Dynamic Reconfiguration Using Template Based
Web Service Composition

Kristof Geebelen, Sam Michiels and Wouter Joosen
IBBT-DistriNet, Dept. Computer Science, K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

{kristof.geebelen, sam.michiels, wouter.joosen}@cs.kuleuven.be

ABSTRACT

Current workflow languages introduce limitations regarding
modularity and flexibility. They are lacking support for
reusability of primitive and structured activities. Designing
processes often leads to duplication which makes the work-
flow descriptor complicated and unnecessarily large. Fur-
thermore, due to the static character of the scripts, there is
insufficient flexibility to model dynamic, evolvable and fail-
safe workflows. In this paper we present a framework that
allows the design of WS-BPEL processes in a modular way
based on reusable templates. In addition, we introduce an
extra layer on top of WS-BPEL that allows template pro-
cessing based on parameter values. This layer offers support
for decision logic to adapt processes dynamically. The ap-
proach is based on the "Ruby On Rails” (RoR) framework,
known for adding dynamism to static web pages. The pro-
posed solution is portable with existing WS-BPEL engines.

Categories and Subject Descriptors

H4.1 [Information Systems Applications]: Workflow
Management

General Terms

Design, Management

Keywords

Modularization, Dynamic Reconfiguration, Service Compo-
sition, WS-BPEL

1. INTRODUCTION

Web services have become increasingly popular as a means
to integrate existing applications into new environments.
With a Service Oriented Architecture [11] as foundation for
creating individual solutions, an integration language can be
used to orchestrate existing services into more complex busi-
ness solutions. At this moment, the Web Services Business

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MW4SOC 08, December 1, 2008, Leuven, Belgium

Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

49

Process Execution Language (WS-BPEL) [12] has profiled
itself as the de-facto industry standard for orchestrating web
services. However, this standard exhibits major limitations
regarding modularity and flexibility.

When developing an application in a general purpose lan-
guage like Java, code modules can be reused by defining
classes and methods. Functionality declared in a class or
method body can be reused by creating new objects or by in-
voking methods multiple times. WS-BPEL is used to model
the behavior of processes with xml-based syntax. However,
for designing and implementing such a process there is little
support for concepts that foster modularization and reuse
of code. Besides modularization of the functional part, it
is useful to provide a means to separate concerns from the
workflow specification. Examples of such concerns are log-
ging, billing and security. Typically, we want to avoid that
those concerns end up scattered across the process specifi-
cation and tangled with one another.

A second limitation concerns the flexibility offered by work-
flow languages. The integration of heterogeneous web ser-
vices, often developed by a third-party, into a new business
process over the Internet may lead to unpredictable behav-
ior. The web services used in workflows are not always
controllable by the developer of the business process. To
provide reliable solutions for services that are often subject
to change there is need for fail-safe mechanisms that allow
anticipation on unpredictable factors. Examples of irregu-
lar behavior include web services that go off-line and per-
formance bottlenecks. WS-BPEL offers fault handlers and
compensation handlers that allow anticipation to a certain
degree. We argue, however, this is not sufficient to provide
reliable, high quality solutions in the dynamic context of
web services.

The contribution of this paper complements earlier re-
search (Padus [8]), in which we propose an aspect-oriented
approach to comply with shortcomings of WS-BPEL; We
leverage on this expertise and investigate how RoR can be
mapped to the domain of web services since it handles sim-
ilar issues in dynamic web design. This paper proposes a
template framework for designing WS-BPEL processes that
allows the interpretation of templates based on parameters.
The approach is easy to use for the designer and tackles
the shortcomings mentioned above without reducing perfor-
mance at runtime. The idea is to start from a generic master
process in which designers can model functionality indepen-
dent of concrete implementations. A template library is pro-
vided which contains combinations of WS-BPEL activities
that fulfill common functionalities. The templates together

with the generic master process are the ingredients for a
controller that generates a tailored WS-BPEL process. The
controller composes the WS-BPEL process by interpreting
various parameters associated with the runtime environment
and by selecting appropriate templates from the template li-
brary. The template framework introduces a mechanism on
top of the execution layer that tackles the issues concern-
ing flexibility and modularization before deployment. This
makes the resulting WS-BPEL process compatible with ex-
isting WS-BPEL engines.

2. WEB SERVICE COMPOSITION WITH WS-

BPEL

2.1 Introduction

Business Process Execution Language for Web Services
(WS-BPEL) [12] provides a language for the specification of
business processes and business interaction protocols. WS-
BPEL is built on top of XML specifications. For example,
it uses the web service description language (WSDL) [13]
to describe the web service interfaces that participate in a
process. An executable WS-BPEL process is defined by a
control flow that consists of a combination of basic and struc-
tured activities.

Web
Service

roos
8
/ :

Figure 1: Overview

The Business Process Modeling Notation (BPMN) [14] is
a standardized graphical notation for drawing business pro-
cesses using a flow chart. The BPMN specification includes
a mapping from BPMN diagrams to executable WS-BPEL
processes. Processes built with a design tool can automati-
cally be generated from the workflow diagrams.

To make a business process operational, it has to be de-
ployed on a WS-BPEL orchestration engine (e.g. IBM [17],
Oracle [16], ActiveBPEL [15]). Since WS-BPEL is standard-
ized, processes are portable between different engines to a
certain extent.

2.2 Limitations

In different research papers, current limitations of work-
flow languages have been discussed, including modulariza-
tion and flexibility.

In an evaluation of WS-BPEL to Scientific Workflows [1]
the need for adaptive and flexible workflows is identified.
However, there is little support in WS-BPEL for dynami-
cally modifying a workflow at runtime. Furthermore, the
reusability of the basic and structured activities in WS-
BPEL is limited. It is not possible, for instance, to re-
execute an activity that is defined earlier by referring to
it later [1].

IBM and SAP [8] identify a similar problem related to
modularity: ”The BPEL language currently does not sup-
port the explicit definition of business process "fragments”
that can be invoked from within the same business process
or from another business process”.

Other papers [2, 5, 6, 7] focus on the need for separation of
concerns in the workflow specification. WS-BPEL processes

50

suffer from a problem that is known as the "tyranny of the
dominant decomposition”. A WS-BPEL process can only be
decomposed according to the control flow of the process, and
concerns that do not align with this decomposition end up
scattered across the process specification and tangled with
one another [2]. These cross-cutting concerns give rise to
large and complex process definitions which are difficult to
understand and maintain.

3. TEMPLATE BASED WEB SERVICE COM-

POSITION

In this section we address the limitations of WS-BPEL
introduced previously. First we motivate our approach by
mapping the problems to the domain of dynamic web de-
sign. Then we present the basic building blocks used in the
framework: the template definitions, the library, the master
process and the controller. Support for modular design and
dynamic configuration is discussed in detail by means of a
representative example.

3.1 Approach

Our approach to create WS-BPEL processes in a modu-
lar and dynamic way is based on similar evolutions in the
domain of web design. The intent of web design is to create
a website that presents content to the end users in the form
of web pages. To comply with today’s expectations of end-
users, there is growing tendency to use dynamic web pages.
In contrast to static pages, where the content and layout is
not changed with every request, dynamic pages adapt their
content on the fly depending on the user’s input.

To support dynamic web design there are a lot of prod-
ucts and tools on the market. One that caught our attention
is the "Ruby On Rails” framework [10]. RoR is a popular
open source web application framework written in the Ruby
programming language. RoR is based on an architecture
known as MVC (Model - View - Controller). The architec-
ture consists of a set of design patterns that allow a clear
separation between data models, user interfaces, and con-
trol logic of the application. The model is responsible for
interacting with the application data. The view is the pre-
sentation layer. It defines how the application presents data.
Controllers orchestrate the application; they receive events,
interact with the model, and display an appropriate view to
the user. Figure 2 illustrates the basic functionality provided
by the framework to handle a web request: (1) Web requests
are routed to the appropriate controller; The controller coor-
dinates the interaction between the user, the views, and the
model. To use application data, it can contact the model
(not presented in fig. 2). The controller manages helper
modules which extend the capabilities of the view templates
without bulking up their code. (2) The controller instructs
the view to generate an appropriate presentation. (3) The
view uses the results from the controller to render the next
browser screen [10].

The RoR framework allows dynamically adapting the con-
tent of a static web page expressed in html. Based on the
user request, the framework calculates the values of variables
that are then used to generate the web page. Furthermore,
the helper class contains template definitions of html code
that can be substituted in the html page. The ruby program-
ming language is used to implement the logic that decides
on which template is returned.

A Web Request

M

di |
‘2 | L nitpijfiocalhost:30007helo “_‘ o

end

end

class HelloController < ApplicationController

H p l = Time.now

module HelloHelper
def getHelloWorld
recurn

e

V@

Y@

Web Page

M Gettrg Started () Latest Headines (] Learn ol about Ruby ...
Tse of the helperclass to build the webpage dynamscally

e

Tse ruby functionalty in a statc webpage:

i Thu Jun 12 16:04:31 +0200 200

<html>
chemd></head>
<boayr
<p>Use of the helperclasa to build the webpage dymamically: </p>
<b= getHelloWorld &>

</heml>

<p>Use ruby IURCTIONALILY in A STATIC webpage: </p>

<p sty
</boay>

View

>chm T A</ p>

Figure 2: A web request with Ruby On Rails

We extend the concept of dynamic web design to web ser-
vice composition in order to comply with frequently chang-
ing environments and unpredictable behavior. The proposed
template framework is based on the MVC concept used in
the RoR framework. Figure 3 shows the general architec-
ture. The idea is to start from a generic master process.
This process represents a generic workflow where require-
ments can be modeled without being bound to specific im-
plementations. The concrete modules of WS-BPEL activi-
ties are modeled as templates and stored in a library. (1)
The controller can be triggered to regenerate the process.
(2) It interprets provided parameter values (2a) and looks
up the corresponding templates from the library (2b) which
are integrated in the master process. (3) The result is an
executable WS-BPEL process generated by the controller.

The introduction of a layer on top of the WS-BPEL execu-
tion allows dynamic composition of templates into the mas-
ter process by interpreting changing parameters. This new
recomposition, triggered at the template controller, happens
in the modeling space and replaces the old workflow compo-
sition at the execution layer by redeployment. The mapping
from the template framework illustrated in Figure 3 to the
RoR example shown in Figure 2 is straightforward: Through
the RoR Helper class (Template Controller), concrete tem-
plates can be selected which extend the View (Master Pro-
cess) to render a specific representation (Executable BPEL
Process).

In this paper, we restrict our focus to the reuse of template
definitions. This maps only to a basic feature of in the RoR
framework. However we motivate our approach from this
viewpoint since we believe that many other features offered
by RoR have the potential to be successfully mapped to
the domain of web services. These include features were
the execution feeds back into the model and they will be
investigated in future work.

3.2 Building Blocks

We show how the template framework can be used to de-
sign a simple brokerage service. The service integrates some
web services into a workflow that allows end-users to retrieve
stock quotes and place market orders. For this process we
want to apply the following informal policy rules:

e Users must be authenticated before using the services.
e Since there are multiple broker services available, the
one with the lowest response time will be used. Reeval-

W N =

NECNC IS

©00 oUW =

51

uation of the response time will be done every hour.

e After the invocation of a broker services, a billing scheme
must be applied that bills a fixed amount to the cus-
tomer.

3.2.1 Template Definitions

The syntax used for defining templates is based on an
existing syntax for describing WS-BPEL modules [3].

A template definition represents a coherent set of basic
and structured WS-BPEL activities that realizes a particu-
lar functionality. For example, Listing 1 shows a template
definition that allows the invocation of a billing service.

<template name="GenericBilling” result="">
<module name="billingService”>
<invoke partnerLink="billingPL"”
billingPT” operation="bill"
inputVariable="billingMsg”>
</module>

portType="bill :

</template>

Listing 1: Template defining generic billing

A template consists of one or more modules. A module is
a cluster of WS-BPEL activities. Different modules are used
when the contained activities are scattered throughout the
process to realize the functionality provided by the template.
Listing 2 illustrates a template that consists of two modules.
The first one is responsible for registering the start time.
Next, some action will proceed for which its duration will
be billed. After that action the resulting price is sent to a
billing service.

<template name="DurationBilling (String Price)”

result="">
<include name="GenericBilling”/>
<module name="start”>
<assign>
<copy>
<from expression="func:getCurrentTime ()”
<to variable="startTime” />
</copy>
</assign>
</module>
<module name="end”>
<sequence >
<assign>
<copy>
<from expression="func:calculatePrice(bpws:
getVariableProperty (’startTime ’), $Price)”/>
<to variable="billingMsg” part="price” />
</copy>
</assign>
<template name="billService” />
</sequence>
</module>

/>

</template>

Listing 2: Template defining Duration Billing

[N

[SRC NS

-

O © 0O U R WK

.

Specific Executable Process

Template
Controller
~RoR Helper

Master BPEL Process ¢ @

Security: Password X1

Socurity: Certificate Xz

Template

Library Billing: Fixed Z1

Billing: Duration z2

il

Broker Service: typal Al

SEy P] X1 x
-

Broker Service: typ Yz @ Broker Service Y

2 2

= RoR Web Page = RoR View

\ Broker Senviee ez | Y2
v

Response Time - Broker Servicel: 31ms
Response Time - Broker Servica2: 15ms
Fixed Billing - Price = 10 Eur

Parameter

Database

Figure 3: The template framework

Another feature illustrated in Listing 2 is the reuse of tem-
plates from within a template definition. Include statements
are used to include the contents of another template file. The
semantics of the statement is the same as if the contents of
the included template were copied to this template.

The template definition can be compared with the signa-
ture of a method in a general programming language. Argu-
ments can be passed in the form of strings and WS-BPEL
variables. The values of the parameters will be replaced at
the corresponding references within the template.

3.2.2 Library

In this section we zoom in on the template library avail-
able for the design of the workflow. The library contains
templates for billing, security and invoking a broker service.
We illustrate examples in Listing 3 and 4. Analog there are
alternative templates for invoking a second broker service
(Service B) and for certificate validation (Mechanism B) re-
spectively.

Template library:
e Place Market Orders

<template name="Brokerl (Var result="Var status”>
<module>
<invoke partnerLink="stockBrokerl” portType="sb:
stockBroker1PT?” operation="placeMarketOrder”
inputVariable="order” outputVariable="status”>

</module>

order)”

</template>

Listing 3: Service A - Stock Broker 1

e Security

<template name="passwordSecurity (XpathString
IncommingPassword)”>
<module>
<sequence>
<assign>
<copy>
<from>IncommingPassword </from>
<to variable="password” part="msg”’/>
</copy>
</assign>

<invoke partnerLink="passwordSecPL” portType="ps:

passwordSecPT” operation="checkPassword”
inputVariable="password” outputVariable="Result
N

<if name="ValidateAuthenticationToken”>
<condition>Result = false </condition >
<throw faultName="ps: AuthenticationFailure?”
faultVariable="Fault” />
</if>
</sequence>
</module>

</template>

Listing 4: Mechanism A - Password Security

SRS -

e
=0 © 0w

52

3.2.3 Master Process

With the template library in mind we can design our mas-
ter process. The master process is designed as a regular
process. But instead of including all the specific details of
all possible situations on which anticipation is required, it
is designed on a meta-level, containing more generic tem-
plate statements. Listing 5 shows a fragment of the master
WS-BPEL process. Here we state that the invocation of a
broker service, a security mechanism and a billing scheme
are needed. Details are passed as an argument.

<process>

<%= insertSecurity ($BrokerServiceOperationIn.
securityToken) %>

<sequence name="Sequencel”>
<%= placeMarketOrder ($BrokerServiceOperationIn .
orderRequest) %>
<%= insertFixedBilling () %>
</sequence>

</process>

Listing 5: Fragment of master WS-BPEL process

A business process is usually designed in a workflow chart.
Figure 4 illustrates a graphical representation of the work-
flow. The master process is modeled like a regular process
except for the generic parts we use controller statements
instead of concrete WS-BPEL activities. The circles in Fig-
ure 4 represent high level calls in the workflow.

O

<i_Insert Security

arket
r =

Billing

PartnerLi.

=

O—LD

Figure 4: Master BPEL Process

© 00O U W=

R e e e
00~ O U R WN = O

3.2.4 Controller

The final step is to implement the logic that decides which
templates to use. The decision logic on how specific pro-
cesses must be generated is implemented in the template
controller. The concrete implementation is shown in List-
ing 6. Parameters we use to decide on which template to
choose are for example the response times of two broker ser-
vices. Those times are calculated in the background and can
be retrieved from a database. The template corresponding
with the service that has the lowest response time is returned
and substituted in the master process. Depending on how
frequently the controller is triggered to check for a change
in parameter values and generate and deploy a new version
of the process, decides how quick we can anticipate on a
changing environment.

module BrokerController
def insertSecurity (incommingPassword)
return templates.passwordSecurity (incommingPassword)
end
def placeMarketOrder (order)
int responseTimeA = Database.getResponseTimeA ()
int responseTimeB = Database.getResponseTimeB ()
if (responseTimeA < responseTimeB)
return templates.Brokerl (order)
else
return templates.Broker2(order)
end
end
def insertBilling
String price = Database.getPrice ()
return templates. FixedFeeBilling (price)
end
end

Listing 6: Template Controller Logic

3.2.5 Discussion

We illustrate the impact on an evolving application by de-
scribing a scenario that implies the need to change. Imagine
that the password security mechanism currently used is no
longer safe and needs to be upgraded to a system that ex-
changes certificates. This requirement can easily be achieved
by changing the template controller logic to return the cor-
responding template found in the library. Since ruby is an
interpreted language, changes in the implementation are ap-
plied immediately.

The lack of flexibility is handled by introducing an ex-
tra layer that allows template processing. By using tem-
plates, the framework supports not only the separation of
concerns, but also modularization in a more general con-
text. Grouping coherent pieces of WS-BPEL activities into
reusable modules minimizes redundancy while developing
business processes. The use of standardized templates eases
the exchange of existing modules. The complete integra-
tion of the templates in the master process provides a high
coupling between the modules and the parent process.

4. PROTOTYPE

For the implementation of the framework we have reused
the concepts from the RoR framework. Simply by consid-
ering the master process as a static web page and the tem-
plate controller as a helper class we can already generate
executable processes by simulating a web request. Of course
a more usable and user friendly solution requires still some
efforts. Extensions to the RoR framework are needed to
make the design of master processes straight forward. In-
tegration of WS-BPEL support like easy deployment and
graphical design tools are the next steps to come to a useful
solution.

S. RELATED WORK

BPEL-SPE [8] introduces an extra layer on top of the
WS-BPEL language that supports invocation of a business
process as a sub-process of another business process. This
approach focuses on modularization and reuse. One of their
challenges is to allow a tight coupling between the parent
and sub-process. The paper examines various flavors of sub-
processes and different modes of invocation, and outlines
the syntax and semantics of needed extension. The lan-
guage specification, which defines the precise syntax of this
extension, is not implemented yet.

Akram [1] investigates the requirements of Scientific Work-
flows in context of WS-BPEL and evaluates to what ex-
tend WS-BPEL is able to fulfill these requirements. Due
to the complexity, unpredictability and inter-dependency of
the components in a scientific workflow there is a demand
for high flexibility of the underlying workflow that will be
used. The identified shortcomings of WS-BPEL for Scien-
tific Workflows were also relevant to this paper.

Casati [4] presents the eFlow platform that allows dy-
namic and adaptive composition of e-services. The paper
discusses some interesting constructs to allow adaptive work-
flows: dynamic conversation selection, multi service nodes,
generic nodes and dynamic process modifications. In con-
trast to our approach the binding of service templates is done
at a late stage and requires a customized workflow engine.

Although no pointcut language is used in our approach,
it is strongly related to AOP. The controller statements can
be seen as annotations that allow the weaving of reusable
modules into the base program (master process).

Charfi [5] and Courbis [7] both present an aspect-oriented
extension to WS-BPEL allowing runtime aspect addition
and removal. The approach we used to generate an ex-
ecutable process is done statically. This means that the
templates and base-code are merged before runtime. The
statically generated process needs still to be deployed on a
BPEL engine before it will be executed. However, we believe
that this approach has some advantages compared to run-
time adaptation of the workflow. When a new WS-BPEL
process is created it can usually be packaged and deployed
on a running engine on the fly. This means that redeploy-
ing a new process generates only a one-time minimal extra
overhead. From then on instances from the new process can
be executed at full performance. Runtime adaptation would
imply that each time a WS-BPEL activity is called, we need
to recheck the templates during the execution of the pro-
cess. Real time processes, where performance is extremely
important, do not tolerate that extra overhead. So in many
cases the cost of periodical redeployment will be much lower
than the cost of continuous probing for changes. Only if
the adaptation rate of the workflow is very high continuous
probing will probably perform better. Furthermore, to allow
runtime checking a custom-made BPEL engine is required.
This would bind the framework to a specific implementation
and limit the portability of the resulting workflows. Another
possible problem with runtime adaptation that comes to our
mind is a need for consistency checking. When the work-
flow of a process instance gets adapted while it is running it
can lead to unpredictable behavior and enter an inconsistent
state.

Isolating process-level concerns using Padus [2] is also
based on an aspect-oriented language extension. The static
weaving approach used here introduces no runtime overhead

and the resulting process is compatible with existing WS-
BPEL engines. The concepts from Padus can be used com-
plementary to the ideas presented in this paper. Instead
of inserting controller statements manually in the master
process, we can use the rich joinpoint model, the pointcut
language and the deployment descriptor of Padus to weave
them into the workflow in an aspect-oriented way. In a next
step, the template framework will translate them to concrete
WS-BPEL activities.

6. CONCLUSIONS AND FUTURE WORK

This paper focused on the modularization and flexibility
of WS-BPEL processes. We presented a framework that uses
a controller to select template definitions from a library and
integrate them into a master process. Our approach is based
on the helper module concept from the RoR framework. The
resulting process is a standard WS-BPEL process, deploy-
able on any existing engine and executable without gener-
ating extra performance overhead at runtime.

We highlighted only one of the aspects that RoR offers to
design dynamic web pages and mapped it to the WS-BPEL
context. However there are other features offered by the
framework that can be useful to adopt [10]:

e The Rails controller classes are the logical center of
the web application. The code written allows adding
application level functionality by extending the basic
functionality offered by the static web pages. Simi-
larly we could extend the basic functionality offered
by WS-BPEL with ruby method invocations during
the execution of the workflow. Currently most WS-
BPEL engines already enable to call custom functions
at runtime. However these functions are often inte-
grated in the engine implementation and difficult to
adapt. The challenge is to provide user-friendly sup-
port, integrated with the template framework which al-
lows a WS-BPEL designer to easily extend WS-BPEL
activities with custom-made ruby method calls.

e Active Record is an Object-Relational Mapping (ORM)
layer supplied with Rails. This layer provides sup-
port to easily use stored data into the web application.
Database support in WS-BPEL is usually limited to
persistence of process instances. Extending the execu-
tion of a workflow with database access via customized
functions improves its flexibility.

Another possible extension to the template framework al-
lows real time modification of workflows based on incoming
messages. This approach demands to queue and process in-
coming messages. If this message requires adaptation of the
workflow, a new specific version is generated and deployed
by the template framework. Then the queued message can
be rerouted and executed by the adapted workflow. It is
obvious that the extra flexibility offered by this approach is
at the cost of performance. We need to study this more in
detail to see if certain cases could benefit from this approach.

7. ACKNOWLEDGMENTS

We would like to acknowledge the input of Kris Verlae-
nen to the ideas presented in this paper. Also thanks goes
to Dimitri Van Landuyt and Tom Stijnen for some interest-
ing discussions on the topic and to the reviewers for their
constructive comments.

54

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(12]

(13]

REFERENCES
Akram, A., Meredith, D. and Allan R.: Evaluation of

BPEL to Scientific Workflows. Proceedings of the
Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06).

Braem, M., Verlaenen, K., et al.: Isolating
process-level concerns using Padus. Proc. of the 4th
Int’l Conf. on Business Process Management (BPM
2006), Vienna, Austria, Springer (2006).

Braem, M., Joncheere, N.; Geebelen, K. and
Verlaenen, K., Guiding aspect-oriented service
composition in WS-BPEL and Padus
(Demonstration), Proceedings of the 6th international
conference on aspect-oriented software development,
March 2007.

Casati, F., Shan, M. C.: Dynamic and adaptive
composition of e-services. Information system. 6(3):
143-162,2001.

Charfi, A., Mezini, M.: Aspect-oriented web service
composition with AO4BPEL. In Zhang, L.J., ed.:
Proceedings of the 2nd European Conference on Web
Services (ECOWS 2004), Erfurt, Germany,
Springer-Verlag (2004) 168-182.

Charfi, A., Mezini, M.: Aspect-oriented workflow
languages. In the Proceedings of the 14th
International Conference on Cooperative Information
Systems (COOPIS’06).

Courbis, C., Finkelstein, A.: Towards aspect weaving
applications. In: ICSE ’05: Proceedings of the 27th
international conference on Software engineering, New
York, ACM Press (2005) 69-77.

Kloppmann, M., Rickayzen, A., et al.: WS-BPEL
Extension for Sub-processes - BPEL-SPE. A Joint
White Paper by IBM and SAP (2005).

Suvée, D., Vanderperren, W.: JAsCo: An
aspect-oriented approach tailored for component based
software development. In Akysit, M., ed.: Proc. 2nd
Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2003), ACM Press (2003) 21-29

Thomas, D.,Hansson, D.,Breedt, L. and Clark, M.:
Agile Web Development with Rails, 2nd Edition
Reference Architecture for Service Oriented
Architecture Version 1.0, April 2008, OASIS Technical
Committee,
http://www.opengroup.org/projects/soa/.

Web Services Business Process Execution Language
Version 2.0, April 2007, OASIS Technical Committee,
http://docs.oasis-open.org/wsbpel/.

Web Services Description Language (WSDL) Version
2.0, June 2007, W3C Note,
http://www.w3.org/TR/2007/REC-wsd120-20070626/.
Business Process Modeling Notation (BPMN) Version
1.1, January 2008, OMG Specification,
http://bpmn.org/.

Active Endpoints,
http://www.activevos.com/community-open-source.php .
Oracle BPEL Process Manager,
http://wuw.oracle.com/technology/products/ias/
bpel/index.html

IBM Business Process Execution Language for Web
Services JavaTM Run Time (BPWSA4J),
http://www.alphaworks.ibm.com/tech/bpws4j.

