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ABSTRACT
Nowadays, dynamic reconfigurable embedded systems are
widely used, since they have the capability to modify their
functionalities, adding or removing components and mod-
ify interconnections among them. The basic idea behind
these systems is to have the system autonomously modify its
functionalities according to the application’s changes. This
paper describes the area of reconfigurable embedded sys-
tems presenting both architectural and methodological as-
pects trying to point out common features and needs. After
a brief introduction, an overview of the models, of the re-
configurable architectures, and of the design methodologies
will be presented.

1. INTRODUCTION
Many emerging applications in the fields of (mobile) com-

munications, computing, and consumer electronics require
flexible and evolvable functionalities after the system deploy-
ment. In order to offer better computing capabilities, high-
performance commercial reconfigurable architectures pro-
vide ample reconfigurable logic and, often, have also in-
tegrated a number of fixed components, including digital
signal processing (DSP) and microprocessor cores, custom
hardware, and distributed memory modules. Such recon-
figurable architectures, integrated with distributed mem-
ory modules, exhibit superior computing capabilities, stor-
age capacities, and flexibility over traditional FPGAs. The
successful deployment of these novel embedded systems to
the market requires the identification, formalization, and
implementation of concepts, methods and tools for their
design, considering, together with the traditional require-
ments, the possibility of dynamically reconfiguring them-
selves at runtime, over a set of predefined behaviors [1]. Em-
phasis is given on correctness and dependability of joining
technologies in the hardware and software domains, on the
reconfigurable hardware characteristic, on the satisfaction
of real-time constraints and, in general, on the exploration
of the solution space, to select the most effective solutions
compatible with design and market constraints. Initially
thought as a tool for rapid prototyping, FPGAs have lately
increased in power and flexibility, offering a new option to
the hardware/software dichotomy: faster than a pure soft-
ware approach, less static than traditional hardcoded so-
lutions and with better time-to-market. The success has
been so big that nowadays it is not uncommon to even di-
rectly deploy FPGA–based solutions. In this scenario, the
configuration of the FPGA is loaded at the end of the de-

sign phase, and remains unchanged the entire application
run-time (e.g., [2], [3], [4]). The reconfiguration requires
the system to be stopped reconfigured and reset (therefore
called Compile-Time-Reconfiguration ). With the evolu-
tion of technology, though, it became possible to consid-
erably reduce the time needed for the chip reconfiguration:
this made it conceivable to reconfigure the FPGA between
different stages of its computation, since the induced time
overhead could be considered acceptable. This process is
called Real Time Reconfiguration RTR, (e.g., [5], [6]), and
the FPGA is said to be Dynamically Reconfigurable. RTR
can be exploited by creating what has been termed virtual
hardware [7] in analogy with the concept of virtual memory
in general computers. However, most real–life applications
are simply too large to fit in the logic available on a single
chip. In such a scenario it is possible to partition the de-
sired application into a subset of n smaller tasks, each one
fitting on the chip. The FPGA will be reconfigured at run-
time to execute the various tasks: this idea has been named
time partitioning, and has been extensively studied in liter-
ature [8–10]. A further improvement in FPGA technology
allows modern boards to reconfigure only some of the logic
gates. This partial reconfiguration is much faster in the com-
mon case where only a small portion of the FPGA needs to
be changed. When both these features are available, the
FPGA is called partially dynamically reconfigurable.

The paper is organized as follows: Section 2 presents an
overview of the state of the art regarding models and recon-
figurable architectures while Section 3.2 provides an overall
view of three design methodologies. Finally, Section 4 ends
this paper.

2. MODELS AND RECONFIGURABLE AR-
CHITECTURES

There are different models of reconfiguration, which can
be classified according to the following scheme [11]: (i) who
controls reconfiguration, (ii) when configuration is generated
and (iii) which is the granularity of the reconfiguration. The
first subdivision is between external and internal reconfigu-
ration. In the first case, the reconfiguration is managed by
an external entity, usually a PC. Internal reconfiguration, in-
stead, is performed by the FPGA itself; for this to be possi-
ble, the device must have a physical component dedicated to
reconfiguration, such as the ICAP component in Xilinx FP-
GAs. For what concerns the configuration generation, it can
be done in a complete static way, at design time, determining
all possible configurations of the system. Each module must



be synthesized and all possible connections between modules
and the rest of the system must be considered. Other pos-
sibilities are runtime placement of pre-synthesized modules,
which requires dynamic routing of interconnection signals
or complete dynamic modules generation. This last option
is currently impossible, since it would require runtime syn-
thesis of modules from VHDL (or other HW description lan-
guages) code, typically requiring very long processing times.
Finally, reconfiguration can involve different granularity lev-
els, depending on the size of the area reconfigured. The two
typical approaches are smallbits and module based : the first
consists in modifying a single portion of the design, such as
single Configurable Logic Blocks (CLB) or I/O blocks pa-
rameters [12], while the second involves the modification of
a bigger FPGA area. The module based approach consists
in creating HW components (modules) that can be added
and removed from the system each time a reconfiguration is
applied. This requires the reconfiguration of entire FPGA
areas, generally sets of columns, since in available FPGAs
configuration can only be done on per-column basis. An
evolution of the module based approach is the Early Access
flow [13] where a new set of constraints to design self recon-
figurable architectures, using Xilinx FPGAs, is presented.
Several research groups, [14–16] have built reconfigurable
computing engines to obtain high application performance
at low cost by specializing the computing engine to the com-
putation task. What seems to be neglected so far is the full
exploitation of the ability to partially reconfigure the FPGA
at runtime; some preliminary results can be found in the lit-
erature, [17–22], but no general framework and no publicly
available tools are, at the best of our knowledge, available.

In the Garp project of the UC Berkeley, the FPGA is
recast as a slave computational unit located on the same
die as the processor [14]. Garp has been designed to fit
into an ordinary processing environment that includes struc-
tured programs, libraries, context switches, virtual memory
and multiple users. Athanas and Silverman introduce the
PRISM (Processor Reconfiguration through Instruction-Set
Metamorphosis) architecture which couples a programmable
element with a microprocessor [15]. From each application,
new processor instructions are synthesized in the reconfig-
urable element which are designed to accelerate the appli-
cation.

The Washington University in the WUGS project, Wash-
ington University Gigabit Switch, has proposed a new method-
ology proposed in [19] that allows the platforms, by means
of partial dynamic reconfiguration, to hot–swap application
specific modules, called Dynamic Hardware Plugin (DHP).
The presented application has been implemented onto a
Xilinx Virtex-E FPGA. The PARBIT tool [21] transforms
FPGA configuration bitstreams, representing the DHP mod-
ules, to enable them in the Field- programmable Port Ex-
tender, FPX, [20]. The tool accepts as input the original
bitfile, a target bitfile and parameters given by the user.
The output is a new bitstream that can load a DHP module
into any region of the Reprogrammable Application Device,
RAD on the FPX. The flexibility of this approach is limited
by the constraints imposed by the predefined size and loca-
tion of the reserved areas on the FPGA where the DHP’s
must be placed, reducing the overall logic utilization factor
when DHP’s with different sizes are employed, and by the
need of an external reconfiguration device.

Reconfigurable computing can be considered as a close

combination of hardware cores and of the run-time instruc-
tion set of a general purpose processor [23]. The classifica-
tion of core types is generally accepted to be split into three
classes [24]: Hard cores, Firm cores and Soft cores. In [25],
a new class of cores called run-time parameterizable (RTP)
has been introduced. RTP cores allow a single core to be
computed and customized at run-time. The core produces
all the required configuration data to define the logic and
the routing. The possibility of determining limited amounts
of routing at run-time is also dealt with in [25]. An innova-
tion of this approach consists in considering the RTP cores
as a specific example of a reconfigurable core, placed on
the programmable device in a dynamic manner to respond
to the changing computational demands of the application.
The problem of this methodology is that the RTP cores are
targeted only to a single device family and there is no in-
formation about the communication channel between RTP
cores and on how they solve the physical reconfiguration
problem.

3. DESIGN METHODOLOGIES
To develop a reconfigurable system it is possible to build

an ad-hoc solution or to follow a generalized design flow.
The first choice implies a considerable investment in terms
of both time and efforts requested to build a specific solution
for the given problem, while the second one allows to exploit
the re-use of knowledge, cores and software to reach more
rapidly a good solution to the same problem.

3.1 Adriatic and RECONF2
Aim of the ADRIATIC [26] project is to define a method-

ology able to guide the Codesign of reconfigurable SoC, with
particular attention to cores situated in the wireless commu-
nication application domain. The first phase is the system
specification, in which the functionality of the system can be
described by using a high-level language program.This exe-
cutable specification can be used to accomplish the follow-
ing tasks: generation of the test-bench; partitioning of the
application to specify which part of the system will be im-
plemented in hardware (either static or dynamically recon-
figurable hardware); accurate definition of the application
domain and of the designer knowledge. To derive the final
architecture from the input specification, the dynamically
reconfigurable hardware has to be identified; each dynami-
cally reconfigurable hardware block can be considered as a
hardware block that can be scheduled for a given time inter-
val. The partitioning phase defines, for each part of the sys-
tem, the type of implementation: hardware, software or re-
configurable hardware block. To help in this decision, some
general guidelines have been developed. In the mapping
phase the functionalities defined by the executable speci-
fication are modified to obtain thorough simulation results.
The ADRIATIC flow is a solution that can be easily applied
to the system-level of a design. In this phase, in fact, it is
possible to draw benefits from the general rules that guide
the partitioning and from the mapping phase. However, no
details are provided on the following phases, that take place
at RTL level, thus there are some implementation problems
that cannot find a solution within the ADRIATIC flow.

The RECONF2 [27] aim is to allow implementation of
adaptive system architectures by developing a complete de-
sign environment to exploit the benefits of dynamic recon-
figurable FPGAs (real-time image processing or signal pro-



cessing applications).The RECONF2 builds a set of partial
bitstreams representing different features and then use this
collection to partially reconfigure the FPGA when needed;
the reconfiguration task can be under the control of the
FPGA itself or through the use of an external controller. A
set of tools and associated methodologies have been devel-
oped to accomplish the following tasks: automatic or man-
ual partitioning of a conventional design; specification of
the dynamic constraints; verification of the dynamic imple-
mentation through dynamic simulations in all steps of the
design flow; automatic generation of the configuration con-
troller core for VHDL or C implementation; dynamic floor-
planning management and guidelines for modular back-end
implementation. It is possible to use as input for this flow a
conventional VHDL static description of the application or
multiple descriptions of a given VHDL entity, to enable dy-
namic switching between two architectures sharing the same
interfaces and area on the FPGA. The steps that character-
ize this approach are the partitioning of the design code,
the verification of the dynamic behavior and the generation
of the configuration controller. The main limitation of the
RECONF2 solution is that it does not provide the possi-
bility of integrating the system with both a hardware and
a software part, since both the partitioned application and
the reconfiguration controller are implemented in hardware.

3.2 The Earendil methodology
The Earendil methodology aims at defining a specification-

to-bistream and autonomous design flow based on, where
possible, standard tools. The idea behind the proposed
methodology is based on the assumption that it is desir-
able to implement a flow that can output a set of configu-
ration bitstreams used to configure and, if necessary, par-
tially reconfigure a standard FPGA to realize the desired
system. One of the main strengths of the proposed method-
ology is its low-level architectural independence. In fact
it has been developed using both the Caronte [1] and the
YaRA (Yet another Reconfigurable Architecture) architec-
ture, but it can be easily adapted to different architectural
and SoC solutions, i.e. the RAPTOR2000 system [28]. In
particular the Caronte and the YaRA solutions consist of
two distinct parts: a fixed part containing all the compo-
nents that always have to be present in the final system or
that are used very frequently; a reconfigurable part used
to hold the reconfigurable components that are dynamically
plugged into the system during the computation phase. The
Earendil design flow consists mainly of three phases: High
Level Reconfiguration (HLR), Validation (VAL) and
Low Level Reconfiguration (LLR). Aim of HLR is to
analyze the input specification in order to find a feasible rep-
resentation, produced by a first partitioning phase, that can
be used to perform the HW/SW Codesign. In the currently
implemented framework, cores are identified by extraction
of isomorphic templates used to generate a set of feasible
covers of the original specification. Finally, the computed
cover is placed and scheduled onto the given device. On the
opposite, the goal of VAL is to drive the refinement cycle
of the system design. Using the information provided by
this phase, it is possible to modify the decisions taken in
the first part of the flow to improve the development pro-
cess. Finally, the last step that has to be performed is LLR,
introduced in Section 3.2.1, which goal is the definition of
an automatic generation of the low-level implementation of

the final solution that has to be physically deployed on the
target device and that realizes the original specification.

3.2.1 Low Level Reconfiguration
Aim of the Low-Level Reconfiguration phase is to generate

the low-level implementation of the desired system in order
to make it possible to physically configure the target device
to realize the original specification. A diagram showing the
whole LLR process is presented in Figure 1. To develop
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Figure 1: LLR design flow overview

the system it is necessary to split LLR in three parts: the
hardware, the reconfigurable and the software sides. On one
hand the first steps that have to be performed in the hard-
ware and reconfigurable hardware sides are the High-level
Description Language (HDL) Core Design and the IP-Core
Generation, in which the core functionalities of the original
specification are translated in a hardware description lan-
guage and extended with a communication infrastructure
that makes it possible to interface them with a bus-based
communication channel. After these steps, the fixed com-
ponents of the system are used to realize the YaRA archi-
tecture, while the reconfigurable components are handled in
a different way, as reconfigurable IP-Cores; in other words
they will be kept separated from the fixed part of the archi-
tecture during the DEsign SYnthesis phase, while the fixed
components will be synthesized together with the fixed part
of the architecture. On the other hand, in the software part



there is the need to develop, in addition to a control appli-
cation that is able to manage the reconfiguration tasks, also
a set of drivers to handle both the reconfigurable and the
fixed components of the system. All these software appli-
cations are compiled for the processor of the target system.
The compiled software is then integrated, in the Software
Integration phase, with the bootloader, with the Linux OS
and with the Linux Reconfiguration Support, that extends
a standard OS making it able both to perform reconfigu-
rations of the reprogrammable device and to manage the
reconfigurable hardware as well as the fixed hardware, in
order to allow components runtime plugin. The following
step is the Bitstreams Generation which is necessary to ob-
tain the bitstreams that will be used to configure and to
partially reconfigure the reprogrammable device. Finally,
the last step of the LLR process is the Deployment Design
phase, that aims at creating the final solution, that consists
of the initial configuration bitstream, the partial bitstreams,
the software part (bootloader, OS, Reconfiguration Support,
drivers and controller) and the deployment information that
will be used to physically configure the target device.

4. CONCLUDING REMARKS
Embedded partial dynamic reconfiguration, due to its in-

ternal nature, can be used to realize embedded systems with-
out involving any other device. The successful deployment
of such complex and reconfigurable embedded systems to
the market requires the identification, formalization, and
implementation of concepts, methods, and tools for embed-
ded software design that are able to ease the development
of software components and the implementation of the sys-
tem architecture. In this paper we presented an overview
on the comprehensive work that has been done in the area
of reconfigurable embedded systems, describing both the ar-
chitectural and the methodological aspects of such systems.
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