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Dynamic Regime Marginal Structural Mean

Models for Estimation of Optimal Dynamic

Treatment Regimes, Part I: Main Content

Liliana Orellana, Andrea Rotnitzky, and James M. Robins

Abstract

Dynamic treatment regimes are set rules for sequential decision making based on patient

covariate history. Observational studies are well suited for the investigation of the effects of

dynamic treatment regimes because of the variability in treatment decisions found in them. This

variability exists because different physicians make different decisions in the face of similar

patient histories. In this article we describe an approach to estimate the optimal dynamic treatment

regime among a set of enforceable regimes. This set is comprised by regimes defined by simple

rules based on a subset of past information. The regimes in the set are indexed by a Euclidean

vector. The optimal regime is the one that maximizes the expected counterfactual utility over all

regimes in the set. We discuss assumptions under which it is possible to identify the optimal

regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented

inverse probability weighted estimators of the expected utility of one fixed regime. Our methods

are based on an extension of the marginal structural mean model of Robins (1998, 1999) which

incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic

regime marginal structural mean models, are specially suitable for estimating the optimal

treatment regime in a moderately small class of enforceable regimes of interest. We consider both

parametric and semiparametric dynamic regime marginal structural models. We discuss locally

efficient, double-robust estimation of the model parameters and of the index of the optimal

treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of

the main results.

KEYWORDS: dynamic treatment regime, double-robust, inverse probability weighted, marginal

structural model, optimal treatment regime, causality
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1 Introduction

Dynamic treatment regimes are set rules for sequential decision making based
on patient covariate history. In the last decade, major developments in meth-
ods for estimating the e¤ects of dynamic treatment regimes from observational
data emerged, speci�cally with a series of papers by Robins (1986, 1989, 1993,
1997). In these papers Robins considers the use of structural nested models
to estimate a variety of causal contrasts. In his 1993 paper, Robins raised
the possibility of estimating dynamic treatment regime e¤ects by censoring
subjects the �rst time they fail to adhere to the dynamic regime. Murphy,
van der Laan and Robins (2001) implemented this idea and applied it to the
estimation of the mean of a potential outcome under one dynamic treatment
regime, possibly conditional on baseline covariates.

An important public health question related to the management of chronic
diseases is to determine the optimal dynamic treatment regime among those in
a set of simple regimes that can be enforced in practice. Recently, the task of
estimating the optimal dynamic treatment regime from observational data has
seen major methodological developments, speci�cally with the seminal paper
of Murphy (2003) and the subsequent work on doubly-robust g-estimation of
optimal regime structural nested mean models of Robins (2004). Until these
papers, the Biostatistical community had regarded the problem of �nding op-
timal treatment regimes from longitudinal observational databases as a very
hard, nearly intractable, problem for the following reasons: i)methods for esti-
mation of treatment e¤ects have to appropriately control for high dimensional
time dependent confounders (i.e. time varying risk factors that a¤ect future
treatments) that are themselves predicted by past treatments; standard longi-
tudinal regression methods which adjust for time dependent risk factors gen-
erally yield biased estimators of the time dependent treatment e¤ects (Robins,
1997) and, ii) the determination of an optimal treatment strategy is a high
dimensional sequential decision problem. Speci�cally, because the treatment
to be prescribed at each time k is decided based on updated information, the
set of all potential dynamic regimes, from which the optimal regime needs to
be identi�ed, is very large.

Murphy and Robins� methods have one important limitation; they opti-
mize over a class of regimes in which the decision maker has access to very
rich information on the patient�s covariate history, this being comprised by
an increasing sigma �eld of either a subset or all of the time dependent con-
founders for treatment. With such rich information, the optimal rule may
well be a very complicated function of past covariate history, one that may
be hardly enforceable in most health care settings. The methods we will de-
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velop in this paper are suitable for �nding the optimal regime out of a smaller
class of regimes in which treatment decisions are based on limited information
about the patient�s covariate history. Our methods are based on an extension
of the marginal structural mean (MSM) model of Robins (1998, 1999) which
incorporate estimation ideas of Murphy et al. (2001). Our model, which we
call dynamic regime marginal structural mean model, is specially suitable for
estimating the optimal treatment regime in a moderately small class of en-
forceable regimes of interest.

The idea of using dynamic regime MSM models as a device to estimate
optimal treatment regimes was �rst introduced in Andrea Rotnitzky�s NIH
grant proposal submitted in November 2005, where it was also indicated how
double-robust locally e¢cient inverse probability weighted estimators of the
model parameters could be constructed. This proposal had been developed
in collaboration with Liliana Orellana and James Robins. The methods were
further investigated and extended in Liliana Orellana�s Ph.D. thesis at the
Department of Biostatistics of Harvard School of Public Health, during the
period 2005-2007. During the same period similar ideas were independently
developed by Mark van der Laan and were reported in van der Laan (2006),
van der Laan and Petersen (2007) and later illustrated in Bembom and van der
Laan (2008) for estimation of the optimal treatment regimes from sequentially
randomized trial data. In this paper we report in detail the results developed
in Orellana�s Ph.D. thesis (2007). Some of these results without proofs were
included in the overview paper Robins, Orellana and Rotnitzky (2008). These
results di¤er from and extend the results in van der Laan (2006) and van der
Laan and Petersen (2007) and Bembom and van der Laan (2008) in a number
of ways. First, these papers considered only parametric models for the depen-
dence of the mean of the counterfactual outcome on the dynamic treatment
regime. Here we consider also the more �exible semiparametric MSM models.
Second, van der Laan and Petersen derived, as we do here, a class of double-
robust estimators of the dynamic regime MSM parameters but did not discuss
the e¢cient choice in the class. Here we derive this e¢cient choice and propose
an estimator that has smallest asymptotic variance among all double-robust
(DR) estimators regardless of which of the two working models postulated to
construct the DR estimator is correct. Third, of the three aforementioned
articles, only Bembom and van der Laan (2008) discuss the construction of
con�dence regions about the index of the optimal regime in the class, but they
do it assuming the class is uncountable and indexed in a continuum. Here we
consider the important special case in which the class is �nite, a case which
raises non-trivial technical challenges.
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regime MSM models can be derived from the general theory for inference in
models for coarsened at random data developed by Robins and Rotnitzky
(1992). We are aware that the general theory in that paper (and later ex-
posed and specialized to many examples in a number of papers (e.g. Robins,
Rotnitzky and Zhao, 1994, Robins, 1998 and 1999) and books (van der Laan
and Robins, 2003, Tsiatis, 2006)) is di¢cult to follow for the average reader
of methodological statistical journals. With this in mind, in this paper we
present the proposed methods in an expository manner, providing discussion
and examples of the key assumptions they rely on, and of the modelling steps
and algorithms required to compute the proposed estimators. Furthermore, we
provide a step-by-step derivation of certain optimality and double-robustness
properties that are a consequence of the Robins-Rotnitzky general theory for
inference in coarsened at random models. In addition, with the intention of
making the presentation self-contained in a companion paper in this issue of
the journal (Orellana, Rotnitzky and Robins, 2010) we provide proofs of key
results that appeared elsewhere in earlier papers of Robins and colleagues.

This paper is organized as follows. In Section 2 we introduce notation, the
data structure, the concept of dynamic treatment regimes and the de�nition
of the potential variables. In Section 3 we discuss a set of assumptions that
allows identi�cation of the expected utility in the hypothetical world in which
everybody follows a given dynamic regime and we derive the expression of
this expected utility as a functional of the observed data law. In Section 4
we introduce dynamic regime parametric and semiparametric marginal struc-
tural mean models (MSM). In Section 5 we propose augmented (AIPTW) and
non-augmented inverse probability of treatment weighted (IPTW) estimating
equations for the parameters of the dynamic regime MSM models. We de-
rive their asymptotic distribution and we use this asymptotic distribution to
guide the derivation of a class of locally e¢cient AIPTW estimators indexed
by a function b: In Section 6 we motivate and discuss the double-robustness
property of each locally e¢cient AIPTW estimator in the class. We discuss
double-robust inference (variance estimation and con�dence regions) for the
parameters of the dynamic MSMmodels and for the optimal treatment regime.
In Section 7 we derive the optimal index b and propose an estimator that is
double-robust and locally e¢cient in the class of all AIPTW estimators of the
parameters of the dynamic regime MSM models. In Section 8 we provide a
discussion of some limitations of our proposal.

The methods for estimation and inference of the parameters of dynamic
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2 General Formulation

2.1 The Setup

Suppose that a registry contains observational data about a group of patients,
all of whom were followed from an agreed upon baseline event until at least
the end of K time intervals or until their death time, whichever came �rst.
Patients came to the clinic once during each of the K equidistant intervals
to have various clinical and laboratory measurements made. Assume that
clinic visits happened at the end of the interval. Furthermore, assume that no
patient missed a clinic visit. Treatment decisions, i.e. whether to start, switch,
discontinue or alter the dose of a treatment, were made by the physicians after
examining the patient�s laboratory and clinical data results. Thus, treatment
decisions were made soon after each clinic visit and at no other moment.
Assume that the subjects in the registry are a random sample from a large
population of interest.

Each record of the database contains the patient�s information recorded
over the entire follow-up period. This is comprised by the variables

L0; A0; R1; T1; L1; A1; :::; Rk; TK ; LK ; AK ; RK+1; TK+1; LK+1

where Rk is a binary indicator for being at Risk, that takes the value 0 if
the patient has experienced an event of interest by time k and 1 otherwise
(this event often being death, but possibly also being the onset of a disease,
such as the onset of a symptom de�ning AIDS), the variable Tk denotes the
minimum between the time to the event of interest and k (here and throughout
the unit measure for time is 1 unit = length of one inter-visit interval, and
time to event is measured since time of start of follow-up), Lk are the clinical
and laboratory variables measured during the kth clinic visit if the patient
was alive, Ak is the subsequent treatment prescription which we assume takes
values in a �nite set Ak. In the database, the entries for Lk and Ak at a time
k after the patient experienced the event of interest, e.g. death, are set to any
agreed upon value such as NA, � or the last measured values of these variables.
The chosen convention is inconsequential for any analysis method that, like
the one presented in this article, disregards the entries of these variables after
the occurrence of event. To avoid notational burden, we will assume that the
entries for the post-event variables Lk and Ak are set equal to the last available
values for these variables. One �nal outcome measurement LK+1 is available
for all subjects in the registry that have not yet experienced the event at time
K + 1.
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Throughout we use the following conventions:

A�1 � 0; Ok � (Rk; Tk; Lk) ;

overbars with a subscript, say k; denote the present variable, i.e. at time k;
and all its past values, e.g.

Ok � (O0; :::; Ok)

and variables without a time index denote the entire variable history, i.e.

O � OK+1 and A = AK :

Furthermore, we use capital letters, such as Ok = (Rk; Tk; Lk) ; to refer to
random variables or vectors, i.e., variables which can take on di¤erent values
for di¤erent subjects. We use small letters, such as ok = (rk; tk; lk) ; to refer to
the possible values of the corresponding capital letter random variable.

2.2 The Treatment Regime

A dynamic treatment regime is a sequential rule for determining, at each time
k; the next treatment prescription Ak: The rule may depend on part or all of
the recorded health information about the patient�s health up to and including
time k. Formally, a dynamic treatment regime is de�ned by a collection of
maps

ok 7! gk (ok) 2 Ak ; k = 0; :::; K:
Because we are interested in evaluating the e¤ect of treatment regimes on the
health experience of the patient up to the development of the event of interest,
in principle, we can de�ne the treatment regime arbitrarily for times k after
the occurrence of the event. For example, a treatment rule is meaningless if
the patient is dead and in principle, we could de�ne gk (ok) arbitrarily at any
month k after death. However, because our methods require that we use the
same convention for coding data after the event time in the hypothetical world
in which everyone followed regime g as in the actual world, and in view of the
aforementioned convention for coding variables after the event time, we set

gk (ok) = gk�1 (ok�1) if rk = 0: (1)

Remark 1: Some authors de�ne dynamic treatment regimes as a collec-
tion of functions mapping each (ok; ak�1) to an element of Ak. However, for
the purposes of evaluating the e¤ect of a dynamic regime that it is enforced
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since k = 0, this de�nition is redundant because when a given dynamic regime
is enforced, the treatments received up to time k� 1 are functions of the out-
comes obtained up to time k� 1; so the domain of the decision rule at time k
depends only on past outcomes.

Example 1: Consider a registry that contains information about a cohort
of HIV-infected patients followed since their �rst doctor�s visit after infection.
Suppose that patients in the registry return monthly to the clinic for clinical
and laboratory tests. Suppose all patients have been followed until month
K + 1 = 37 from baseline or until their death time, whichever came �rst and
that death occurrence was recorded in continuous time. Patient information
includes CD4 cell count and viral load recorded at the clinic visit as well as the
treatment prescription. Assume that treatment decisions, i.e. whether or not
to give highly active antiretroviral-therapy (HAART), are made at and only at,
a clinic visit. Formally, the variables entered into the registry corresponding
to month k; k = 0; :::; K + 1 = 37; are Ok = (Rk; Tk; Lk) where Tk is equal
to the minimum between i) death time, ii) the time to the occurrence of an
AIDS de�ning event and iii) k, Rk = 1 if the subject is alive and AIDS free
at the beginning of month k and Rk = 0 otherwise. The variables Ak and
Lk = (CD4k; Vk) are de�ned as follows. At a month k at which the subject is
at risk CD4k is the subject�s CD4 cell count, Vk is the logarithm of his/her viral
load and Ak denotes the treatment prescription right after measuring CD4k
and Vk (0 if no HAART is given, 1 otherwise). At any month k at which
Rk = 0, Lk and Ak are set to the values of the health outcomes and treatment
indicator recorded at the last visit k0 < k at which Rk0 was 1. A treatment
regime that speci�es that the patient must start HAART as soon as it is
detected that his/her CD4 count is or was at or below 350 cell count=�L; and
must continue on HAART afterwards is a dynamic treatment regime de�ned
by the set of functions fgk : k = 0; :::; Kg where

gk
�
Ok
�
=

8
<
:
0 if Rk = 1 and min

�
CD4k

�
> 350 cell count/�L

1 if Rk = 1 and min
�
CD4k

�
� 350 cell count/�L

gk�1
�
Ok�1

�
if Rk = 0

(2)

2.3 The Potential Variables

To de�ne the causal e¤ects of distinct dynamic treatment regimes we use
the notion of potential, also called counterfactual, variables introduced by
Neyman (1923) and Rubin (1978) for time independent treatments and later
extended by Robins (1986, 1987) to the context of time dependent treatments.
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Associated with each vector a � (a0; :::; aK) ; with ak 2 Ak; we conceptualize
a vector of the potential outcomes and event indicators

O(a) =
�
L0; R(a0)1; T(a0)1; L(a0)1; :::; R(aK)K+1; T(aK)K+1; L(aK)K+1

�

of a subject if he/she had followed, possibly contrary to fact, the treatment
pattern A = a: The set

O =
�
O(a) : ak 2 Ak; k = 0; :::; K

	

denotes all possible vectors of potential outcomes and event indicators for
a random patient from the population. This set includes vectors O(a) that
encode potential outcomes under the scenario in which treatment alterations
occur after the event of interest, obviously a meaningless situation if the event
is death. These meaningless variables will never be used in the methods that
we will describe here and we include them in the set O only to avoid the extra
notational burden needed to exclude them from it.

The notation de�ning O makes the implicit Stable Unit Treatment Value
Assumption (SUTVA) (Cox, 1958, Rubin, 1978) that one subject�s potential
variables do not depend on the treatment patterns followed by other subjects.
SUTVA implies the following assumption connecting the vector O with one
speci�c member of O.

Consistency Assumption (C). For each k = 1; :::; K + 1; the vector
(R(Ak�1)k; T(Ak�1)k; L(Ak�1)k) is equal to (Rk; Tk; Lk) .

Assumption C stipulates that the outcomes and event indicators recorded
in the registry are the potential outcomes and event indicators corresponding
to the treatment pattern actually followed by the patient. Assumption C
implies that O = t (O; A) for the map t : (O; A) 7! O(A) that assigns to each
(O; A) the counterfactual string O(A) of O:

De�ne Ag = (Ag0; :::; A
g
K) to be the treatment sequence if, possibly contrary

to fact, the subject had obeyed the dynamic regime g: Then Og � O(Ag) is the
vector of outcomes if the subject had followed regime g:

The vectors (O; O;A) and (O; Og; Ag) are random vectors on an underlying
probability space (
;F ;P) whose probability laws we denote with P and Pg.
The marginal distribution of O; throughout denoted as PO; is the same under
either P or Pg because the potential variables in the set O are, like age and
gender, �xed patient characteristics and hence una¤ected by the treatments
actually followed by the subject. In contrast, the distribution of (O;A) and
(Og; Ag) are di¤erent. Speci�cally, if IU (�) denotes the indicator function that
takes the value 1 if � is in U and 0 otherwise then

P
�
Agk = akjO

g

k = ok; A
g

k�1 = ak�1
�
= Ifgk(ok)g (ak)
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because in the world in which everybody follows regime g; the treatment as-
signment at time k is equal to gk

�
Ok
�
with probability 1. In contrast,

P
�
Ak = akjOk = ok; Ak�1 = ak�1

�
� �k (akjok; ak�1) (3)

is the probability that in the actual world treatment ak is prescribed at time
k for a patient with observed past Ok = ok and Ak�1 = ak�1: In observational
studies, �k (akjok; ak�1) is an unknown function of ak; ok and ak�1: Of course,
the vectors O and Og; being deterministic functions of (O; A) and (O; Ag)
respectively; have di¤erent distributions: Throughout, Pmarg; Pmargg denote the
marginal distributions of (O;A) and (Og; Ag) :

3 Identi�cation of the Expected Utility if Every-

body Follows Regime g

Suppose that u (o; a) is a user speci�ed utility function of some or all the
components of (o; a) that quanti�es the health bene�ts at timeK+1 of a person
who had outcome history O = o and treatment history A = a: For instance,
in Example 1 of Section 2.2, u (O;A) may be survival time TK+1; or quality-
of-life adjusted survival time

PK+1
k=0 uk

�
CD4k; V k

�
Rk where uk

�
CD4k; V k

�
is

a user-speci�ed utility function that quanti�es the health status at time k of a
patient with recorded CD4 history CD4k and recorded log-viral load history
V k:

If Z denotes a subset or possibly all of the baseline vector L0 de�ning
subpopulations of interest; then the conditional mean

m (z; g) � E fu (Og; Ag) jZ = zg
is the expected utility for the subpopulation of subjects who have baseline
covariates Z equal to z, in the hypothetical world in which they all follow the
treatment regime g: Comparison of the expected utility m (z; g) for di¤erent
regimes g of interest quanti�es the causal e¤ects for the subpopulation with
Z = z: Thus, m (z; g) is a target parameter for inference when evaluation of
the causal e¤ect of regime g is of substantive interest.

The consistency assumption C implies that in the database we will have the
records of (Og; Ag) for all the study participants that actually obeyed regime
g (since for them, their recorded data (O;A) agrees with their potential data
(Og; Ag)): However, data on (Og; Ag) will be unavailable for those that did
not obeyed regime g: This fundamental missing data problem implies that
m(z; g) will generally not be identi�ed from Pmarg unless certain assumptions
are made.
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3.1 Identifying Assumptions

In this subsection we state and discuss two assumptions that are standard in
the causal inference literature which, when made in conjunction with assump-
tion C, imply the identi�ability of m (z; g) from the law Pmarg.

Sequential Randomization (SR): Ak is conditionally independent of O
given Ok and Ak�1; for each k = 0; :::; K.

Positivity Assumption (PO): P
�
�k
�
AgkjO

g

k; A
g

k�1

�
> 0
�
= 1 for all k =

0; :::; K.

Assumption SR would be true in a sequentially randomized trial in which
treatment at each time k was randomly assigned with probabilities depending
on the subject�s recorded history. In an observational study, the assumption
cannot be empirically tested (Robins, 1997). Thus, investigators will need to
use their subject matter knowledge to collect data on many relevant variables
so that the assumption is at least approximately correct. Murphy et al. (2001)
studied conditions for identi�cation of m (z; g) when Lk can be decomposed
into (Sk; Vk) ; u (O;A) = SK+1 and the regime g is such that gk at each time
k depends on Ok only through the subvector (S0; :::; Sk) : They showed that
in this special case, a slightly weaker version of the SR assumption which
stipulates independence of Ak solely with the S (�) parts of O, together with
the PO assumption, su¢ces for identi�cation of m (z; g) :

Assumption PO is tantamount to assuming that if in the scenario in which
regime g were to be enforced in the entire population, subjects with outcome
history ok and treatment history ak�1 were to exist and were to be assigned
to ak at time k then, in the observational world (i.e. the setting under which
the study data are collected) there must also exist subjects with outcome his-
tory ok; treatment history ak�1 who take treatment ak. The intuition behind
assumption PO is simple. If we want to learn about the distribution of the out-
come in the hypothetical world in which regime g was implemented from data
in the actual observational study, then every subject in our study population
must have a positive chance of following regime g: To see this, consider the
subpopulation, say P ; comprised of subjects that if regime g were enforced up
to time k� 1, they would follow it and would have Ogk = ok and A

g

k�1 = ak�1:
Suppose that a subset of subjects in P actually followed regime g up to time
k � 1 in the observational study. The sequential randomization assumption
implies that those from this subset that would continue to follow regime g at
time k; (i.e. those with Ak = gk (ok)) are representative of the others in this
subset that depart from regime g at this cycle. However, suppose that none in
this subset has Ak = gk (ok) : Then, in our dataset all subjects from the sub-
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population P have departed from regime g at time k or earlier and as such we
have no representative from this subpopulation that follows regime g for the
entire follow-up period. Then, unless we make further untestable assumptions
relating the distribution of O

g
in subpopulation P with the distribution of Og

in other subpopulations, we have no way to learn from the observational data
the outcome distribution that subjects from P would have if they followed
regime g for the entire follow-up period. In Section 4 of the companion paper
(Orellana, Rotnizky and Robins, 2010) we provide an example illustrating this
point.

Another point of note about assumption PO is that it is an assumption
only about the recorded treatments that represent true treatment assignments.
That is, if Rk = 0, i.e. if the absorbing event has occurred by time k; then
the assumption does not actually place restrictions on the probabilities of the
arti�cially de�ned treatment variables Ak: To see this note that if subjects with
past ok exist in both the hypothetical and the observational world, then the
next recorded treatment will automatically take the same value in both worlds
when the event indicator rk is 0 because, by convention, this next treatment
will agree with the previous recorded treatment value ak�1:

3.2 Identi�cation Lemma

Under the convention 0=0 = 0; assumption PO implies that the functions

!k (ok; ak) �
kY

j=0

Ifgj(oj)g (aj)

�j (ajjoj; aj�1)
(4)

and

!k;k+l (ok+l; ak+l) �
k+lY

j=k+1

Ifgj(oj)g (aj)

�j (ajjoj; aj�1)

are well de�ned for all k = 0; :::; K and all l > 0 such that k + l � K. In the
product (4), k can be replaced by k� � k� (ok; ak) ; the minimum between k and
the last visit time prior to the occurrence of the event of interest when Ok = ok
and Ak = ak: This is so because when rk = 0; i) Ifgk(ok)g (ak) = Ifgk(ok�1)g (ak�1)

ok;(by (1)) and, ii) �k (akj ak�1) = Ifak�1g (ak) (because, by convention, Ak at
a time k after the absorbing event has occurred is set to the last previously
prescribed treatment).

The following key Lemma due to Robins (1986, 1987) (see also Robins,
1997, and Murphy, van der Laan and Robins, 2001), implies that under as-
sumptions C, SR and PO, the law Pmargg of the outcomes and treatments that
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would be recorded in the hypothetical world in which everyone followed regime
g is identi�ed by Pmarg; the law of the data recorded in the actual study. The

proof for Lemma 1 is given in Section 2.1 of the companion paper (Orellana,
Rotnitzky and Robins, 2010).

Lemma 1. Under assumptions C, SR and PO,

1. If (O;A) is a vector in Rv; then for any Borel set B of Rv it holds that
for all k = 0; :::; K

E
�
IB (O;A)!k�1;K

�
OK ; AK

�
jOk; Ak�1 = gk�1

�
Ok�1

��

= E
�
IB (O

g; Ag) jOk; Ak�1 = gk�1
�
Ok�1

��
w.p.1.

2. Pmargg is absolutely continuous with respect to Pmarg and !K (oK ; aK) is

a version of the Radon-Nikodym derivative
�
dPmargg =dPmarg

�
(oK+1; aK) :

In part 1 of the Lemma, we used the notation

gk (ok) � (g0 (o0) ; g1 (o1) ; :::; gk (ok)) :

Part 2 of the Lemma implies that under assumptions C, SR and PO, if pmargg

and pmarg denote (versions of) the densities of Pmargg and Pmarg (with respect
to some dominating measure), then

pmargg (o; a) = !K (oK ; aK) p
marg (o; a)

or equivalently

pmargg (o; a) =

KY

j=0

Ifgj(oj)g (aj)

K+1Y

j=1

pmarg (ojjoj�1; aj�1) pmarg (o0)

where throughout we remove the subscript indicating the variables interven-
ing in any given density; the lower case letters where they are evaluated in-
dicates the random variable that the density correspond to, e.g. we write
pmarg (ojjoj�1; aj�1) instead of pmargOj jOj�1;Aj�1

(ojjoj�1; aj�1) :
In contrast, part 1 of Lemma 1 informally states that among subjects that

in the actual world followed regime g until time k�1 and had observed outcome
history ok until time k; the joint density (with respect to some dominating
measure) of the outcome and treatments (Og; Ag) that they would have if
they continued to follow regime g until time K is

KY

j=k

Ifgj(oj)g (aj)

K+1Y

j=k+1

pmarg
�
ojjoj�1; aj�1 = gj�1 (oj�1)

�
:
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Note that the counterfactual law Pmargg has the same conditional law of Oj
given Oj�1; Aj�1 as the observational law P

marg for all j = 0; :::; K + 1; but it
di¤ers from Pmarg in that the conditional probability of Aj given Oj; Aj�1 is the
mass point probability Ifgj(Oj)g (Aj) rather than the conditional probability
�j
�
AjjOj; Aj�1

�
: This replacement is not surprising since Pmargg is the law of

the treatments and outcomes in the hypothetical world in which everybody
follows treatment regime g; and in such a world, Aj is a deterministic, i.e.
non-random, function of Oj: On the other hand, sequential randomization
and positivity ensures that the conditional law of Oj given Oj�1; Aj�1 is the
same as the conditional law of Ogj given O

g

j�1; A
g

j�1.
Because Z is a subset of the baseline covariates O0 and because O0 = O

g
0;

Part 2 of Lemma 1 also implies that under the assumptions C, SR and PO,

m (z; g) � E fu (Og; Ag) jZ = zg
= E

�
!K
�
OK ; AK

�
u (O;A) jZ = z

	
(5)

=
X

ak2Ak
k=0;:::;K

Z
u (o; a)

KY

j=0

Ifgj(oj)g (aj)
K+1Y

j=1

dPmarg (ojjoj�1; aj�1) dPmarg (o0jz)

(6)

In equation (5) the numerator of !K
�
OK ; AK

�
is di¤erent from 0 for

subjects that actually followed treatment regime g and the denominator of
!K
�
OK ; AK

�
is the probability that a subject with counterfactual O follows

the treatment regime g. Thus, !K
�
OK ; AK

�
censors subjects that did not

follow regime g:The weights are just the right ones to represent the censored
subjects with the appropriate uncensored subjects. In fact they e¤ectively pro-
duces a strati�ed redistribution to the right operation in which non-compliers
to regime g are censored the �rst time they do not comply and their contribu-
tion is redistributed among those that have the same covariate and treatment
history and that remain compliers. This redistribution produces the right esti-
mand because, by the sequential randomization assumption SR, among those
with the same past, compliance status at a given time is the result of a ran-
dom mechanism that is independent of the future health outcomes that the
subjects would experience if they were to comply with regime g: The redistri-
bution process is tantamount to creating clones of each all-time complier. The
compliers and their clones form a pseudo-population with the same distrib-
ution of Og as in the study population, in which everybody followed regime
g:
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expectation on the right hand side of the equality is an integral with respect to
the measure Pmarg: The rightmost member of the equalities is the so-called G-
computation-algorithm (Robins, 1986). After recursive applications of Fubini�s
theorem (see proof of Lemma 1, Section 2.1 companion paper), this formula
has the following alternative expression

E [u (Og; Ag) jZ = z] = E [�1 (O0) jZ = z] (7)

where �1 (o0) is de�ned recursively from,

�K+1 (oK) � E
�
u (O;A) jOK = oK ; AK = gK (oK)

�

and if K > 0;

�k+1 (ok) � E
�
�k+2 (ok+1) jOk = ok; Ak = gk (ok)

�
; k = K � 1; :::; 0: (8)

Lemma 1 entails the following further elaborations, proved in Section 2.2 of
the companion paper (Orellana, Rotnitzky and Robins, 2010), on the meaning
of the function �k+1 (ok) under assumptions C, SR and PO.

a) In the hypothetical world in which treatment regime g is implemented in
the entire population, �k+1 (ok) is the utility mean among subjects who

have history O
g

k = ok up to time k; i.e.

�k+1 (ok) = E
�
u (Og; Ag) jOgk = ok

�
:

b) �k+1 (ok) is the utility mean among subjects that in the observational
world had covariate history Ok = ok at time k and that actually followed
regime g up to time k � 1 if, possibly contrary to fact, these subjects
were to continue to follow regime g from time k until time K; i.e.

�k+1 (ok) = E
�
u (Og; Ag) jOk = ok; Ak�1 = gk�1 (ok�1)

�
:

Factoring the law of (O;A) as dPmarg = LOLA where

LO =
"
K+1Y

j=1

dPmarg
Oj jOj�1;Aj�1

#
dPmargO0

and LA =
KY

j=0

�j
�
AjjOj; Aj�1

�
(9)

formula (6) implies that, under C, SR and PO, the function m (�; g) � E[u(Og;
Ag)jZ = �] depends on Pmarg only through the laws entering the LO-part of
its factorization. We will return to this point in Section 6.

The equality (6) proves that m (z; g) is identi�ed by Pmarg because the
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4 Dynamic RegimeMarginal Structural Mean

Models

In order to choose the best (enforceable) course of action for subjects with
baseline covariates Z = z, one will want to �nd the regime gxopt(z) maximizing
m(z; gx) � E [u (Ogx ; Agx) jZ = z] among all gx in a given class of candidate
regimes R = fgx : x 2 Xg : That is, one will want to �nd

xopt (z) � argmax
x2X

m(z; gx)

where throughout, without loss of generality, we assume that higher values of
the utility function are preferable.

The treatment regime gxopt(z) is the optimal treatment regime among regimes
in the class R for subjects with baseline values Z = z: Murphy (2003) and
Robins (2004) considered the problem of estimating optimal dynamic treat-
ment regimes from observational longitudinal data. In these authors� work,
the class R is very large; it is comprised of g�s such that the g�ks are arbitrary
functions of (the increasing sequence of) sigma �elds Fk = � (O�0; O

�
1; :::; O

�
k)

where the O�j �s are (possibly di¤erent) subsets of the time dependent covariates
Oj. However, as indicated in the introduction, often the class R of candidate
(enforceable) regimes is signi�cantly smaller, usually comprised of functions
gk that can depend only on limited covariate history information. For exam-
ple, consider the pressing question in AIDS research of which is the optimal
threshold CD4 count value at which to start prescribing HAART to HIV pos-
itive subjects. In this setting, interest lies in �nding the optimal regime in the
set R in which gx is de�ned as in (2) but with 350 replaced by x and X is
the interval [200; 600] : This interval includes the set of scienti�cally relevant
CD4 count/�L threshold values. The class R of candidate regimes is much
smaller than the class R� of all dynamic regimes which includes rules that can
possibly depend on past CD4 count in any complicated way. Murphy (2003)
and Robins� (2004) methods can estimate the optimal treatment regime in the
class R� but not in the class R.

In what follows we will consider estimation of xopt (z) when the set R of
regimes of interest is possibly smaller than that considered in Murphy�s and
Robins� work. We will assume that R can be indexed by the elements of a
set X that is either discrete, i.e. �nite or countable, or a subset of Rs with no
isolated points.

Although under assumptions C, SR and PO for all gx, xopt (z) is identi�ed
by Pmarg for each z; in practice we cannot hope to estimate it well with the
argmax of the individually estimated values of m (z; gx) : This is so because:
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i) when z is a vector with two or more continuous components estimation of
m (�; gx) using smoothing techniques will be practically unfeasible due to the
curse of dimensionality, and ii) even if z took values in a small �nite set, in
most applications there will be few subjects in the registry that follow any
given regime gx and hence each individual m (z; gx) will be estimated with
large variability. To ameliorate this di¢culty we propose conducting inference
under models for m (z; gx) that allow one to combine information from many
regimes gx and across subjects with di¤erent values of the baseline covariates
Z: One possibility is to consider parametric models of the form

m (z; gx) = hpar (z; x; �
�) (10)

where hpar (z; x; �) is a known smooth function of a p� 1 parameter � and ��
is unknown. For instance, in example 1 of Section 2.2 we might choose

hpar (z; x; �) = �1 (x� x�) + �2 (x� x�)2 + �3 (x� x�) z + (11)

�4 (x� x�)2 z + �5 + �6z

with x� the index of an arbitrary regime, e.g. x� = 350. This model postu-
lates that the function m (z; gx�) is equal to �5 + �6z and that the di¤erence
m (z; gx)�m (z; gx�) is a quadratic function of (x� x�) with coe¢cients which
depend linearly on z:

For the purposes of estimating xopt (z) ; model (10) is unnecessarily strin-
gent. Speci�cally, for any �xed index x� the optimal index xopt (z) satis�es

xopt (z) = argmax
x2X

fm (z; gx)�m (z; gx�)g :

Thus, for inference about xopt (z) it su¢ces to model the di¤erence m (z; gx)�
m (z; gx�). However, model (10) places parametric restrictions in the form of
the dependence on z of not only the di¤erences m (z; gx)�m (z; gx�) but also
of the function m (z; gx�) : This latter unnecessary parametric restriction may
lead to invalid inference about xopt (z) : For instance, model (11) makes the
unnecessary assumption that m (z; gx�) is a linear function of z: If in fact,
m (z; gx�) is not linear in z; then estimators of xopt (z) computed under this as-
sumption will generally be inconsistent. This remark suggests that in order to
reduce the chance of invalid inference about xopt (z) due to model misspeci�ca-
tion and to retain the possibility of borrowing information across treatments
and baseline covariates, we consider (following Robins, 1999) �exible semi-
parametric models of the form

m (z; gx) = hsem (z; x; �
�) + q (z) (12)
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where q (�) is an unknown function of z only, �� is an unknown p�1 parameter
and for each z and x; hsem (z; x; �) is a known smooth function of � satisfying
hsem (�; x�; �) = 0 for the index x� of an arbitrary, user-speci�ed, regime. For
example,

hsem (z; x; �) = �1 (x� x�)+�2 (x� x�)2+�3 (x� x�) z+�4 (x� x�)2 z (13)

The condition hsem (�; x�; �) = 0 implies that q (z) is equal to m (z; gx�) ; the
expected utility function for the regime x�; and hence that hsem (z; x; �

�) =
m (z; gx)�m (z; gx�) : Thus, to estimate xopt (z) it su¢ces to estimate the value
of x maximizing hsem (z; x; �

�) :
So long as hsem (z; x; �) = 0 for some value of the vector �; model (12) is

guaranteed to be correctly speci�ed under the null hypothesis that all treat-
ments regimes gx are equally e¤ective. Thus, inference under model (12) are
guaranteed to result in valid � level tests of indi¤erence between treatment
regimes. In contrast, inference under model (10) do not generally share this ro-
bustness property. Which model (10) or (12) should one adopt for estimation
of �; and hence of xopt (z) ; raises the usual bias/e¢ciency trade-o¤ consider-
ations: if model (10) is indeed correctly speci�ed then, in general, estimators
of xopt (z) that are nearly e¢cient under model (10) will be more e¢cient than
estimators of xopt (z) that are nearly e¢cient under model (12) ; however the
former will be inconsistent if model (10) is incorrect and model (12) is correct
while the latter will be consistent under this circumstance. In our opinion,
unless �rm scienti�c background warrants model (10) ; model (12) should be
preferable for inference about xopt (z) as it provides the data analyst a better
chance to carry out valid inference about xopt (z).

Relaxing the positivity assumption: Under (10) or (12) ; m (z; gx) ;
and consequently xopt (z) ; may be identi�ed by P

marg for all x 2 X even when
the positivity assumption PO fails for some gx. For instance, under model (10)
identi�cation of �� su¢ces for identi�cation of m (z; gx) for all x 2 X . Yet,
for example, when hpar (z; x; �) is de�ned as in (11) ; �

� is identi�ed provided
m (�; gx) is identi�ed for three di¤erent values of x in X . Thus, to identify
m (z; gx) for all x 2 X it su¢ces that the PO assumption is satis�ed for all
gx with x 2 Xpos where Xpos is any subset of X comprised of at least three
di¤erent x values. Throughout, for any subset C of X , PO(C) will stand for
the assumption that stipulates that PO holds when g is replaced by gx for all
x 2 C: Furthermore, we will let Xpos denote any subset of X such that when
PO(Xpos) holds, then �� is identi�ed. We will assume that Xpos is discrete
(�nite or countable) or otherwise that it is a subset of Rs without isolated
points.
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We refer to models de�ned by the C, SR and PO(Xpos) assumptions and the
restrictions (10) = (12) as dynamic regime parametric/semiparametric marginal
structural mean models (DYR-Par-MSM and DYR-Sem-MSM).

5 Inference

By de�nition, under model DYR-Par-MSM, assumptions C, SR and PO(Xpos)
hold. Thus, in view of (5), the model is equivalently de�ned by these assump-
tions and the restriction

E
�
!xK
�
OK ; AK

�
fu (O;A)� hpar (x; Z; ��)g jZ

�
= 0 for all x 2 Xpos (14)

where !xK
�
OK ; AK

�
is de�ned like !K

�
OK ; AK

�
in (4) but with gx instead of

g:
Likewise, model DYR-Sem-MSM is de�ned by assumptions C, SR and

PO(Xpos) and

E
�
!xK
�
OK ; AK

�
fu (O;A)� hsem (x; Z; ��)g jZ

�
= q (Z) (15)

for all x 2 Xpos; q (�) unknown.

Assumptions C and SR do not impose restrictions on the law Pmarg of
(O;A) (Gill, van der Laan and Robins, 1997). Thus, as models for Pmarg;
models DYR-Par-MSM and DYR-Sem-MSM are de�ned as the set of laws
Pmarg satisfying the PO(Xpos) assumption and the restrictions (14) and (15)
respectively. Note that, although not immediately apparent, (15) does indeed
impose restrictions on Pmarg because the random variables !xK

�
OK ; AK

�
�

fu (O;A)� hsem (x; Z; ��)g depend on x yet the condition (15) imposes that
they have the same conditional expectation given Z regardless of the value of
x:

Because the data available to us are a random sample of (O;A) from the
law Pmarg; then to conduct inference about �� we can ignore the fact that ��

has a causal interpretation, and regard it simply as a parameter in the model
for Pmarg determined by the restriction (14) or (15) under consideration and
the PO(Xpos) assumption. We take this point of view in our construction of
estimators of �� and denote the models for the law Pmarg determined by the
PO(Xpos) assumption and restriction (14) = (15) as DYR-Par-MSM-obs and
DYR-Sem-MSM-obs models:

Restrictions (14) and (15) are not directly applicable for construction of
estimators of �� because the weights !xK

�
OK ; AK

�
depend on the unknown
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ok;conditional treatment probabilities �k (akj ak�1) ; k = 0; :::; K; de�ned in (3)
which cannot be non-parametrically estimated well using smoothing techniques
due to the curse of dimensionality. One strategy for dimension reduction, that
we adopt in this paper, is to consider estimation of �� under models DYR-
Par-MSM-obs� and DYR-Sem-MSM-obs� de�ned like DYR-Par-MSM-obs and
DYR-Sem-MSM-obs but with the additional assumption

ok;�k (akj ak�1) = �k (akjok; ak�1; �) ; k = 0; :::; K (16)

where for each ak; ok and ak�1; �k (akjok; ak�1; �) is a known smooth function
and � is an unknown q� 1 parameter vector. For instance if Ak = f0; 1g ; we
may consider a logistic regression model

�k (akjok; ak�1; ) =
(

expf0kek(ok;ak�1)akg
1+expf0kek(ok;ak�1)g if rk = 1

Ifak�1g (ak) if rk = 0

for some q � 1�vector-valued, user-speci�ed, function ek (ok; ak�1) and 0 =�
0; :::; q�1

�
: The choice of Ifak�1g (ak) for �k when rk = 0 is made in accor-

dance with our convention for assigning values to Ak corresponding to times
k after the event has occurred, which stipulates precisely that Ak is equal to
Ak�1 if the event has already occurred by time k. We de�ne �k in this way
so that when we compute the denominator of !xK

�
OK ; AK

�
from the data

recorded in the study database, the factors �k
�
AkjOk; Ak�1; 

�
for the times k

after the event has occurred will be equal to 1, and hence will not contribute
to the calculation of !xK

�
OK ; AK

�
:

5.1 Estimators of �� and of xopt (z)

To de�ne our estimators of �� we will use the following conventions: the
expression ��a:e: (Xpos) next to a statement stands for the assertion that the
statement holds for all x in Xpos except on a subset of Xpos of ��measure 0,
where � is the counting measure if Xpos is discrete (�nite or countable) and �
is the Lebesgue measure on Rs otherwise; G stands for the sigma �eld of all
subsets of Xpos if Xpos is discrete, and for the Borel sigma-�eld of Xpos otherwise;
PX denotes a measure on (Xpos;G) which is mutually absolutely continuous
with the restriction �Xpos of � to Xpos. Even though our derivations will not
require that PX be a speci�c one, when Xpos is bounded, we will take PX to be
the uniform measure. The formalism of de�ning a generic PX is needed to be
able to accommodate settings with unbounded sets Xpos. Nevertheless we will
argue in Remark 2 below that the choice of PX is essentially inconsequential.
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For any function b (x; z) ; we de�ne

bpar (x; z) � b (x; z) and bsem (x; z) � b (x; z)�
Z

Xpos

b (x; z) dPX (x) :

Because our estimators and their properties can be derived arguing essen-
tially identically in both models DYR-Par-MSM-obs� and DYR-Sem-MSM-
obs�, then to avoid redundancy, throughout we use the subscript � in every
instance in which the de�nitions and results being derived hold indistinctly if
� is replaced by par or by sem:

For � = par and � = sem de�ne

U� (x; �; b) � b� (x; Z) fu (O;A)� h� (x; Z; �)g

S� (�; ; b) �
Z

Xpos

!xK ()U� (x; �; b) dPX (x)

and

Saug (; d) �
KX

k=0

X

ak2Ak

�
Ifakg (Ak)� �k

�
akjOk; Ak�1; 

�	
dk
�
Ok; ak; Ak�1

�

=
KX

k=0

�
dk
�
Ok; Ak

�
� E

�
dk
�
Ok; Ak

�
jOk; Ak�1

�	

where b (�; �) is any, possibly vector valued, function for which the integrals
where it intervenes are well de�ned, dk (�; �) is an arbitrary, possibly vector-
valued, function, E [�j�] denotes, for the adequate k; conditional expectation
under the law �k(akj ok; ak�1; ),

!xk (ok; ak; ) �

kY

j=0

Ifgx;j(oj)g (aj)

kY

j=0

�j (ajjoj; aj�1; )
; 0 � k � K

and
!xk () � !xk

�
Ok; Ak; 

�
:

The following Lemma, whose proof is given in Section 2.3 of the companion
paper (Orellana, Rotnitzky and Robins, 2010), provides the key result for the
derivation of our estimators.

Lemma 2. Under (16)
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1. E [Saug (
�; d)] = 0 for all functions d;

2. restriction (14) holds �� a:e: (Xpos) if and only if E [Spar (��; �; b)] = 0
for all b and,

3. restriction (15) holds �� a:e: (Xpos) if and only if E [Ssem (��; �; b)] = 0
for all b.

We are now ready to describe our estimators of �� and of xopt (z) : Our
estimators require two inputs from the data analyst, the �rst input is a (col-
umn) vector-valued function b (x; z) of the same dimension as ��; the second
input is a collection of (column) vector-valued functions fdk (ok; ak)gk=0;:::;K ,
each function also being of the same dimension as ��: Each choice of b and
fdkgk=0;:::;K will result in a di¤erent estimator which we denote with b�par (b; d)
or b�sem (b; d) depending on the model under consideration. Di¤erent choices
of b and fdkgk=0;:::;K result in estimators with limiting mean zero normal dis-
tributions but with di¤erent asymptotic variances. The following algorithm
describes the steps required to compute b�par (b; d) and b�sem (b; d).

Stage 1: compute the maximum likelihood estimator b of � solving

Pn fS ()g = 0 where S () � @
@
LA (), LA () �

KY

j=0

�j
�
AjjOj; Aj�1; 

�
:

Stage 2: if model DYR-Par-MSM-obs� was assumed, compute b�par (b; d)
solving

Pn fSpar (�; b; b)� Saug (b; d)g = 0 (17)

and if model DYR-Sem-MSM-obs� was assumed compute b�sem (b; d) solving

Pn fSsem (�; b; b)� Saug (b; d)g = 0: (18)

In the preceding algorithm we adopted the convention, that we will also
adopt throughout, that for n i.i.d: copies V1; :::; Vn of any random vector V;
Pn (V ) stands for n

�1
Pn

i=1 Vi:
The special case in which the functions dk are all identically 0 yields

Saug (b; d) = 0 so the estimators b�par (b; d) and b�sem (b; d) solve respectively
the reduced equations

Pn fSpar (�; b; b)g = 0 and Pn fSsem (�; b; b)g = 0: (19)

To simplify notation, we will use b�par (b) and b�sem (b) to denote the estimators
solving these reduced equations. Lemma 2 implies that when model (16)
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is correctly speci�ed b�� (b; d) and b�� (b) are, under regularity conditions and
the corresponding model (10) or (12), consistent and asymptotically normal
estimators of ��.

The left hand sides of the equations in displays (17) and (18) are the dif-
ference of two terms, the term Pn fSpar (�; b; b)g and the term Pn fSaug (b; d)g.
The �rst term is a sum (or integral) over x 2 Xpos of x�speci�c estimat-
ing functions Pn f!xK (b)Upar (x; �; b)g and Pn f!xK (b)Usem (x; �; b)g : These
x�speci�c estimating functions are sums only over subjects whose data are
consistent with having followed regime gx and their contribution to the sum
is equal to the functions Upar (x; �; b) and Usem (x; �; b), weighted by the in-
verse of the product of the occasion-speci�c estimated conditional probabilities
that at each occasion they took the treatment they actually took given their
recorded history of outcomes and treatments at that occasion. Subjects that
did not follow regime gx contribute indirectly to these x�speci�c estimating
functions through the estimate b of  in the model for the treatment probabil-
ities. In contrast, the second term Pn fSaug (b; d)g is a sum over all subjects,
regardless of whether or not they followed any given regime gx: This term does
not depend on �; but with clever choices of functions fdkgk=0;:::;K , its inclu-
sion can help improve the e¢ciency with which �� is estimated. This point is
elaborated in Section 5.3.

Under (10) and (12) ; the functions Upar (x; �; b) and Usem (x; �; b) respec-
tively would have mean zero at �� in a study in which subjects are randomized
to the sequence of treatments Ak; k = 0; :::; K; at baseline (with randomization
probabilities that may depend on Z) but do not generally have mean zero in an
observational study. Weighting by !xK

�
OK ; AK

�
creates pseudo-samples from

a pseudo-population in which all subjects followed regime gx: Thus, weighting
by an estimator of !xK

�
OK ; AK

�
and summing over all x 2 Xpos; implicitly

removes bias by creating, for large samples, a pseudo-sample from a pseudo-
population in which subjects were assigned with equal probability to each of
the regimes gx; x 2 Xpos (Hernán, Brumback and Robins, 2000).

In accordance with similar terminology used in estimation of standard,
i.e. non-dynamic, marginal structural models (Robins, 1999) we refer to the

estimator b�� (b) as an inverse probability of treatment (IPTW) estimator and to
the estimator b�� (b; d) (with non-zero d�ks) as an augmented inverse probability
of treatment (AIPTW) estimator.

A point of note is that a given subject may follow more than one regime gx
and thus contribute a term to more than one x�speci�c estimating function
Pn f!xK (b)U� (x; �; b)g. This is a special feature of AIPTW estimating equa-
tions in dynamic-regime marginal mean models not shared by the AIPTW
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estimating equations in standard marginal mean models (see continuation of
example 1 below for an illustration of this point).

Given b�� (b; d) ; we estimate xopt (z) with xopt
�
z; b�� (b; d)

�
where for each

�;
xopt (z; �) � argmax

x2X
h� (z; x; �) : (20)

Remark 2: The choice of measure PX is inconsequential in the sense

that the class of estimators
n
b�� (b; d) : b and d unrestricted

o
is the same for

any pair of mutually absolutely continuous measures PX and P
0
X : This holds

because the estimator b�� (b; d) that uses PX is algebraically identical to the

estimator b�� (b0; d) where b0 = b� dP 0X=dPX .
Example 1 (continuation): returning to example 1 of Section 2.2 sup-

pose that our goal is to �nd the optimal CD4 level at which to start treating
HIV+ subjects with HAART. Suppose that for each integer x in the inter-
val [200; 600] there exist subjects in the population which started HAART as
soon as it was detected that their CD4 count fell below x. In such case Xpos
is the set of integers in [200; 600] while X is the entire interval [200; 600] : In
this example, we take PX to be the uniform probability over the integers in
[200; 600]; so integrals over Xpos with respect to PX are simply averages over
the integers x in [200; 600]. Suppose that the endpoint of interest, i.e: the
utility, is de�ned to be equal to the time since baseline to the �rst occurrence
of either death from any cause or diagnosis of clinical AIDS, if at least one
of these two events occurred during the 37 months of follow-up, and to be
equal to 72 months otherwise. The value of 72 months is chosen to represent
the expected time since baseline to the occurrence of death or �rst diagnosis
of clinical AIDS for subjects that are still alive and AIDS free at month 37.
Thus, we write

u (O;A) = 72RK+1 + TK+1 (1�RK+1)
Furthermore, suppose that hpar (z; x; �) and hsem (z; x; �) are like in (11) and
(13). To compute IPTW and AIPTW estimators of �� we need to postu-
late �rst a parametric model �k (akjok; ak�1; ) for the treatment probabilities
�k (akjok; ak�1). For example, we may choose

�k (akjok; ak�1; ) =

8
><
>:

expf0kek(ok;ak�1)akg
1+expf0kek(ok;ak�1)g if rk = 1 and ak�1 = 0

Ifak�1g (ak) if rk = 1 and ak�1 = 1
Ifak�1g (ak) if rk = 0
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where

ek
�
Ok; Ak�1

�
=

�
1; school, hmo, druguse, year, age, age2;

k; k2; k3; CD4k; CD4
2
k; CD4

3
k; Vk; V

2
k ; V

3
k

�

with school, hmo and druguse being baseline binary indicators of completion
of high school, a¢liation with an HMO and drug use respectively, year is the
calendar year of start of follow-up, CD4k and Vk; recall, are the CD4 count
and the log-viral load at time k respectively: The choice of �k when rk = 1
and ak�1 = 1 re�ects the fact that in our example the probability that Ak = 1
is 1 when Rk = 1 and Ak�1 = 1 because we have assumed that once an
assignment to take HAART was made, it remained in place for the rest of the
follow-up period. As discussed earlier in this Section, the choice of Ifak�1g (ak)
when rk = 0 is made so that there is no contribution to the product in the
denominator of !K

�
OK ; AK

�
after the event of interest has occurred.

Consider next the two stages of the algorithm to compute the IPTW and
AIPTW estimators. In stage 1, the estimator b of � is e¤ectively computed
by pooled logistic regression with multiple contributions from each subject.
Subject i contributes to the pooled logistic regression with the outcome Ak;i
and the covariates ek

�
Oki; Ak�1i

�
for all times k such that a) Rk;i = 1 and b)

Ak�1;i = ::: = A0;i = 0:
To carry out stage 2 for IPTW estimation we must input a vector function

b (z; x). A simple choice for b in the model DYR-Par-MSM is b (z; x) =
@
@�
hpar (z; x; �) which under model (11) yields

b (z; x) =
�
x� x�; (x� x�)2 ; (x� x�) z; (x� x�)2 z; 1; z

�
:

The IPTW estimator of � = (�1; :::; �6) in model (11) that uses this choice of
b, then solves

0 =
nX

i=1

2
666
666
666
4

600X

x=200

!xK;i (b)

0
BBB
BBB
BBB
@

x� x�
(x� x�)2
(x� x�)Zi
(x� x�)2 Zi

1
Zi

1
CCC
CCC
CCC
A
�

�
72RK+1;i + TK+1;i (1�RK+1;i)� �1 (x� x�)� �2 (x� x�)2

��3 (x� x�)Zi � �4 (x� x�)2 Zi � �5 � �6Zi
	�

where x� is, say, 350.
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If, instead, we wish to conduct estimation under the more �exible model
DYR-Sem-MSM, then the choice b (z; x) = @

@�
hsem (z; x; �) yields under model

(13) ; b (x; z) =
�
x� x�; (x� x�)2 ; (x� x�) z; (x� x�)2 z

�0
. The IPTW esti-

mator of � = (�1; :::; �4) now solves,

nX

i=1

2
666
64

600X

x=200

!xK;i (b)

0
BBB
B@

x� x
(x� x�)2 � (x� x�)2

(x� x)Zin
(x� x�)2 � (x� x�)2

o
Zi

1
CCC
CA

� f72RK+1;i + TK+1;i (1�RK+1;i)� �1 (x� x�)
��2 (x� x�)2 � �3 (x� x�)Zi � �4 (x� x�)2 Zi

	�
= 0

where an overbar � stands for average over the integers x in [200; 600]:
To construct augmented IPTW estimators of �� we must choose functions
ok;fdk ( ak)gk=0;:::;K for each k: We postpone the discussion and illustration of

convenient choices of dk to Section 5.3.1.
Finally to illustrate the point made earlier that a subject may contribute to

several x� speci�c estimating functions, consider a subject i whose CD4 count
decreased over time, who started HAART at a CD4 count of 250 in some visit
and whose previous visit CD4 count was 300. Then this subject�s observed
data was consistent with having followed regime gx for all x 2 [250; 300):
For such subject, !xK;i (b) 6= 0 if x 2 [250; 300) and !xK;i (b) = 0 otherwise.
Thus, subject i enters in the estimating equation for � repeatedly over the
sum on x; once for every regime gx his data was consistent with. Furthermore,
suppose that the subject died in the middle of the third month. Then for
this subject RK+1;i = 0 and TK+1;i = 2:5 so his outcome is 2:5: In addition,
Ifgx;k(Ok;i)g (Ak;i) =�k

�
Ak;ijOk;i; Ak�1;i

�
= 1 for k = 3; :::; K and consequently,

!xK;i (b) = !x2;i (b) :�

5.2 Asymptotic Distribution of the IPTW and AIPTW

Estimators of ��

In this section we will derive the asymptotic distribution of the IPTW and
AIPTW estimators of �� proposed in the preceding subsection under the as-
sumptions of model DYR-Par-MSM-obs�. Our results will require that we
make the following strengthening of the PO(Xpos) assumption which states
that treatment probabilities of treatments consistent with regimes gx not only
are positive but also stay bounded away from zero.
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Strengthened PO(Xpos) assumption: there exists � > 0 such that for
all x 2 Xpos; and all k = 0; :::; K; P

�
�k
�
AgkjO

g

k; A
g

k�1

�
> �

�
= 1:

Under regularity conditions and the strengthened PO(Xpos) assumption,
standard linearization arguments imply that when model DYR-�-MSM-obs�
holds, p

n
n
b�� (b; d)� ��

o
=
p
nJ� (b)

�10
Pn fM�

� (b; d)g+ op (1) (21)

where
M�
� (b; d) �M� (b; d)� E

�
M� (b; d)S

0


	
E
�
S
2

	�1
S; (22)

M� (b; d) � S� (��; �; b)� Saug (�; d) ; S � S (�) ;

J� (b) � �E

8
<
:
@

@�

Z

Xpos

b (x; Z)h� (x; Z; �) dPX (x)

���
���
�
�=��

9
=
;

and for any V; V 
2 � V V 0: Consequently,
p
n
n
b�� (b; d)� ��

o
! N (0;
� (b; d)) (23)

where

� (b; d) = J� (b)

�10E
�
M�
� (b; d)


2� J� (b)�1

which can be consistently estimated with bJ� (b)0 Pn
�
cM�
� (b; d)


2
�
bJ� (b) where

bJ� (b) and M�
� (b; d) are computed like J� (b) and M

�
� (b; d) but with the pop-

c
ulation mean E replaced by the empirical mean Pn and with all quantities

evaluated at
�
b�� (b; d) ; b

�
instead of at (��; �) :

In the following sections we will derive the optimal functions bopt and d
b
�;opt;k

for the functions dk; k = 0; :::; K; that yield b�� (bopt; d�;opt) with smallest as-
ymptotic variance among all AIPTW estimators b�� (b; d) under model DYR-�-
MSM-obs�: Our plan is as follows. In the next subsection we will derive, for
each �xed b; the optimal choices db�;opt;k for the functions dk; k = 0; :::; K; in the
sense that


� (b; d) � 
�
�
b; db�;opt

�
for all d (b �xed)

where for any squared matrices 
1 and 
2;
1 � 
2 stands for 
1 � 
2 is
positive semide�nite. The optimal functions db�;opt are not available for data
analysis because they depend on the unknown law of the data, however, we
will indicate how to use the knowledge of their functional form to derive locally
e¢cient estimators of �� in model DYR-�-MSM-obs� for the class of AIPTW
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estimators that use a �xed b (a property that is de�ned at the end of Sec-
tion 5.3.1). In a subsequent section, we will show that these locally e¢cient
estimators are also double-robust, a property that we will de�ne then.

In Section 7 we will derive the optimal function b�;opt in the sense that


�
�
b; db�;opt

�
� 
�

�
b�;opt; d

b�;opt
�;opt

�
for all b: (24)

Thus, under model DYR-�-MSM-obs�; the choice b�;opt; d�;opt;k where d�;opt;k =
d
b�;opt
�;opt;k is optimal in the sense that

b�� (b�;opt; d�;opt) has the smallest asymptotic
variance among the asymptotic variances of all b�� (b; d) : These optimal func-
tions are also not available for data analysis as they depend on the unknown
observed data law, but we will show how to exploit the knowledge of their form
to compute estimators of �� that (i) are locally e¢cient under model DYR-�-
MSM-obs� for the class of all AIPTW estimators and (ii) are double-robust.

5.3 E¢cient Estimation for a Fixed Choice of b

To derive the optimal functions db�;opt;k; k = 0; :::; K; we reason as follows.

1. Since J� (b) does not depend on d; d
b
�;opt must minimize E

�
M�
� (b; d)


2�

over all d:

2. De�ne the set

� � fSaug (�; d) : dk; k = 0; :::; K arbitrary scalar functionsg

=

(
KX

k=0

�
dk
�
Ok; Ak

�
� E�

�
dk
�
Ok; Ak

�
jOk; Ak�1

�	
:

dk; k = 0; :::; K; are arbitrary scalar functionsg .

The second expression for the set indicates that � is comprised by
sums from k = 0 to K of functions of

�
Ok; Ak

�
with mean zero given�

Ok; Ak�1
�
under �k (akjok; ak�1; �) :

3. Suppose that model (16) is correctly speci�ed. Consider the score vec-
tor S for  evaluated at the true parameter 

�: The jth entry of S
is equal to

PK
k=0 @ log �k

�
AkjOk; Ak�1; 

�
=@j

���
=�

. Since each term

@ log �k
�
AkjOk; Ak�1; 

�
=@j

���
=�

is a function of
�
Ok; Ak

�
with mean

zero given
�
Ok; Ak�1

�
; then every entry of the vector S is an element

of the set �:
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4. It follows from item 3 that E
�
M� (b; d)S

0


	
E
�
S
2

	�1
S , being a vector

whose entries are linear combinations of the entries of S; can indeed be
written as Saug (

�; dML) for some vector valued functions fdML;kgk=0;:::;K
of the same dimension as ��:

5. If we could �nd Saug
�
�; db�;opt

�
such that each entry of the column vector

M�
�

�
b; db�;opt

�
= S� (�

�; �; b) � Saug
�
�; db�;opt

�
was uncorrelated with all

the elements of �; then we would have that

E
�
M�
� (b; d)M

�
�

�
b; db�;opt

�0�
= E

�
M�
�

�
b; db�;opt

�
2�
(25)

and consequently we would obtain the desired inequality

E
�
M�
� (b; d)


2�� E
�
M�
�

�
b; db�;opt

�
2�
=

E
��
M�
� (b; d)�M�

�

�
b; db�;opt

�	
2� � 0:

That (25) is a consequence of M�
�

�
b; db�;opt

�
and � being uncorrelated

follows from

M�
� (b; d) = S� (�

�; �; b)� Saug (�; d)� E
�
M� (b; d)S

0


	
E
�
S
2

	�1
S

= S� (�
�; �; b)� Saug (�; d)� Saug (�; dML)

=M�
�

�
b; db�;opt

�
+

+
�
Saug

�
�; db�;opt

�
� Saug (�; d)� Saug (�; dML)

	

where the �rst equality follows by (22) and the second by item 4. In the
third equality the term between curly brackets is in � and hence it is
uncorrelated with M�

�

�
b; db�;opt

�
; thus yielding (25) :

6. A random vector Saug
�
�; db�;opt

�
with the properties of item 5 indeed

exists. To �nd it we reason as follows. The set � is a linear and closed
subspace of the (Hilbert) space of all mean zero, �nite variance, random
functions of (O;A) with covariance inner product. By the projection
theorem (Luenberger, Ch. 3, Theorem 2, 1969), for any q � 1 random
vector Q; there exists a (mean zero, �nite variance) q� 1 random vector
denoted � [Qj�], such that each entry of � [Qj�] is in � and such that
Q�� [Qj�] is uncorrelated with all the elements of �: The vector � [Qj�]
is called the projection of Q onto �: Because of the special form of � (�
is a direct sum of K subspaces, the kth one being the set of functions of�
Ok; Ak

�
with mean zero given

�
Ok; Ak�1

�
) it is a standard calculation
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to compute � [Qj�] for any Q: For completeness, in Section 2.4.1 of the
companion paper (Orellana, Rotnitzky and Robins, 2010) we provide
this calculation and show that

� [Qj�] =
KX

k=0

�
E
�
QjOk; Ak

�
� E

�
QjOk; Ak�1

�	
: (26)

Applying this result to Q = S� (�
�; �; b) ; another straightforward cal-

culation, also derived in Section 2.4.3 of the companion paper, gives that

� [S� (�
�; �; b) j�] = Saug

�
�; db�;opt

�
(27)

where db�;opt;k (ok; ak) � db�;��;�;opt;k (ok; ak), and where for any �; ;

db�;�;;opt;k (ok; ak) �
Z

Xpos

b� (x; Z)!
x
k (ok; ak; ) (28)

�
�xk+1 (ok)� h� (x; Z; �)

	
dPX (x) ;

with �xk de�ned like �k in (8) but with gx instead of g.

The preceding argument shows that inclusion of the augmentation term
Saug (; d), with adequately chosen functions dk; helps improve the e¢ciency
with which one can estimate ��: estimating �� with a non-augmented esti-
mating equation is equivalent to solving equations (17) using dk = 0 for all k;
but these null functions are generally not the optimal choices for dk.

5.3.1 Locally E¢cient Estimation for a Fixed Choice of b

The functions �xk+1 are unknown and thus the functions d
b
�;�;;opt;k are not

available for data analysis. To obtain estimators of �� with good e¢ciency
properties we may consider replacing the unknown functions �xk+1 with esti-
mators of them under some working model. Speci�cally, we propose carrying
out the following algorithm:

a. Postulate a model

�xk+1 (ok) = �
x
k+1 (ok; �

�) ; k = 0; :::; K; (29)

where for each x and ok; �
x
k+1 (ok; �) is a smooth function and � � is an

r � 1 unknown parameter vector.
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b. Estimate � � with b� solving PnS� (�) = 0 where

S� (�) �
Z

Xpos

S� (x; �) dPX (x)

and

S� (x; �) �"
KY

j=0

Ifgx;j(Oj)g (Aj)
#
�
u (O;A)� �xK+1

�
OK ; �

�	 @�xK+1
�
OK ; �

�

@�
+

K�1X

k=0

"
kY

j=0

Ifgx;j(Oj)g (Aj)
#
�
�xk+2

�
Ok+1; �

�
� �xk+1

�
Ok; �

�	 @�xk+1
�
Ok; �

�

@�
:

c. Estimate the function db�;�;;opt;k with d
b
�;�;;b�;opt;k where for each � ; d

b
�;�;;� ;opt;k

ok; �) instead of the unknownis de�ned like db�;�;;opt;k but with �
x
k+1 (

�xk+1 (ok) :

d. Solve the estimating equation

Pn

�
S� (�; b; b)� Saug

�
b; db�;�;b;b�;opt

��
= 0

and call its solution (in a slight abuse of notation) b��
�
b; bdb�;opt

�
.

The form of the estimating function in step b) is motivated by the de�nition
(8) of the function �xk+1 (ok) which implies that when model (29) is correctly
speci�ed,

E
�
�xk+2

�
Ok+1; �

�
�
jOk; Ak = gxk

�
Ok
��
= �xk+1

�
Ok; �

�
�

and consequently,

E

"(
@�xk+1

�
Ok; �

�

@�

���
���
�
�=��

)(
kY

j=0

Ifgx;j(Oj)g (Aj)
)

�
�
�xk+2

�
Ok+1; �

�
�
� �xk+1

�
Ok; �

�
�	�

= 0:

Then S� (�
�) has mean zero and hence PnS� (�) = 0 is an unbiased estimating

function for � �.
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The implementation of the estimator b��
�
b; bdb�;opt

�
is facilitated by noting

that the estimating function for b��
�
b; bdb�;opt

�
simpli�es considerably. Speci�-

cally, in Section 2.4.3 of the companion paper (Orellana, Rotnitzky and Robins,
2010) we show that S� (�; ; b)� Saug

�
; db�;�;;� ;opt

�
can be re-rewritten as

Z

Xpos

b (x; Z)S�;� (x; �; ; �) dPX (x) (30)

where

S�;� (x; �; ; �) � !xK () fu (O;A)� h� (x; Z; �)g (31)

�
KX

k=0

�
!xk ()� !xk�1 ()

	�
�xk+1

�
Ok; �

�
� h� (x; Z; �)

	

and !x�1 () � 1: Thus, b��
�
b; bdb�;opt

�
solves

Pn

"Z

Xpos

b (x; Z)S�;� (x; �; b;b�) dPX (x)
#
= 0:

Standard linearization arguments imply that when model (16) is correctly
speci�ed, then under regularity conditions and the strengthened PO(Xpos) as-
sumption, p

n
n
b��
�
b; bdb�;opt

�
� ��

o
! N

�
0;
�

�
b; db�;lim

��

where db�;lim is de�ned like d
b
�;opt but with �

x
k+1

�
Ok
�
replaced by �xk+1

�
Ok; � lim

�

with � lim the probability limit of b� : In particular, if in addition to model
(16) ; model (29) is also correctly speci�ed, then the asymptotic variance of
b��
�
b; bdb�;opt

�
is equal to 
�

�
b; db�;opt

�
:

In summary, when model (16) holds, b��
�
b; bdb�;opt

�
satis�es:

a) it is a consistent and asymptotically normal estimator of �� regardless
of whether or not model (29) is correctly speci�ed, and

b) if model (29) is correctly speci�ed, it has the smallest asymptotic variance
among all estimators in the class

Tb =
n
b�� (b; d) : dk arbitrary, k = 0; :::; K

o
:
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In general, suppose that E is a class of consistent and asymptotically normal
estimators of a parameter � under all laws P in M. Suppose that for each
P 2 M, 	(P ) is a lower bound for the variance of the limiting distributions
(under P ) of the estimators in E : Suppose that there exists an estimator in
the class E whose limiting distribution has variance equal to 	(P ) when P 2
M0 � M. Such estimator is called locally e¢cient in modelM for the class
E at the submodel M0: According to this de�nition, if DYR-�-MSM-obs��
denotes the model that imposes the restrictions of model DYR-�-MSM-obs� and
additionally imposes the strengthened PO(Xpos) assumption, the preceding
properties (a) and (b) imply that the estimator b��

�
b; bdb�;opt

�
is locally e¢cient

in model DYR-�-MSM-obs�� for the class Tb at the submodel of DYR-�-MSM-
obs�� that imposes the additional restriction (29).

6 Double-Robust Estimation

In the preceding subsection we have seen that the estimator b��
�
b; bdb�;opt

�
was

consistent and asymptotically normal for �� if model (16) was correctly spec-
i�ed regardless of whether or not model (29) was correct. In fact, the re-

verse is also true: b��
�
b; bdb�;opt

�
is consistent and asymptotically normal for ��

if model (29) is correctly speci�ed regardless of whether model (16) is cor-

rect or not. This remarkable property of b��
�
b; bdb�;opt

�
is usually referred to as

double-robustness. More precisely, we say that b��
�
b; bdb�;opt

�
is double-robust in

the union model DYR-�-MSM-obs��[ DYR-�-MSM-obsy where DYR-�-MSM-
obsy is the model de�ned by the restrictions of model DYR-�-MSM-obs, the
additional restriction (29) and regularity conditions required to ensure the

convergence in law of b��
�
b; bdb�;opt

�
:

The double-robustness property of b��
�
b; bdb�;opt

�
follows after applying the

general result in Robins, Rotnitzky and van der Laan (Sec 7, Lemma 1, 2000)
for deriving double-robust estimators of parameters of models with factorized
likelihoods. The conditions of their result are satis�ed in our problem and
they specialize to the following two conditions,

1. the likelihood factorizes into the product of two parts, LO and LA, and
the parameter of interest � depends on the law of the observed data Pmarg

only through laws entering one component, the LO�part in our problem,
of the factorization (see display (9) and the comment thereafter), and
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2. there exists a function, in our case S� (�; ; b), that

(a) depends on the laws for the LA-part of the likelihood through a
parameter  indexing a model for them,

(b) depends on the laws for the LO-part of the likelihood only through
� and

(c) it has mean zero at �� when it is evaluated at the true value � of
 when the model it indexes is correct:

The result in Robins et al. (2000) provides a prescription on how to obtain,
from S� (�; ; b), a new estimating function, say T (�; ; � ; b) ; that depends on
�;  and on a parameter � indexing a model for the laws in LO with the
following properties:

I. T (��; �; � ; b) has mean zero if the model for the LA-part of the likelihood
is correct regardless of the correct or not speci�cation of the model for
the LO-part, and

II. T (��; ; � �; b) has mean zero if the model for the LO-part of the likelihood
is correct and � � is the true value of � ; regardless of the correct or not
speci�cation of the model for the LA-part.

According to Robins et. al. (2000) result, the function T (�; ; � ; b) is equal
to the di¤erence of S� (�; ; b) and its projection under the law P;� on the (non-
parametric) tangent space for the laws in the LA-part of the likelihood, i.e. the
space of scores for all possible parametric submodels for these laws. But this
tangent space is precisely the set � de�ned in point (2) of Section 5.3 and we
have already seen in point (6) of that section (display (27)) how to compute
its projection. Furthermore, in Section 5.3.1, we have shown that S� (�; ; b)
minus its projection into � can be expressed as the function in (30) : Thus
in our problem, (30) is the function T (�; ; � ; b) satisfying properties (I) and
(II).

This result is the essential point driving the double-robustness of b��
�
b; bdb�;opt

�
:

Speci�cally, under regularity conditions, b��
�
b; bdb�;opt

�
converges in probability

to a solution of
R
Xpos

E
�
b (x; Z)S�;�

�
x; �; y; � y

��
dPX = 0 where 

y and � y are

the probability limits of b and b� . When model (29) is correct, � y = � � and, as
just argued, this population moment equation is solved at ��: It follows that if

the population moment equation has a unique solution then b��
�
b; bdb�;opt

�
con-

verges in probability to �� if model (29) holds even if model (16) is incorrectly
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speci�ed. Standard results for solutions of unbiased estimating equations im-

ply that, under regularity conditions, the limiting distribution of b��
�
b; bdb�;opt

�

is normal regardless of the validity of models (29) and (16) thus concluding

our argument supporting the double-robustness of b��
�
b; bdb�;opt

�
.

In spite of the preceding general result, with the goal of making this article
self-contained, we will now show from direct calculations, that S�;� (x; �; ; �

�),
and consequently the function de�ned in (30) evaluated at � �; has mean zero
if model (29) is correct.

Rearranging terms, we can re-express S�;� (x; �; ; �) as

S�;� (x; �; ; �) =
�
�x1
�
O0; �

�
� h� (x; Z; �)

	

+

KX

k=1

!xk�1 ()
�
�xk+1

�
Ok; �

�
� �xk

�
Ok�1; �

�	

+ !xK ()
�
u (O;A)� �xK+1

�
OK ; �

�	
:

Now,

E
�
!xk�1 ()

�
�xk+1

�
Ok; �

�
� �xk

�
Ok�1; �

�	
jOk�1

�

= E

2
666
666
64

Ifgx;k�1(Ok�1)g
�
Ak�1

� �
�xk+1

�
Ok; �

�
� �xk

�
Ok�1; �

�	

k�1Y

j=0

�j
�
gx;j

�
Oj
�
jOj; Aj�1 = gx;j�1

�
Oj�1

�
; 
�

���
���
���
���
���
�

Ok�1

3
777
777
75

=
E
��
�xk+1

�
Ok; �

�
� �xk

�
Ok�1; �

�	���
Ok�1; Ak�1 = gx;k�1

�
Ok�1

��

k�1Y

j=0

�j
�
gx;j

�
Oj
�
jOj; Aj�1 = gx;j�1

�
Oj�1

�
; 
�

� P
�
Ak�1 = gx;k�1

�
Ok�1

�
jOk�1

�
:

The numerator in the fraction of the last equality is equal to 0 when model
(29) is correctly speci�ed and � is equal to the true value � � since �xk+1

�
Ok
�

is, by de�nition, equal to E
�
�xk+1

�
Ok
�
jOk�1; Ak�1 = gx;k�1

�
Ok�1

��
:
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Likewise,

E
�
!xK ()

�
u (O;A)� �xK+1

�
OK ; �

�	���
OK
�

=
E
��
u (O;A)� �xK+1

�
OK ; �

�	���
OK ; AK�1 = gx;K�1

�
OK�1

��

K�1Y

j=0

�j
�
gx;j

�
Oj
�
jOj; Aj�1 = gx;j�1

�
Oj�1

�
; 
�

� P
�
AK�1 = gx;K�1

�
OK�1

�
jOK�1

�

and
E
��
�x1
�
O0; �

�
� h� (x; Z; ��)

	
jZ
�

are equal to 0 when model (29) is correctly speci�ed and � = � �: The equality to
0 of the last display follows from the fact that h� (x; Z; �

�) = E [u (Ogx ; Agx) jZ]
by the assumption of the dynamic regime MSM model and E

�
�x1
�
O0
�
jZ
�
=

E[u (Ogx ; Agx) j Z] by (7).
Because the preceding equalities with 0 when model (29) is correct and � =

� � hold even if �j (�j�; �; ) are not the true conditional treatment probabilities,
we conclude that if model (29) is correctly speci�ed then

Z

Xpos

E [b (x; Z)S�;� (x; �; ; �
�)] dPX = 0

regardless of the value of :

In conclusion, the estimator b��
�
b; bdb�;opt

�
not only has attractive e¢ciency

properties when model (16) is correct but it also gives the analyst double
protection against model misspeci�cation. The following Lemma summarizes

the asymptotic properties of b��
�
b; bdb�;opt

�
. Point i) states its local e¢ciency

property and points ii) and iii) state its double-robustness.

Lemma 3. Suppose model DYR-�-MSM-obs holds.

i) if the strengthened positivity assumption PO(Xpos) and models (16) and
(29) hold, then under regularity conditions,

p
n
n
b��
�
b; bdb�;opt

�
� ��

o
! N

�
0;
�

�
b; db�;opt

��
;

ii) if the strengthened positivity assumption PO(Xpos) and model (16) hold,
then under regularity conditions,

p
n
n
b��
�
b; bdb�;opt

�
� ��

o
converges in

law to a mean zero normal distribution;
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iii) if model (29) holds, then under regularity conditions
p
n�n

b��
�
b; bdb�;opt

�
� ��

o
converges in law to a mean zero normal distribution.

In practice, successful modelling of the functions �xk+1 (ok) will be di¢cult
because: i) for each �xed x; a model for �xk+1 (ok) generally imposes compli-
cated restrictions for the functions �xj+1 (oj) for j < k (for a discussion of this
point see Murphy, van der Laan and Robins, 2001); ii) few interaction terms
between x and some of the components of ok in the model for �

x
k+1 (ok)may fail

to capture the complicated ways in which the e¤ect of regime gx may be mod-
i�ed by the past history ok, and iii) a correctly speci�ed model for �

x
k+1 (ok)

should yield a model for �x1 (o0) compatible with the MSM model h� (z; x; �) ;
i.e. our model for �xk+1 (ok) should be such that there exists �

� that satis�es
E [�x1 (o0; �

�)] = h� (z; x; �) :

Example 1 (continuation): we consider now the construction of a
double-robust estimator of �� in the parametric and semiparametric dynamic
regime MSM models hpar (z; x; �

�) and hsem (z; x; �) de�ned like in (11) and
(13). To do so we need to specify two models, one for the treatment probabil-
ities, �k (akjok; ak�1) and another for the functions �xk+1 (ok) : The model for

ok;�k (akj ak�1) was discussed in Section 5.1. To guide our choice of the model
for �xk+1 (ok), we can use the interpretation (a) of this function given at the
end of Section 3.2. Speci�cally,

Case 1) if rk = 0; then by de�nition, u (o; a) = tk; the event time recorded
for occasion k: Consequently, any reasonable model should postulate that
�xk+1 (ok; �

�) = tk is �xed and known (in particular, it is not a function of
unknown parameters � �);

Case 2) if rk = 1; then our model should distinguish two cases, depending
on whether or not the subject�s CD4 count has crossed the threshold x or not.
Speci�cally,

Case 2.1) if CD4j > x for all j � k then in the world in which gx was
implemented, a subject with such CD4 recorded history would have not yet
started HAART. The expected utility of such subject would depend on the
threshold x determining the future value of CD4 count at which the subject
will be put on HAART. Furthermore, a patient whose rk = 1 had not yet
experienced the event point and, with the de�nition of utility given in the
example in Section 5.1, his/her utility will be at least k: So, our model for
the expected utility should account for this. In addition, it is reasonable to
expect that the utility will be predicted by the CD4 status at time k and that
present CD4 could possibly be a modi�er of the e¤ect of starting HAART in
the future at di¤erent values of x: One possible model contemplating these
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considerations could be

�xk+1 (ok; �
�) = � 1 + � 2k + � 3CD4k + (� 4 + � 5k + � 6CD4k) x

+(� 7 + � 8k + � 9CD4k) x
2 + (� 10 + � 11k + � 12CD4k) x

3

which allows for the utility function to be a cubic polynomial in x with coef-
�cients that depend on present CD4k and the clinic visit k: Of course, more
�exible models could be envisioned which incorporate dependence not only on
current CD4 count but on past CD4 counts and on current and past viral
loads. Our ability to �t more �exible models is limited by the sample size of
the study.

Case 2.2) if CD4j > x for all j < k and CD4k � x then in the world in
which x was implemented, a subject with such CD4 recorded history would
start HAART at clinic visit k: A reasonable model would allow for the possi-
bility that the expected utility of such subject is equal to k plus some function
that depends on the current CD4 values of the subject and the rate of decline
in CD4 at the last interval. As such, we could contemplate postulating that

�xk+1 (ok; �
�) = k + � 13 + � 14CD4k + � 15 (CD4k � CD4k�1)

Note that the case CD4j � x for j < k is not needed because for such k;
!xk�1 () = !

x
k () so in the estimating equation (31) the termwhere �

x
k+1 (ok; �

�)
appears is 0 because !xk ()� !xk�1 () = 0:

So, �nally, putting the three cases together, our model would be

�xk+1 (ok; �
�) =

= (1� rk) tk + rk
kY

j=0

I(x;1) (CD4j)� f� 1 + � 2k + � 3CD4k+

(� 4 + � 5k + � 6CD4k) x+ (� 7 + � 8k + � 9CD4k) x
2 +

(� 10 + � 11k + � 12CD4k) x
3
	
+ rk

" 
1�

kY

j=0

I(x;1) (CD4j)

!
I[0;x] (CD4k)

#

�fk + � 13 + � 14CD4k + � 15 (CD4k � CD4k�1)g :

6.1 Double-Robust Inference for ��

We now derive an estimator of the asymptotic variance of b��
�
b; bdb�;opt

�
which

is consistent when either model (16) or model (29) holds. To do so, we simply

derive the limiting normal distribution of b��
�
b; bdb�;opt

�
without assuming that

36

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 2, Art. 8

DOI: 10.2202/1557-4679.1200

Brought to you by | Deakin University

Authenticated

Download Date | 2/17/15 11:40 AM



either model is correct and estimate the variance of this limiting distribution
with the usual sandwich variance estimator, replacing the unknown model
parameters with their estimators. Standard Taylor expansion arguments yield

p
n
n
b��
�
b; bdb�;opt

�
� �y

o
= J� (b)

�10pn� (32)

Pn

(Z

Xpos

b (x; Z)Q�
�
x; �y; y; � y

�
dPX (x)

)
+ oP (1)

where

Q� (x; �; ; �) � S�;� (x; �; ; �)� J�; (�; ; �) I ()�1 S () (33)

�J�;� (�; ; �) I� (�)�1 S� (�) ;

y and � y and �y are the probability limits of b, b� and b��
�
b; bdb�;opt

�
respectively;

J� (b) is de�ned as in Section 5.2 except that the derivative is evaluated at �
y

instead of ��,

I () � E
�
@

@0
S ()

�
; I� (�) � E

�
@

@� 0
S� (�)

�

and

J�; (�; ; �) � E
�
@

@
S�;� (x; �; ; �)

�
; J�;� (�; ; �) � E

�
@

@�
S�;� (x; �; ; �)

�
:

The preceding expansion implies that under regularity conditions and re-
gardless of whether model (16) or model (29) hold,

p
n
n
b��
�
b; bdb�;opt

�
� �y

o
! N

�
0;��

�
b; �y; y; � y

��

where

��
�
b; �y; y; � y

�
= J� (b)

�10E

(Z

Xpos

b� (x; Z)Q�
�
x; �y; y; � y

	
dPX (x)

)
2
J� (b)

�1

If model (16) holds, then �y = ��; y = � and ��
�
b; �y; y; � y

�
coincides

with 
�
�
b; db�;lim

�
the asymptotic variance derived in Section 5.3.1. If in addi-

tion, model (29) is also correctly speci�ed, then ��
�
b; �y; y; � y

�
coincides with


�
�
b; db�;opt

�
; the asymptotic variance of the optimal AIPTW estimator for a

given choice of b:
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A consistent estimator of �
�
b; �y; y; � y

�
is given by

b�� (b) = bJ� (b)�10 Pn
(Z

Xpos

b� (x; Z) bQ�
n
x; b��

�
b; bdb�;opt

�
; b;b�

o
dPX (x)

)
2
bJ� (b)�1

where bQ� (x; �; ; �) is de�ned like Q� (x; �; ; �) but with the population mean
E replaced by the empirical mean Pn and bJ� (b) is de�ned as in Section 5.2 but
evaluated at b��

�
b; bdb�;opt

�
instead of b�� (b; d) :

The variance estimator just described can be used to construct Wald con�-

dence ellipsoids centered at b��
�
b; bdb�;opt

�
with asymptotic coverage probability

equal to the nominal level if either model (16) or model (29) is correctly spec-
i�ed, but not necessarily both. Speci�cally, consider the ellipsoid

Cb =

�
� : n

�
b��
�
b; bdb�;opt

�
� �

�0 b�� (b)�1
�
b��
�
b; bdb�;opt

�
� �

�
� �2p;1��

�

where �2p;1�� is the (1� �)�100 percentile of the �2p distribution. When either
the assumptions of Lemma 3, part (ii) or the assumptions of part (iii) of the
Lemma hold, �y is equal to the true value ��: Then, standard arguments for
the properties of Wald con�dence sets imply that Cb covers the true �

� with
probability (1� �) as n goes to in�nity if either model (16) or model (29) is
correctly speci�ed, but not necessarily both.

6.2 Double-Robust Inference for xopt (z)

Construction of asymptotically valid Wald con�dence regions for xopt (z) that
are valid when either model (16) or model (29) are correctly speci�ed is
straightforward when X is an open subset of Rs and certain regularity condi-
tions hold. Speci�cally, if X is an open subset of Rs, and if for each z; xopt (z; �)
belongs to X and is di¤erentiable with respect to � in a neighborhood of ��

with non-singular derivative at ��; then if the assumptions of Lemma 3 part
(ii) or the assumptions of part (iii) of that Lemma hold, an application of the
delta method gives that

p
n
n
xopt

�
z; b��

�
b; bdb�;opt

��
� xopt (z)

o
! N

�
0;��

�
b; ��; y; � y

��

where

��
�
b; ��; y; � y

�
=

(
@xopt (z; �)

@�0

���
���
�=��

)
��
�
b; ��; y; � y

�
(
@xopt (z; �)

@�

���
���
�=��

)
:
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A consistent estimator of ��
�
b; ��; y; � y

�
is obtained by evaluating the deriv-

ative of xopt (z; �) at b��
�
b; bdb�;opt

�
instead of �� and replacing ��

�
b; ��; y; � y

�

with its consistent estimator b�� (b). This estimator can be used to construct
a Wald con�dence region for xopt (z) centered at xopt

�
z; b��

�
b; bdb�;opt

��
which

has coverage probability equal to the nominal one as n goes to1 when either
model (16) or model (29) hold. Bembom and van der Laan (Appendix C, 2008)
also discuss the construction of Wald con�dence regions for xopt (z; �) when X
is an open subset except that in their application the treatment probabilities
are known by design, and as such their intervals are centered at non-double
robust estimators and have length computed based on non-double robust es-
timates of standard error.

The following lemma gives the set of su¢cient conditions for the existence
of @xopt (z; �) =@�j and an expression for it.

Lemma 4. If X is an open subset of Rs and if for each z; i) xopt (z; �) is a
continuous function of � on an open neighborhood of ��; ii) h� (z; x; �) is dif-
ferentiable with respect to (x; �) on an open neighborhood of (xopt (z; �

�) ; ��)

and iii) @2h�(z;x;�
�)

@x@x0

���
�
x=xopt(z;�

�)
is non-singular, then for each z; xopt (z; �) is dif-

ferentiable with respect to � in a neighborhood of �� and

@xopt (z; �)

@�j

���
���
�=��

=

"
@2h� (z; x; �

�)

@x@x0

���
���
x=xopt(z;�

�)

#�1 "
@h� (z; xopt (z; �

�) ; �)

@�j

���
���
�=��

#
:

When X is countable, whether �nite or in�nite, the preceding construction
is not feasible because the derivative of xopt (z; �) is unde�ned: In this setting,
we can consider the set

Bb = fxopt (z; �) : � 2 Cbg

where xopt (z; �) is de�ned in (20) and Cb is the Wald con�dence ellipsoid for �
of the preceding subsection. This set has coverage probability at least (1� �)
as n goes to1 when either model (16) or model (29) hold. In Section 3 of the
companion paper (Orellana, Rotnitzky and Robins, 2010) we show that in the
special, but widely applicable, case in which h� (z; x; �) is a linear function of
the �j�s; determining whether or not a given x belongs to Bb entails determin-
ing if the intersection of#(X )�1 half-hyperspaces of Rp and a ball centered at
the origin is non-empty, where #(X ) is the cardinality of the set X . Although
e¢cient algorithms to implement this task may be known in computer science
or allied �elds, we are not aware that such algorithms exist. In Section 3 of
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the companion paper (Orellana, Rotnitzky and Robins, 2010) we provide an
algorithm to compute a set B�b that includes, but is not necessarily included
in, Bb in the aforementioned special case: Such set B

�
b is therefore a more con-

servative con�dence set for xopt (z) than Bb: An alternative procedure would
be to compute a con�dence band for the function that maps x with m (z; gx)
with simultaneous coverage no smaller than (1� �) and, then to construct the
set C comprised by all the x�s for which the con�dence interval for m (z; gx)

overlaps with the con�dence interval for m
�
z; gxopt(z;b��(b;bdb�;opt))

�
both based

on the band. Such set C would cover the true xopt (z) with probability at least
(1� �). Bembom and van der Laan (Appendix B, 2008) describe the con-
struction of a simultaneous con�dence band for the map x 7! m (z; gx) when
X is �nite, by Monte Carlo simulation.

7 Optimal Function b

From expansion (32) we can derive the optimal choice b�;opt for the function b in

the sense of minimizing the asymptotic variance of b��
�
b; db�;opt

�
; i.e. satisfying

��
�
b; �y; y; � y

�
� ��

�
b�;opt; �

y; y; � y
�
for all b (34)

Speci�cally, in Section 2.5 of the companion paper we show that b�;opt is the
solution to the Type I Fredholm integral equations

� @

@�
h� (x; z; �)

���
���
�=�y

=

Z

Xpos

C� (x; ex; z) b�;opt (ex; z) dPX (ex) ; (35)

where
C� (x; ex; z) � E

�
Qy� (x)

2 jZ = z
	

with
Qypar (x) � Qpar

�
x; �y; y; � y

�

and

Qysem (x) � Qsem
�
x; �y; y; � y

�
�
Z

Xpos

Qsem
�
x; �y; y; � y

�
dPX (x)

where Q� (x; �; ; �) is de�ned in (33) :

A point of note is that the inequality (34) implies that b��
�
b�;opt; d

b�opt
�;opt

�
has

the smallest asymptotic variance among the asymptotic variances of members
of the class n

b��
�
b; db�;opt

�
: b arbitrary

o
(36)
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when either model (16) or (29) holds.
Another point of note is that although the optimal choice b�;opt depends on

the choice of PX ; the value taken by b��
�
b; db�;opt

�
does not because if b�;opt solves

(35) for a given PX ; then b
0
�;opt = b�;optdPX=dP

0
X solves the integral equation for

P 0X ; provided P
0
X is absolutely continuous with respect to PX :

When Xpos = fxj : 1 � j � Jg is �nite and PX is the uniform distribution
on Xpos; the solution of equation (35) can be written in closed form. Speci�-
cally, b�;opt (xj; z)

0 is equal to the jth row of the J � p matrix
b� (z) � C� (z)�1m (z)

where m (z) is a J � p matrix with jth row equal to @h� (xj; z; �) =@�
0 and

C� (z) is the J � J matrix with (j; l)th entry equal to C� (xj; xl; z) : Of course,
b� (z) is not available because C� (z) is unknown. We may nevertheless consider

estimators b��
�
bb; bdbb�;opt

�
where bb� (z) = bC� (z)�1m (z) for some estimator bC� (z)

of C� (z) : To estimate C� (z) we may write C� (z) = D� (z)
1=2R� (z) D� (z)

1=2

where D� (z) is the diagonal matrix with diagonal equal to that of C� (z) and
postulate working variance and correlation models,

D�jj (z) = Djj (z; �) and R�;jk (z) = R�;jk (z; � ) ; 1 � j < k � J (37)

where for each z; D�jj (z; �) and R�;jk (z; �) are unknown smooth functions and
� and � are unknown parameters. For example, we may consider a linear
exponential model

D�jj (z; �) = exp
�
�1;j + �2;jz

�

and a �rst order autoregressive model

R�;jk (z; � ) = exp (� jj � kj �) for � > 0:

We may then estimate � and � as follows. We compute be�;jl = bQy� (xj) bQy� (xl)
where bQy� (x) is de�ned like Qy� (x) but with b�� (b; d) (a preliminary estimate
of � for arbitrary choices of b and d), b; and b� instead of ��; y; � y and then
estimate � with b� solving

Pn

"
JX

j=1

�
be2�;jj �D�jj (z; �)

	 @D�jj (z; �)

@�

#
= 0

and estimate � with b� solving

Pn

2
666
4

JX

l;j=1
j 6=l

(
be�;jlp

Djj (z;b�)Dll (z;b�)
�R�;j;k (z; � )

)
@R�;jk (z; � )

@�

3
777
5 = 0:
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Finally, we compute the estimator bC� (z) = D� (z;b�)1=2R�
�
z;b�
�
D� (z;b�)1=2 :

If for each z; C� (z) converges in probability to some matrix C
�
� (z) ; then

b
bb� (z) converges in probability to b�� (z) = C�� (z)�1m (z) : If b�� (x; z) stands for
the jth row of the J � p matrix b�� (z) ; then results in Newey and McFadden
(1994) imply that

p
n
n
b��
�
bb�; bdbb��;opt

�
� �y

o
and

p
n
n
b��
�
b�� ;
bdb���;opt

�
� �y

o
have

the same asymptotic distribution.

The estimators b��
�
bb�; bdbb��;opt

�
are locally e¢cient in two di¤erent models and

for two di¤erent classes of estimators. Speci�cally,

1. In the special case in which at least one of model (16) or model (29) is
correctly speci�ed, all estimators in the class

n
b��
�
b; bdb�;opt

�
: b arbitrary

o
(38)

converge in probability to ��; so in particular b��
�
bb�; bdbb��;opt

�
converges to

�� if either of these models is correct: Because when model (37) holds,

the estimator bC� (z) is consistent for C� (z) ; it follows that when model
(37) holds, b��

�
bb�; bdbb��;opt

�
has asymptotic variance equal to the smallest

asymptotic variance of estimators in the class (38) : We conclude that
b��
�
bb�; bdbb��;opt

�
is double-robust and locally e¢cient in the union model

DYR-�-MSM-obs��[DYR-�-MSM-obsy (de�ned in Section 6) for the class
(38) of double-robust estimators at the submodel of the union model that
additionally imposes the restrictions (37) :

2. We have already argued in Section 6.1 that when models (29) and (16) are
correctly speci�ed, �� (b�; �

�; �; � �) coincides with 
�
�
b�; d

b
�;opt

�
: Conse-

quently, when all three models (37) ; (29) and (16) are correct, b��
�
bb�; bdbb��;opt

�

has asymptotic variance 
�

�
b�;opt; d

b�;opt
�;opt

�
satisfying (24) : We thus con-

clude that b��
�
bb�; bdbb��;opt

�
is a consistent and asymptotically normal esti-

mator of �� under model DYR-�-MSM�� with asymptotic variance that
coincides with the smallest possible asymptotic variance of AIPTW es-
timators in the class

T =
n
b�� (b; d) : b and dk; k = 0; :::K; arbitrary

o
(39)

if, in addition, models (29) and (37) hold. Thus, b��
�
bb�; bdbb��;opt

�
is a locally

e¢cient estimator of �� in model DYR-�-MSM� for the class T of AIPTW
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estimators at the submodel of model DYR-�-MSM� which imposes the
additional restrictions (29) and (37) :

In practice, the set Xpos; even if �nite, may be very large. For instance,
in Example 1 of Section 4, Xpos has 401 elements. In such case the square
matrix bC� (z) will be unduly large dimension and its inversion will generally
be computationally intractable. For such scenarios, we may consider the fol-
lowing dimension reduction strategy. Let X �

pos be a subset of Xpos with small
cardinality J�: Let the J�� p matrix b� (z) be de�ned as in the previous para-b
graph but with X �

pos instead of Xpos. De�ne for each x 2 X �
pos; b� (x; z)

0 equal to

the corresponding row of b� (z) : Finally, for any x
0 in Xpos �X �

pos set b� (x
0; z)b

equal to one of the following possible choices: i) 0; ii) b� (x; z) for x the closest
neighbor of x0 in the Euclidean distance sense, or iii) the linear interpolation
between b� (x1; z) and b� (x2; z) for x1 and x2 the two closest neighbors of x

0,
if Xpos � R : We hypothesize that when the function h� (z; x; ��) is a smooth
function of x; the loss in e¢ciency due to implementing this strategy will be
small if the distribution of the points in X �

pos is similar to that of the points in
Xpos; for example if X �

pos is comprised of one in every, say, ten (sorted) points in
Xpos when Xpos � R: A thorough examination of the properties of this strategy
is beyond the scope of this paper.

When Xpos is an in�nite but bounded set, we recommend conducting the
strategy just described on a set X �

pos comprised by the points of a grid of Xpos
of not too large cardinality. Once again, we hypothesize this strategy will not
result in substantial e¢ciency losses when h� (z; x; �

�) is a smooth function of
x:

8 Discussion

The dynamic regime marginal structural mean models developed in this paper
have two appealing properties: they are easy to understand and they are easy
to �t with standard o¤-the-shelf software that allows for weights. Nevertheless,
estimation of the parameters of dynamic regime MSMs has some limitations.
First, if the number of time periods is large, the denominator of !xK () is the
product of many �xk

�
AkjOk; Ak�1; 

�
. Thus, even if the true !xK (

�)�s are not
highly variable, small �uctuations in b may propagate quickly and result in
large �uctuations of the !xK (b) : This may result in very large weights for a few
compliers with regime x compared to the rest of the compliers in the sample.
Even in moderate-sized studies, for estimation of �� the consequence of this
phenomenon in �nite samples is bias and variance that is substantially larger
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than the one prescribed by the asymptotic theory. Second, dynamic regime
MSMs do not allow for direct modelling of interactions between treatment
and evolving time dependent covariates and so do not permit qualitative e¤ect
modi�cation to be considered directly. Finally, it is unclear how to construct
extensions of dynamic regime MSMs suitable for assessing the sensitivity to
reasonable departures from the assumption of sequential randomization. In
contrast, the optimal regime structural nested mean (SNM) model of Robins
(2004) does not su¤er from any of these di¢culties. However, as indicated in
the introduction, SNM�s cannot be used to estimate the optimal regime in a
prespeci�ed parametrized class of regimes (such as the optimal CD4 cell count
at which to start HAART) that includes just the set of logistically feasible
regimes.

In this paper we have assumed that patients came to the clinic at the end
of each of K prespeci�ed intervals. Admittedly, this assumption is unrealistic
in most applications. In most observational databases there will be variability
across patients in the frequency of, and reasons for, physician visits. This raises
many important questions regarding the characteristics of the population in
which the optimal treatment regime that we are aiming to estimate will be
implemented. Clearly, the optimal treatment strategy depends on the timing
of the clinic visits. Methods aiming to estimate the optimal treatment regime
will depend on whether i) the subjects comprising the target population in
which the regime is to be implemented are biologically similar to those in the
population from which the database was obtained, and ii) the health care
systems of the target and study populations di¤er for cultural, logistical, and
�nancial reasons in the frequency of, and reasons for physician visits. Orellana
and Rotnitzky (2007) and Robins, Orellana and Rotnitzky (2008) consider
methodology to address these issues.
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