ECM, demonstrating the concept of
DR. Mechanical force from the ECM is sensed by the cell and leads to changes in cell structure and function. These changes, in combination with
mechanical signaling, can alter gene expression and epigenetic remodeling of the cell nucleus, leading to changes in ECM content, composition, and
organization and an overall remodeling of the matrix. Cells sense the mechanical force and counter it with intracellular contractile tension, creating
cellular stress. In this manner, force-generated mechanochemical signaling affects both the cell and its environment. B) An example of DR in
folliculogenesis. Mechanical forces (closed arrows) in the stiff outer ovarian cortex act on the primordial follicle, contributing to its quiescent state.
Tensional forces (open arrows) within the follicle counter this. Recruitment to the more pliable inner medulla relieves the mechanical strain and permits
the follicle to proceed through folliculogenesis. Factors that determine progression from the cortex to the medulla are unknown. Arrow size is proportional
to the amount of perceived force.
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DYNAMIC RECIPROCITY IN THE MAMMARY GLAND:
INSIGHTS INTO NORMAL ANATOMY AND PHYSIOL-
OGY

The mammary gland is an excellent model organ for the
study of how ECM remodeling contributes to tissue morpho-
genesis and functional differentiation [37, 38]. The gland’s
function is regulated by reproductive hormones during pubertal
development and again in gestation and parturition. Then
during lactation and involution, the mammary gland undergoes
cycles of branching and formation of acini (also called alveoli).
In addition, the surrounding epithelium and myoepithelium
ECM is subject to continual assembly and degradation. A cell’s
cytoskeleton mediates a dynamic and reciprocal integration of
tissue architecture and function as well as directs mammary
gland development, tissue polarity, and tissue-specific gene
expression. Pathology and abnormal development occurs when
this interaction is dysregulated [19].

The mammary gland is a complex organ with many cell
types from fibroblasts to adipocytes to epithelial cells. The
epithelial cells are characterized as being of two types: luminal
epithelial cells and myoepithelial cells, both embedded in an
interstitial collagen network [38]. These epithelial cells form a
branching network of ducts terminating in many spherical
small lobules called acini. Polarized luminal epithelial cells
generate a continuous layer lining each duct and acini and will
eventually make and secrete milk proteins. The basal layer of
luminal epithelium is composed of a discontinuous layer of
myoepithelial cells and a thin basement membrane consisting
of laminin [38], structural proteins that connect to cytoskeletal
filaments and the nucleus through intermediate filaments and
microfilaments [25].

During mammary gland development, ECM proteins are
tightly regulated and expressed [39, 40]. In addition to laminin,
collagen, entactin, and proteoglycans constitute the basal
lamina and establish cell polarity in acini differentiation [41].
Collagen type I is observed along mammary ducts while
collagen type IV and the laminins type I and type V are
expressed around acini [42, 43]. Upon weaning, involution
results in degradation and remodeling of these proteins and
leads to a decrease in milk protein production [44]. Fibronectin
content increases during ductal morphogenesis as well as
expression of the fibronectin binding a5b1-integrin in
mammary epithelial cells [45, 46]. Loss of fibronectin
expression prevents proper gland development [47]. Fiber
alignment is also important for appropriate development.
Spatially aligned collagen fibers are observed in the terminal
end buds prior to fat pad invasion, and a recent study using live
cell imaging demonstrated how fiber alignment can affect
epithelial cell morphology [48–50].

Remodeling of the external environment requires proper
spatiotemporal expression of matrix metalloproteinases
(MMPs) [51]. During development, MMP-2 plays a role in
the initial invasion of epithelial cells into the stromal fat pad
and suppresses lateral ductal branching [52]. In contrast, MMP-
3 promotes branching and MMP-3 knockout mice revealed a
diminished branching pattern compared to wild type [52].
MMP-14 is highly expressed in the terminal end bud and may
assist MMP-2 in ductal invasion [53, 54]. Interestingly, in
three-dimensional (3D) culture, there was higher recruitment
activity of MMP-14 in a stiffer collagen environment,
demonstrating cell-matrix cross talk; furthermore, MMP-14
may activate MAPK signaling [53, 54]. In addition, MMP
activity can directly affect intracellular signaling by producing
degradation fragments of ECM proteins that act as growth

modulators, for example, EGFR is activated by laminin-5
following cleavage by MMP-2 [55].

In the human breast, integrins play major roles in
development and function as well as in cancer progression
[17, 41, 56, 57]. The b1-integrin, in conjunction with prolactin
signaling, is necessary for mammary cell differentiation [58,
59]. The a6b4-integrin associates with hemi-desmosomes
linking the plasma membrane with intracellular intermediate
filaments that form a network along the basolateral aspect of
the cells, establishing cell polarity [60, 61]. The a6b4-integrin
has further been demonstrated to affect matrix remodeling by
promoting SPARC expression [62]. In addition, both b1 and
a6b4 have also been linked to b-casein production [63]. Loss
of b4 signaling has been shown to lead to an increase in
apoptosis, demonstrating a role in cell survival. In support of
this, certain integrins, including a2, may also serve as tumor
suppressors, and levels of the a2b1-integrin are reduced in
aggressive breast cancers [64].

Obviously, estrogen and progesterone are key players in
mammary gland development. Investigations in transgenic
mice clearly show that the estrogen receptor (ER) is necessary
for elongation of the mammary ducts during puberty [65].
Other studies demonstrate that the progesterone receptor (PR)
is required for the growth of acini [66]. In the adult rodent and
in human glands, the distribution of ER and PR fluctuates due
to changes in estrogen and progesterone during reproductive
cycles, pregnancy, lactation as well as age [67]. ER is present
in the mammary gland in both isoforms, ERa and ERb [68].
Basement membrane laminin type 1 and collagen type IV are
involved in the maintenance of ERa expression, and in
malignant breast cells this becomes disrupted, and the cells
are no longer responsive to the ECM [69].

Over the last several decades, scientists have studied the
interactions between the mammary cells and the ECM in 3D
cultures that successfully mimic the in situ mammary gland
[70–72]. When grown on 3D gels, murine and human epithelial
cells are able to form aggregates and reorganize into structures
of morphologically polarized cells that form acini-like hollow
spheres surrounded by basal lamina [73, 74]. This apical-basal
polarity is established by the ECM component laminin [75].
The presence of fibronectin can stimulate epithelial cell
proliferation and increase acini size [76–78]. Strikingly, in
the presence of lactogenic hormones, these mammary cells
secrete caseins into the lumina [73, 74]. Furthermore, these
interactions can occur in the absence of surrounding myoepi-
thelial cells [70]. In contrast, cells grown in 2D monolayers or
3D collagen cultures without lactogenic hormones do not form
acini-like structures and fail to secrete milk proteins [72, 79].
Interestingly, b-casein expression was also inhibited when cells
were grown on stiffer gel substrates [75]. In addition, prolactin
signaling is not enough to sustain milk protein production
without the interaction of a laminin substrate binding the b1-
integrin, allowing the necessary chromatin remodeling needed
for tissue-specific gene expression [75, 80, 81]. Taken together,
these studies validate that the ECM can direct tissue polarity
and morphogenesis and even affect gene expression and
nuclear remodeling. This provides unequivocal evidence that
the ECM and the surrounding cells behave as a unit and firmly
demonstrates the ECM and its cellular interactions are
necessary for mammary gland development and function,
substantiating a role for DR in the breast.

REVIEW OF DYNAMIC RECIPROCITY
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CONTRIBUTION OF DR TO MAMMARY TUMORIGEN-
ESIS

Dynamic reciprocity typically functions to maintain homeo-
stasis in adult cells; however, an imbalance in the mechano-
chemical-signaling network can lead to tumorigenesis.
Carcinogenesis in breast correlates with collagen cross-linking
and ECM stiffening, creating a firm tumor. This creates
mechanical force that the cell senses through integrin activity,
leading to focal adhesion formation and activation of RhoA
that ultimately alters gene expression patterns and can induce
tumor invasion [82, 83]. Mammary cells grown in 3D culture
on a stiff collagen matrix lose their normal cell polarity,
increase proliferation, and adopt an invasive phenotype [77,
84]. Also, an increase in cellular tension by Rho-mediated
cellular contractility leads to changes in matrix content and
organization [85, 86]. Interestingly, inhibiting the b1-integrin
reversed this phenotype [61, 87]. When lysyl oxidase, the
collagen cross-linking enzyme is inhibited, metastatic potential
of circulating breast cells was reduced [82]. Increased tumor
stiffness led to activation of the micro-RNA miR-18a, which
decreased levels of HOXA9-dependent PTEN transcription and
promoted the malignant phenotype [88]. In breast cancer
biopsies, miR-18a expression was correlated with increasing
ECM tumor stiffness and inversely related to levels of PTEN
and HOXA9 [88]. Therefore, the tumor matrix may have a
profound effect on tumor cell behavior and provides an
intriguing therapeutic target to prevent metastasis.

Remarkably, multicellular tissues are capable of biopolymer
reorganization by mechanical signals and create very long,
highly directional fibers, such as collagen lines, that may
influence the location and time of tumor invasion [89–91].
Cultured mammary acini that have disrupted architecture will
interconnect by forming these long collagen lines that
somehow coordinate and even accelerate a transition to an
invasive phenotype [92]. When investigators isolated these
acini by laser cuts in the 3D culture, effectively disrupting the
collagen lines, the acini reverted to a less invasive cell type
[92]. Therefore, pairs and groups of acini can interact
mechanically through the collagen matrix, and this matrix, in
turn, can influence cell behavior.

MMP activity is linked with breast cancer invasion and
metastasis and associated with a poor prognosis [93]. In dense
matrices, MMPs will cleave fibers around integrin attachment
sites allowing space for cell motility [94, 95]. Aberrant
expression of MMP-3 prevented normal cell differentiation
and led to adoption of an invasive phenotype [96, 97]. The
integrin a3b1 has been linked to MMP-9 activity [98].
Induction of MMP-9 through increased activity of the Raf/
MEK/ERK pathway led to targeted degradation of laminin type
1, destroying the basement membrane [99]. This resulted in
altered tissue polarity and growth, leading the cells to exhibit a
cancer phenotype. This phenotype was reversed by the
inhibition of MMP-9 or MEK, and an increase in laminin type
1 was noted in a murine xenograft model [99]. Therefore, cell-
generated destruction of the ECM, potentially through integrin
activation by the matrix itself, leads to distorted tissue polarity
and cell proliferation, mimicking an invasive cancer pheno-
type. When tissue architecture is continuously perturbed,
mammary epithelial cells produce reactive oxygen species
and ultimately undergo an epithelial-to-mesenchymal transition
[100].

PTEN, a known tumor suppressor gene, colocalizes with the
E-cadherin/b-catenin complex in 3D culture and supports acini
formation [101]. E-cadherin-blocking antibodies reduce en-
dogenous PTEN protein levels and inhibit cell-cell contact

accumulation leading to a loss of cell polarity and growth
control [101]. The addition of exogenous E-cadherin to cancer
cells lacking the protein induced PTEN expression, supporting
a role for cell-cell signaling in mammary gland homeostasis
[101].

HoxA1 has been identified as a candidate gene that may
serve as a possible driver of early breast cancer, confirmed by
its overexpression in human breast lesions [102]. Delivery of
lipidoid nanoparticles containing HoxA1 siRNA through the
nipple to mice with breast tumors led to a decrease in tumor
formation, and silencing HoxA1 within the mammary ducts in
vivo led to a loss of hormonal expression and suppressed cell
proliferation [102]. Strikingly, this phenomenon does not occur
when the gene is injected directly into the tumor, suggesting
that the dynamic interaction is locally and spatially mediated
[102]. In summary, the studies highlighted here strongly
demonstrate the role of DR in the mammary gland and that this
interaction is responsible for maintaining development and
function of the tissue. Also, when the DR-signaling exchange
is altered, it can disrupt these homeostatic mechanisms and lead
to a progression toward malignancy

DYNAMIC RECIPROCITY IN FOLLICULOGENESIS

There is increasing evidence that the ovarian ECM plays a
critical role in follicle development. Primordial (dormant)
follicles are localized to the collagen-rich ovarian cortex, which
offers a rigid physical environment that supports follicular
architecture and increases survival [103]. On the other hand,
the rigidity of the cortical ECM limits expansion of the follicle
and consequently oocyte maturation, maintaining the follicle in
its quiescent state [104]. Throughout a woman’s reproductive
lifespan, a subset of follicles is recruited each cycle and enters
the growing follicle pool. As a follicle migrates to the medulla
of the ovary, it encounters a softer, more pliant ECM. This
permits the follicle to expand and resume its development.
Thus, changes in the stiffness of the ovarian ECM from cortex
to medulla directly affect follicular cell behavior (Fig. 1B). The
importance of ECM stiffness in folliculogenesis has been
shown using in vitro models that recreate the complex ovarian
microenvironment by using interpenetrating networks of fibrin
and alginate with dynamic, cell-responsive mechanical prop-
erties [105]. Whereas older alginate-only hydrogels, which are
nondegradable, became too rigid to support follicle growth as
the follicle expanded (essentially sequestering the follicle in a
cortex-like environment), the fibrin component in fibrin and
alginate hydrogels degrades over time, softening the matrix and
mimicking, in a temporal fashion, the spatial migration of a
follicle from the stiff ovarian cortex to the soft medulla [106].

At the same time, these gels offer an excellent example of
DR between matrix and cell. Follicular cells themselves
produce their own ECM components, which are incorporated
into the alginate scaffold. Additionally, the process of fibrin
degradation is driven by soluble factors released by granulosa
and thecal stromal cells, notably plasminogen activator [107,
108] and connective tissue growth factor (CTGF) [109].
Furthermore, physical fragmentation of ovaries from juvenile
mice promoted follicle growth and led to the formation of
mature oocytes through disruption of the Hippo-signaling
pathway [110]. Remarkably, women with primary ovarian
insufficiency who underwent ovarian fragmentation, Akt
stimulation treatment, and autologous transplantation of the
remnant tissue generated mature oocytes following in vitro
fertilization methods [110]. In one patient, a live birth was
achieved. It may be that fragmentation relieves the inhibition of
the stiff matrix forces, allowing the residual follicles to
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develop. In agreement with this model, anovulatory women
with polycystic ovary syndrome have increased number of
follicles held quiescent in the ovarian cortex, which is stiffer
and contains more collagen compared to normal ovaries [111].

There is also evidence that follicular fluid in follicles is
accumulated by the osmotic forces of hyaluronan and versican,
which are glycoproteins produced by granulosa cells [112].
Granulosa cells cultured in a 3D environment of collagen type I
with leukemia-inhibiting factor were successfully transplanted
back into the ovaries of immunodeficient mice and preferen-
tially localized within antral follicles [113]. Thus, the growing
understanding of the importance of DR in follicular develop-
ment has already begun to be translated into advances in tissue
bioengineering, with important implications for the field of
fertility preservation.

DYNAMIC RECIPROCITY, CYTOKINES, AND OVULA-
TION

Extensive matrix remodeling is paramount for the oocyte to
proceed through folliculogenesis, ovulation, and development
of a highly vascularized corpus luteum. Ovulation, the
expulsion of an egg from a mature follicle, is triggered by
the luteinizing hormone (LH) surge, which in turn stimulates
morphological changes in the follicle that ultimately result in
rupture. Follicular rupture is caused in part by decreased tensile
strength at the follicular apex due to degradation of collagen
fibers and in part by changes in intrafollicular pressure that
facilitate rupture of the weakened follicular wall [114, 115].

The LH surge induces follicular cells to synthesize and
secrete proteolytic enzymes, including MMPs, plasminogen
activators and plasmin, and ADAMTS [116–120]. Under the
influence of these mediators, the ECMs of the tunica albuginea
and theca externa, as well as the basement membrane
separating the granulosa and thecal cell layers, become
fragmented and disorganized as collagen disintegrates. In
mice, the process is similar with elevated levels of ECM
components (laminin, collagen, perlecan, nidogens) in the basal
lamina of developing follicles and corpora lutea, with collagen
type IV being the predominant form at all stages of
development [121]. Expression of matrix proteins, including
HAPLN1, is driven by the LH surge, and deficiencies in key
matrix proteins in the cumulus-oocyte complex reduce
ovulation rates [122–126]. Mice lacking ADAMTS1 fail to
cleave versican, an ECM proteoglycan, and demonstrate
reduced rates of ovulation and fertilization as a result of
impaired tissue remodeling [127]. Additionally, degradation of
ECM by secreted plasmins and MMPs liberates ECM-bound
proteins, including TNF-a and TIMP-3 [128]. The cytokine
TNF-a resides at the interface of the cell and the ECM and may
promote collagen fibril breakdown as well as apoptosis of
ovarian superficial epithelial cells in the apical region of the
preovulatory follicle [129]. Tissue inhibitors of metalloprotei-
nase (TIMPs) counter the remodeling actions of MMPs and
form a delicate balance of remodeling and maintenance [119].
This is a prime example of DR, whereby the cells orchestrate
the disintegration of the matrix and in doing so, release
cytokines and inhibitors that feed back to further modify cell
behavior.

The final signal in ovulation may be endothelin-2 (EDN-2),
which mediates smooth muscle cell (SMC) contraction. EDN-2
is transiently expressed in granulosa cells immediately prior to
ovulation and is able to reach the SMC layer by diffusing
across the thecal layer following carefully timed degradation of
the thecal ECM [130, 131]. Contraction of individual SMCs
results in follicular constriction, which increases follicular

pressure and generates tension in the follicle wall. Eventually,
the follicle ruptures at the apex where the tensile force is
weakest due to the lack of SMCs and low structural integrity.
The complex, back-and-forth choreography thus played out
between soluble mediators, mechanical forces, matrix proteins,
and shifting fluids is at the core of DR.

DYNAMIC RECIPROCITY IN UTERINE FIBROID
GROWTH AND DEVELOPMENT

The hallmark of uterine fibroids is excessive ECM
production and cell proliferation. The fibrotic matrix creates
a stiff extracellular environment exerting mechanical force on
surrounding cells. Transduction of this force ultimately results
in a variety of cell responses, including cytoskeletal rearrange-
ment, cell contraction, growth, and gene expression changes,
including genes involved in ECM composition, all affecting
how the fibroid cells interact with the extracellular environ-
ment. Therefore, as we begin to unravel the complexities of
fibroid development and function, it has become clear that DR
may underlie its growth and development.

The alteration of the ECM is altered compared to the
surrounding myometrium is well described [22, 132]. Micro-
array analysis demonstrated that fibroids have elevated levels
of genes involved in ECM formation, including collagen,
proteoglycans, and elastin that are associated with growth [133,
134]. Furthermore, there is downregulation of other key ECM
proteins, such as dermatopontin [135]. Electron microscopy
analysis demonstrated that collagen fibrils are increased,
loosely packed, and arranged in a nonparallel manner, not
appreciated in nearby myometrium (Fig. 2A) [136]. The
excessive matrix deposition and disorganization creates the
fibrotic nature of this tissue, leading to an environment of
increased mechanical force. TGFb3, a known promoter of
ECM production, is increased in fibroid tissue and also
contributes to formation of its abnormal environment [137]. In
addition, key proteins known to interact with TGFb3, including
dermatopontin and thrombospondin, have altered expression in
fibroids compared to myometrium that may lead to increased
TGFb3 activity [135, 138].

Expression patterns of integrins are critical to understanding
how the cell responds to its altered environment. Integrin b1 is
overexpressed in fibroid cells and plays a role in determining
cell shape and proliferation [139, 140]. Decreased b1 activity is
demonstrated to alter cytoskeletal integrity, inhibit cell
spreading, and decrease growth. Also, disrupting b1 signaling
leads to decreased activity of downstream proteins RhoA and
ERK, demonstrating that integrin signals through the Rho
family GTP-signaling proteins [140]. Integrin a11 is also
elevated in fibroid cells and may play a role in myofibroblast
differentiation [141]. Fibroid-derived myofibroblasts contribute
to production of the excessive ECM microenvironment and
stimulate leiomyoma cell proliferation [135, 142, 143].

Fibroid cells recognize their stiff microenvironment through
the process of MT; however, compared to myometrial cell,
fibroid cells have a defective perception of mechanical stress
and are unable to respond to mechanical cues [144, 145]. The
Rho-signaling cascade plays a role in the MT response. Levels
of active RhoA and AKAP13, which activates RhoA, are
increased in fibroid cells compared to myometrial cells.
Inhibition of AKAP13 through siRNA inactivation while
simultaneously treatment with lysophosphatidic acid, a known
promoter of RhoA, was shown to lead to decreased levels of
RhoA compared to myometrial cells [146]. Inhibition with
Fasudil of Rho kinase (ROCK), a downstream target of RhoA,
led to relaxed contraction of fibroid cells in 3D collagen gels
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[147]. In addition, fibroid cells plated on a stiff collagen
substrate resembling the fibroid microenvironment demonstrat-
ed increased phosphorylation of FAK, decreased levels of p21,
and activation of the MAPK-signaling pathway, leading to
increased proliferation and altered cytoskeletal organization
[148]. Disruption of the dense collagen matrix of fibroid cells
with Xiaflex, a collagenase, results in relaxation of the cell and
adoption of a phenotype similar to myometrial cells [149].
Furthermore, Fasudil treatment led to a decrease in ECM gene
transcripts known to contribute to the fibroid fibrotic
environment [147]. Thus, mechanical stress is sensed by the
fibroid cell and leads to downstream activation of mechanical-
signaling pathways that ultimately affect cell shape and
contractility, promote growth, and direct changes in the ECM
environment itself (Fig. 2B). This is a clear demonstration of
the bidirectional interaction between the fibroid cell and its
microenvironment that defines DR.

In addition to mechanical stress, fibroid cells are subjected
to osmotic stress and have increased fluid content relative to
the myometrium [150, 151]. The Rho-GEF Brx (AKAP13),
previously described above in mechanical signaling, plays a
key role in transducing the osmotic response through the
transcription factor NFAT5, including upregulating osmolarity
response genes [152]. Fibroid cells have increased NFAT5
expression compared to nearby myometrium and demonstrate
increased expression of hyperosmolarity genes when exposed
to osmotic stress [153]. The cellular osmotic response results in
fluid exchange between the cell and ECM, thus affecting both
cell shape and ECM composition, demonstrating another
example of DR [154].

CONCLUSION

This minireview of DR and its impact on the physiologic
functioning of female reproductive organs highlights the
dynamic state between the cell and its surrounding ECM,
leading to cyclic changes in tissue development that charac-

terize the reproductive tract. The concept of DR allows us to
avoid the popular emphasis of one molecule or one gene to
explain these processes and utilizes a flexible approach that
takes into account the signaling interactions that lead to
changes in cell shape, tissue architecture, and the microenvi-
ronment. While DR in the mammary gland has been the most
extensively explored, we provide direct evidence that similar
dynamic interactions occur in other parts of the female
reproductive tract as well. Our aim in writing this review was
to emphasize the critical role of DR in reproduction and
stimulate interest toward investigation of this concept in
reproductive biology. Studies reviewed here demonstrate the
exciting potential of this research to translate into the clinical
realm, including fertility preservation in women with primary
ovarian insufficiency or definitive management of uterine
fibroids without relying on surgical intervention. Therefore, in
addition to explaining normal physiological function, exploring
DR may shed new light into the pathologic processes that occur
in these tissues and provide an inspiring opportunity for novel
therapeutic intervention. This pursuit may have powerful
implications in the field of reproductive health.
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