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All eukaryotes rely on selective proteolysis to control the abundance of key regulatory

proteins and maintain a healthy and properly functioning proteome. Most of this

turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic

machine. Proteasomes recognize and degrade proteins first marked with one or

more chains of poly-ubiquitin, the addition of which is actuated by hundreds of

ligases that individually identify appropriate substrates for ubiquitylation. Subsequent

proteasomal digestion is essential and influences a myriad of cellular processes in

species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S

proteasomes is associated with numerous human pathologies and profoundly impacts

crop performance, thus making an understanding of proteasome dynamics critically

relevant to almost all facets of human health and nutrition. Given this widespread

significance, it is not surprising that sophisticated mechanisms have evolved to tightly

regulate 26S proteasome assembly, abundance and activity in response to demand,

organismal development and stress. These include controls on transcription and

chaperone-mediated assembly, influences on proteasome localization and activity by

an assortment of binding proteins and post-translational modifications, and ultimately

the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic

clearance of damaged 26S proteasomes first involves their modification with ubiquitin,

thus connecting ubiquitylation and autophagy as key regulatory events in proteasome

quality control. This turnover is also influenced by two distinct biomolecular condensates

that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy,

and the other reversibly storing proteasomes during carbon starvation to protect them

from autophagic clearance. In this review, we describe the current state of knowledge

regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle,

illustrating how protein degradation through this proteolytic machine is tightly controlled

to ensure optimal growth, development and longevity.
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ROLES OF THE UBIQUITIN-PROTEASOME
SYSTEM AND AUTOPHAGY IN
PROTEOSTASIS

All cellular organisms require mechanisms to purge unwanted or
dysfunctional proteins. In eukaryotes, the autophagy-lysosome
and ubiquitin-proteasome systems (UPS) are the two major
quality control pathways responsible for maintaining proteome
homeostasis and directing recycling to meet nutrient demand.
The UPS is typically responsible for degrading short-lived
regulatory proteins or soluble mis-folded proteins individually
upon insertion into a self-compartmentalized protease, the
26S proteasome (Schubert et al., 2000; Vierstra, 2009; Finley
et al., 2012; Samant et al., 2018). By contrast, autophagy can
eliminate larger protein complexes, insoluble protein aggregates,
and even entire organelles and pathogens in toto, due to the
sheer size of the engulfing autophagic vesicles (Reggiori and
Klionsky, 2013; Gatica et al., 2018; Marshall and Vierstra, 2018a).
Substrate selectivity by the UPS is mainly controlled by the
attachment of ubiquitin to individual substrates, thus permitting
their recognition by ubiquitin-binding proteasome subunits or
associated shuttle factors (Finley, 2009; Schreiber and Peter,
2014; Saeki, 2017). For autophagy, equally precise selectively is
dictated by a suite of receptors that tether appropriate substrates
to the enveloping autophagic membranes (Rogov et al., 2014;
Khaminets et al., 2016; Gatica et al., 2018).

Perhaps unsurprisingly given their widespread influence,
definitive etiological links exist between various human
diseases and mutations in genes that control the UPS and
autophagic degradation routes. For example, a decline in both
proteasomal and autophagic capacities is associated with aging,
neurodegeneration, and other late-onset pathologies, such
as Alzheimer’s and Parkinson’s diseases (Saez and Vilchez,
2014; Dikic and Elazar, 2018; Rape, 2018; Saha et al., 2018;
Levine and Kroemer, 2019). On the other hand, the strong
dependency of rapidly proliferating cells, such as cancer
cells, on active proteasomes has been exploited in therapies
that use proteasome inhibitors to differentially induce cell
death (Cromm and Crews, 2017; Manasanch and Orlowski,
2017). Similarly, the importance of the UPS and autophagy
for efficient nutrient management, seed yield and pathogen
defense in crop species underlines its significance to global
food security (Vierstra, 2009; Li et al., 2015, 2019; Havé et al.,
2017; McLoughlin et al., 2018). As such, knowledge of how
the UPS, 26S proteasomes and autophagy are regulated, and
of how these systems overlap to ensure proteostasis, is of
considerable importance.

ORGANIZATION OF THE
UBIQUITIN-PROTEASOME SYSTEM

Ubiquitin is the signature factor within the UPS. It represents the
founding member of the β-grasp family of proteins that share
a compact, heat-stable domain of ∼70 amino acids followed
by a protruding C-terminal glycine (Figure 1A). Ubiquitin
attachment is achieved through an isopeptide linkage between

this glycine and the ε-amino group on the side chain of
a surface-exposed lysine residue(s) within the target protein
(Ciechanover et al., 1980; Hershko et al., 1980; Wilkinson et al.,
1980), although attachment to cysteine, serine or threonine
residues, or the N-terminal amino group, have also been
reported (Kravtsova-Ivantsiv and Ciechanover, 2012). This
conjugation occurs via the sequential actions of three enzyme
families that ultimately couple ATP hydrolysis to isopeptide
bond formation: the E1 ubiquitin-activating enzymes, the E2
ubiquitin-conjugating enzymes, and the E3 ubiquitin-protein
ligases (Figure 1B; Hershko et al., 1983; Vierstra, 2009; Finley
et al., 2012). Whereas, the activated E2-ubiquitin intermediate
often serves as the immediate donor of ubiquitin, the E3 typically
determines which substrate should be ubiquitylated through
distinct motifs that separately recognize the substrate and the
E2 (Figure 1B).

To date, four main types of E3 have been described, classified
by their mechanism(s) of action and subunit composition: HECT,
RING, U-box, and RING-between-RING (RBR). The RING
family of E3s includes the multi-subunit Cullin-RING ligases
(CRLs) that exploit one of several Cullin isoforms to scaffold
the complex. Importantly, eukaryotes have evolved hundreds
or even thousands of distinct E3s bearing a wide variety of
substrate-recognition elements connected to a small number of
common scaffolds (Hua and Vierstra, 2011; Buetow and Huang,
2016; Zheng and Shabek, 2017). This remarkable diversity
allows individual E3s to operate in distinct cellular contexts,
respond to unique cellular signals, and process a diverse array of
protein substrates.

The final products of this conjugation cascade can be proteins
modified with a single ubiquitin (mono-ubiquitylation), with
several single ubiquitin moieties (multi-ubiquitylation), and/or
with chain(s) of ubiquitin that are covalently concatenated
via any of seven internal lysines or the N-terminus (poly-
ubiquitylation; Kirisako et al., 2006; Xu et al., 2009; Yau et al.,
2017). Such complexity allows for a myriad of functions triggered
by ubiquitylation, including some that are not connected to
proteolysis, through the use of distinct classes of receptors
that recognize specific ubiquitin chain topologies (Husnjak
and Dikic, 2012; Lu et al., 2015; Oh et al., 2018). The
UPS also includes a diverse collection of deubiquitylating
enzymes (DUBs) specific for various types of ubiquitin linkages
and/or substrates. These DUBs uniquely release both the
target and the ubiquitin moieties intact (Figure 1B), thus
allowing ubiquitylation to function in a reversible manner
(de Poot et al., 2017; Clague et al., 2019). However, in most
cases ubiquitylated substrates are recognized via their attached
ubiquitin(s) and degraded by the 26S proteasome, an ATP-
dependent proteolytic machine that cleaves the substrate into
short peptides concomitant with release of the ubiquitin moieties
by associated DUBs for re-use (Figures 1B,C). Here, proteins
modified with poly-ubiquitin chains internally linked through
K11 or K48 appear to be the favored substrates (Yau et al., 2017;
Samant et al., 2018). As will be described below, our emerging
appreciation of this proteolytic complex has revealed how it
also contributes to the regulation and specificity of the UPS
beyond E3s.
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FIGURE 1 | Description of the Ubiquitin-26S Proteasome System (UPS). (A) The structure of ubiquitin (Ub). Top, schematic of the β-grasp fold of ubiquitin showing

the arrangement of the α-helix and β-strand secondary structures. Bottom, a 3-dimensional ribbon diagram of ubiquitin (Protein Data Bank: 1UBQ). C,

carboxyl-terminus. (B) Schematic representation of the UPS. The pathway begins with adenosine triphosphate (ATP)-dependent activation of ubiquitin by an E1,

followed by transfer of the activated ubiquitin to an E2, and then final attachment of ubiquitin to the target protein with the help of an E3. Typically, the resulting product

is a ubiquitin-protein conjugate where the C-terminal glycine carboxyl group of ubiquitin is linked through an isopeptide bond to an accessible ε-amino group of a

lysine residue in either the target protein or another ubiquitin molecule. After iterative assembly, the poly-ubiquitylated conjugate can either be disassembled by DUBs,

or broken down by the 26S proteasome, in both cases with the concomitant release of the bound ubiquitin moieties intact for re-use. (C) 3-dimensional structure of

the yeast 26S holo-proteasome, as determined by cryo-EM (Lasker et al., 2012), with the CP shown in red, the RP base shown in blue, and the RP lid shown in yellow

(left), and a cartoon representation of the 26S proteasome, highlighting specific functions of the CP and RP during substrate processing (right). (D) A detailed view of

the subunit architecture of the yeast 26S proteasome RP, as determined by cryo-EM (Lander et al., 2012). The CP is shown in gray, the Rpt ring is shown in light blue,

and additional Rpn subunits are shown in various colors with their identity indicated. (E) Affinity purification of 26S proteasomes from yeast and Arabidopsis showing

the size distribution of core subunits. Yeast cells expressing RPN11-TEV-ProA (left) or Arabidopsis seedlings expressing PAG1-FLAG (right) were treated with or

without 50µM MG132 for 16 h before affinity enrichment of 26S proteasomes based on the Protein A or FLAG tags, respectively. The purified particles were then

subjected to SDS-PAGE and stained for protein with silver. The distributions of CP and RP subunits are indicated by the brackets. Open and closed arrowheads

locate Blm10 and Ecm29, respectively. (F) Arabidopsis 26S proteasomes affinity-purified as in (E) were separated by native gel electrophoresis and stained for protein

with silver. The singly- and doubly-capped 26S complex, and the RP, CP, and CP-PA200 sub-complexes, along with partially assembled CP α-subunit rings, are

indicated. Images were adapted with permission from Lander et al. (2012), Lasker et al. (2012), Marshall et al. (2015, 2016), and Marshall and Vierstra (2018a).
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COMPOSITION OF THE 26S PROTEASOME

At the heart of the UPS is the 26S proteasome, a 2.5 MDa,
multi-subunit protease located in the cytosol and nucleus of all
eukaryotic cells (Reits et al., 1997; Enenkel et al., 1998; Russell
et al., 1999; Brooks et al., 2000; Pack et al., 2014; Marshall et al.,
2015). The exceptional complexity and size of this proteolytic
machine have made it an excellent model for understanding how
intricate macromolecular structures are co-ordinately assembled
rapidly and faithfully from dozens of components. Much of
our current understanding of proteasome architecture has arisen
from exceptionally well-resolved 3-dimensional models that have
continually improved in step with rapid advances in X-ray
crystallographic and cryo-electron microscopic (EM) imaging
(Baumeister et al., 1994; Groll et al., 1997; Nickell et al., 2009;
Lander et al., 2012; Lasker et al., 2012; de la Peña et al., 2018;
Dong et al., 2019).

26S proteasomes are composed of two functionally distinct
sub-complexes that are separately stable (Figures 1C,D); the 20S
core protease (CP) that houses the peptidase activities, capped
at one or both ends by the 19S regulatory particle (RP) that
captures and prepares appropriate substrates for breakdown
(Groll et al., 1997; Finley, 2009; Book et al., 2010; Lander et al.,
2012; Lasker et al., 2012; Bhattacharyya et al., 2014; Collins
and Goldberg, 2017; Rousseau and Bertolotti, 2018; Finley and
Prado, 2019). The CP has a barrel shape generated by four
stacked hetero-heptameric rings, which contain seven α-subunits
or seven β-subunits in a C2 symmetric α1−7/β1−7/β1−7/α1−7

configuration (Figure 1C). Upon assembly, a central chamber is
formed at the interface of the β-rings that houses six catalytic
sites responsible for peptide bond cleavage, provided by the β1,
β2 and β5 subunits (Arendt and Hochstrasser, 1997; Heinemeyer
et al., 1997; Dick et al., 1998; Kisselev et al., 1999, 2003). These
active sites consist of a novel catalytic triad formed by an N-
terminal threonine that becomes exposed during CP assembly
by proteolytic removal of a proximal propeptide (Chen and
Hochstrasser, 1996; Schmidtke et al., 1996; Seemuller et al.,
1996; Huber et al., 2016; Li et al., 2016). Collectively, these CP
peptidases can cleave a broad array of polypeptides, with the β1,
β2 and β5 active sites providing trypsin-like, chymotrypsin-like
and caspase-like cleavage properties, respectively (Arendt and
Hochstrasser, 1997; Heinemeyer et al., 1997; Nussbaum et al.,
1998; Groll et al., 1999; Kisselev et al., 1999.)

Additionally, more specialized β-subunits have been identified
in mammalian cells that are expressed and incorporated into the
CP to confer slightly altered catalytic preferences to proteasomes
(Murata et al., 2018). The thymo-proteasome is found only in
cortical epithelial cells of the thymus, and is thought to play
a vital role in the positive selection of CD8+ T-cells through
lower chymotrypsin-like activity from the β2 subunit (Murata
et al., 2007). Immuno-proteasomes are enriched in a variety
of immune system-related tissues, such as the spleen, thymus,
lung, liver, kidney, colon, small intestine and antigen-presenting
cells. Their expression can also be induced in non-immune
tissues in response to specific stimuli, such as interferon-γ
(Gaczynska et al., 1993; Hisamatsu et al., 1996). Immuno-
proteasomes preferentially cleave after basic and hydrophobic

residues through replacement of the β1, β2 and β5 subunits
with closely-related isoforms (known as LMP2, MECL1 and
LMP7/PSMB11, respectively), leading to release of peptides more
favorable to MHC class I antigen-presenting receptors (Driscoll
et al., 1993; Kincaid et al., 2011; Huber et al., 2012). Whether
other eukaryotes besides mammals exploit β-subunit diversity to
alter proteasome activity and function is not yet known.

On top of the β-subunit rings sit the α-subunit rings
(Figure 1C), which create two antechambers with narrow
opposing axial pores that are gated by extensions at the N-
terminus of several α-subunits (Groll et al., 2000; Köhler et al.,
2001; Smith et al., 2005; da Fonseca and Morris, 2008; Rabl et al.,
2008; Ruschak et al., 2010). Occlusion of the pores is mainly
attributed to the N-terminal extension of the α3 subunit, since
its deletion creates a constitutively open pore (Groll et al., 2000).
Gate opening in the holo-proteasome is normally triggered by
docking of the CP to various proteasome regulators, such as
the multi-subunit RP (PA700), or the activators PA28αβ, PA28γ,
PA200 (also known as Blm10), PI31 (also known as PSMF1,
Fub1 or PTRE1), and Cdc48 (also known as VCP or p97; Dubiel
et al., 1992; Zaiss et al., 1999; Li and Rechsteiner, 2001; Schmidt
et al., 2005; Barthelme and Sauer, 2012; Esaki et al., 2018). These
regulators (or one or more of their subunits) typically possess
a C-terminal HbYX motif (where Hb represents a hydrophobic
residue, Y is tyrosine, and X is any amino acid) that inserts into
pockets formed at the interfaces between adjacent α-subunits
(Smith et al., 2005, 2007; Rabl et al., 2008; Sadre-Bazzaz et al.,
2010; Tian et al., 2011; Park et al., 2013). Through this distinctive
and stable architecture, the CP acts as a self-compartmentalized
protease that only degrades polypeptides that are deliberately
recognized, unfolded, and imported into the β-ring chamber.

The main CP regulator is the RP, which loosely binds to
either or both ends of the CP in the presence of ATP (Eytan
et al., 1989; Armon et al., 1990; Smith et al., 2005; Liu et al.,
2006). The RP sits over the axial pores of the CP and provides
activities for recognizing ubiquitylated substrates, driving their
unfolding, opening the α-ring pore, importing substrates into the
CP, and finally releasing the ubiquitin moieties prior to substrate
degradation (Figures 1C,D; Bhattacharyya et al., 2014; Collins
and Goldberg, 2017; Finley and Prado, 2019).

The RP can be separated into two sub-complexes in vitro,
termed the base and the lid. The base directly contacts the CP
and contains a ring of AAA-ATPases (Rpt1-6) plus four non-
ATPase subunits, Rpn1, Rpn2, Rpn10 and Rpn13, while the
more peripheral lid is composed of an additional 10 non-ATPase
subunits [Rpn3, 5, 6, 7, 8, 9, 11, 12, and Sem1 (also known as
Rpn15/Dss1)] with varying functions (Figures 1C,D; Glickman
et al., 1998; Finley, 2009; Book et al., 2010; Lander et al., 2012;
Lasker et al., 2012; Bhattacharyya et al., 2014). Association of the
Rpt ring with the heptameric α-ring is slightly out of register
given the unequal number of subunits, which leads to a loose and
tilted contact that might help with substrate processing (Smith
et al., 2011; Tian et al., 2011). Engaging substrates both enforces
the CP and RP association, leading to the enrichment of singly-
and double-capped 26S proteasomes, and appears to alter the
CP-RP contact (Chen et al., 2016; Wehmer et al., 2017; Eisele
et al., 2018). These features provide a visual method to assess
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whether 26S proteasomes are actually engaged with substrates
in vivo. When applied to neuronal cells under non-stressed
conditions, it was found that only ∼20% of the particles were
actively processing substrates, suggesting that the capacity of 26S
proteasomes is often under-utilized (Asano et al., 2015).

The lid-base demarcation of the RP was first revealed by the
absence of lid subunits in proteasomes isolated from 1rpn10
yeast cells, and hence it was thought that Rpn10 helps maintain
the lid-base contact (Glickman et al., 1998). However, more
recent structural studies showed that Rpn10 has an indirect
stabilizing effect within the RP by binding Rpn9. The lid-base
association is instead mainly enforced by the Rpn3, Rpn7, Rpn8,
and Rpn11 cluster (Lander et al., 2012; Lasker et al., 2012;
Bhattacharyya et al., 2014). Besides the HbYX motifs in the Rpt
ring, Rpn6 provides a molecular clamp to anchor the RP onto the
CP (Pathare et al., 2012).

The ring of Rpt subunits couples ATP hydrolysis to substrate
unfolding (de la Peña et al., 2018; Eisele et al., 2018; Dong et al.,
2019), and repositions the extensions of the CP α-subunits to
permit entry through the axial pore (Smith et al., 2005, 2007;
Rabl et al., 2008; Tian et al., 2011). The coiled-coil regions of
adjacent Rpt pairs also intertwine to create three spokes onto
which most Rpn subunits are scaffolded (Lander et al., 2012;
Lasker et al., 2012). A key RP subunit is Rpn11, a DUB that
uniquely employs a zinc-containing active site to catalyze the
release of poly-ubiquitin chains isopeptide-linked to substrates
(Verma et al., 2002; Yao and Cohen, 2002; Pathare et al., 2014;
Worden et al., 2014, 2017). Through Rpn11 and other loosely
associated DUBs, such as Ubp6/USP14 and UCH37/UCHL5
(Leggett et al., 2002; Hanna et al., 2006; Aufderheide et al., 2015a;
Bashore et al., 2015; Lee et al., 2016; de Poot et al., 2017), bound
ubiquitin moieties are actively released for re-use before substrate
hydrolysis, thus helping to promote substrate degradation by
preventing the unusually stable structure of ubiquitin from
impeding translocation into the CP (Verma et al., 2002; Yao and
Cohen, 2002; Worden et al., 2017).

Another intriguing CP regulator is the evolutionarily
conserved protein known as PI31/PSMF1 in mammals (Chu-
Ping et al., 1992; Zaiss et al., 1999; McCutchen-Maloney et al.,
2000), Fub1 in yeast (Hatanaka et al., 2011; Yashiroda et al.,
2015), and PTRE1 in plants (Yang et al., 2016), which for the
animal form uses multiple structural features, including a HbYX
motif, to bind the CP α-ring (Li et al., 2014). It was originally
described as a negative regulator of the proteasome, based on
its ability to suppress CP activity in vitro (Chu-Ping et al., 1992;
McCutchen-Maloney et al., 2000; Li et al., 2014; Yashiroda et al.,
2015). However, it is now considered to have little effect on
proteasome activity in vivo (Li et al., 2014; Yashiroda et al.,
2015), and may even be an activator of the 26S holo-proteasome
under certain conditions (Bader et al., 2011; Cho-Park and
Steller, 2013; Yang et al., 2016). Interestingly, ADP-ribosylation
of Drosophila melanogaster PI31 by the ADP-ribosyltransferase
tankyrase was shown to promote 26S proteasome activity by
both reducing the affinity of PI31 for CP α-subunits, thus
permitting CP-RP association, and by increasing the affinity of
PI31 for the RP assembly chaperones Nas2 and Hsm3 (Cho-
Park and Steller, 2013). However, no evidence was found to
support a role for ADP-ribosylation in mammalian PI31 function

(Li et al., 2014). In Arabidopsis, PTRE1 is an abundant co-
factor of 26S proteasomes, and its deletion generates an auxin
hyposensitive phenotype, with elevated levels of the AUX/IAA
family of auxin-response repressors and reduced activity of the
26S proteasome, suggesting that it promotes signaling from this
central plant hormone by controlling UPS-mediated AUX/IAA
protein turnover (Yang et al., 2016).

Our understanding of 26S proteasome composition in a
variety of species has been greatly aided by the use of tagged
subunits that allow rapid affinity purification of the complex
(Figure 1E; Leggett et al., 2002, 2005; Book et al., 2010; Marshall
et al., 2017). Proteomic analysis of the resulting preparations not
only identified the core α, β, Rpt and Rpn subunits, but also a
large collection of regulators and assembly chaperones (Leggett
et al., 2002; Book et al., 2010). Furthermore, by conducting
purifications in the absence of ATP, it is relatively easy to
obtain preparations enriched in either the CP or RP sub-
complexes (Leggett et al., 2005). Singly- and doubly-capped 26S
particles, plus the CP, RP and Blm10/PA200-CP sub-complexes,
can also be visualized following native PAGE (Figure 1F), with
proteolytically active complexes then identified in situ with
fluorogenic peptide substrates (Elsasser et al., 2005).

RECOGNITION OF UBIQUITYLATED
SUBSTRATES BY THE 26S PROTEASOME

An important aspect of proteasomal degradation involves
controlling access of substrates to the CP proteolytic chamber.
Substrate selection is dictated by several ubiquitin receptors
intrinsic to the RP, including Rpn1, Rpn10, Rpn13, and possibly
Sem1 (van Nocker et al., 1996a,b; Verma et al., 2004; Finley, 2009;
Fatimababy et al., 2010; Sakata et al., 2012; Paraskevopoulos et al.,
2014; Shi et al., 2016; Saeki, 2017). Rpn10 recognizes ubiquitin
via a defined ubiquitin-interacting motif (UIM; Haracska and
Udvardy, 1997; Fu et al., 1998b; Hofmann and Falquet, 2001;
Verma et al., 2004), and is unique among proteasome subunits
in that it exists as both proteasome-bound and free forms
(van Nocker et al., 1996a,b; Haracska and Udvardy, 1997;
Marshall et al., 2015). Rpn13 recognizes ubiquitin via an N-
terminal pleckstrin-like receptor for ubiquitin (PRU) domain,
which is structurally distinct from UIMs but binds to the same
hydrophobic patch on ubiquitin (Husnjak et al., 2008; Schreiner
et al., 2008). The C-terminal domain of human RPN13 binds to
and activates the DUB UCH37 (Hamazaki et al., 2006; Yao et al.,
2006), and together they provide a “proof-reading” activity that
permits escape of poorly or inadvertently ubiquitylated substrates
through release of the bound ubiquitin moieties. More recently,
Rpn1 and Sem1 were reported to be proteasomal ubiquitin
receptors (Paraskevopoulos et al., 2014; Shi et al., 2016; Dong
et al., 2019). However, it remains unclear whether Sem1 can
recruit ubiquitylated proteins to the 26S proteasome, because
the purported ubiquitin-binding surface in this intrinsically
disordered protein overlaps with its proteasome-binding surface
(Shi et al., 2016).

In addition to these core ubiquitin receptors, there are
several extra-proteasomal ubiquitin-binding proteins that shuttle
ubiquitylated cargo to the RP. These work by virtue of one
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or more C-terminal ubiquitin-associated (UBA) domains that
bind ubiquitin (Hofmann and Bucher, 1996; Wilkinson et al.,
2001), coupled to an N-terminal ubiquitin-like (UBL) domain
that binds to the ubiquitin receptors within the proteasome
(Schauber et al., 1998; Elsasser et al., 2002, 2004; Walters et al.,
2002; Husnjak et al., 2008; Chen et al., 2019). Because the
UBL and UBA domains are typically joined through a long,
flexible linker region, it is thought that these shuttle factors allow
greater orientational freedom of proteasome-bound substrates as
compared to direct docking.

Important UBL-UBA shuttle factors include Rad23, Dsk2
and Ddi1, which are conserved in plants, fungi and mammals
(Finley, 2009; Fatimababy et al., 2010; Hjerpe et al., 2016; Saeki,
2017; Samant et al., 2018). Indeed, a recent proteomics study
concluded that the UBL-UBA shuttle factors are the major
route by which proteins are targeted to the proteasome in yeast
(Tsuchiya et al., 2017). Even though UBL-UBA proteins interact
with 26S proteasomes, they are immune to degradation, which
at least for Rad23 appears to require its C-terminal UBA domain
(Heessen et al., 2005; Heinen et al., 2011) and the absence of an
unstructured region for initiating degradation (Fishbain et al.,
2011). Interestingly, yeast strains in which the RAD23, DSK2
and DDI1 genes have been deleted, and the ubiquitin-binding
elements of Rpn1, Rpn10 and Rpn13 have been removed by
mutation, are sensitive to stress but are nevertheless viable and
still capable of degrading ubiquitylated substrates, suggesting that
additional ubiquitin receptors for the proteasome remain to be
identified (Shi et al., 2016).

Substrate breakdown by proteasomes is further regulated
by various post-translational modifications impacting the layers
of intrinsic and extrinsic ubiquitin receptors. For example, in
response to proteasome inhibition or conditions that impair
proteasome function, human RPN13 becomes ubiquitylated by
the proteasome-associated E3 UBE3C, which prevents substrate
binding (Besche et al., 2014). Mono-ubiquitylation of Rpn10
likewise dampens its ability to bind ubiquitylated substrates and
shuttle factors (Isasa et al., 2010; Lipinszki et al., 2012; Jacobson
et al., 2014; Zuin et al., 2015), while the interaction of Rad23
with the proteasome is inhibited by phosphorylation of its UBL
domain (Liang et al., 2014), thus controlling how effectively 26S
proteasomes can capture their targets.

Although it was long believed that ubiquitylation is sufficient
to mark a protein for degradation, it is now accepted that
turnover also requires elements within both the 26S proteasome
and the substrate, most notably an unstructured region near the
end of the polypeptide awaiting breakdown that is recognized
by features within the RP base (Lee et al., 2001; Prakash
et al., 2004; Yu et al., 2016). In particular, the ability of 26S
proteasomes to recognize both a poly-ubiquitin chain and an
unstructured region likely provides the basis for determining
which proteins should be degraded and which to spare. This
critical decision requires two steps; an initial step in which
the attached poly-ubiquitin chain undergoes reversible binding
to ubiquitin receptors associated with the RP, followed by
a second step where the ubiquitylated substrate binds more
tightly depending on accessibility of the unstructured region to
the Rpt ring (Peth et al., 2010; Collins and Goldberg, 2017).

This reaction sequence provides an opportunity for competing
processes to determine the fate of the substrate. For example,
multiple DUBs can promote the release of some, perhaps many,
ubiquitylated proteins that initially bind only weakly (Lee et al.,
2016). Conversely, if a substrate becomes tightly bound through
its unstructured region, the unfoldase activity of the AAA-
ATPase ring of the RP is engaged (Peth et al., 2013a), and
the partially unfolded substrate is then locked into the route
leading to its destruction. Clearly, not all proteins contain
an unstructured region capable of initiating degradation; in
these cases, the AAA-ATPase activity of Cdc48/p97 is thought
to assist in unraveling well-folded proteins as a prelude to
breakdown (Olszewski et al., 2019).

Substrate degradation ultimately requires release of the bound
ubiquitin, which provides an additional control step (de Poot
et al., 2017). Deubiquitylation is performed by proteasome-
associated DUBs, including one DUB intrinsic to the proteasome
(Rpn11), and others that transiently associate (Ubp6/USP14 and
UCH37/UCHL5). Rpn11 releases the poly-ubiquitin chain intact
after the substrate irreversibly engages with the proteasome
entry channel (Verma et al., 2002; Yao and Cohen, 2002;
Pathare et al., 2014; Worden et al., 2014, 2017). The other
DUBs favor progressive trimming of ubiquitin chains, with the
balance between ubiquitin removal and ubiquitin addition by
proteasome-interacting E3s such as yeast Hul5 dictating either
substrate degradation or release (Leggett et al., 2002; Crosas et al.,
2006; Bashore et al., 2015; Lee et al., 2016).

TRANSCRIPTIONAL REGULATION OF 26S
PROTEASOME SUBUNIT ABUNDANCE

Synthesis of 26S proteasomes is energetically costly given their
complexity and abundance and, as a consequence, cells have
evolved sophisticated mechanisms to ensure an adequate supply
of functioning particles. In fact, proteasomes comprise as much
as 1% of total protein in certain mammalian cell types (Tanaka
and Ichihara, 1989). The main control point is through regulated
expression of the corresponding suite of proteasome subunits
and associated genes, which is tightly co-ordinated in an
attempt to provide stoichiometric amounts of each polypeptide
(Figure 2). How tight this regulation is within the collection of
proteasome genes remains unclear, as excess subunits do not
typically accumulate within cells as free forms (the exception
being Rpn10), and appear to be rapidly degraded if they fail to
integrate into their respective CP or RP sub-complexes (Peters
et al., 2015; Nahar et al., 2019). Thus, while transcription
and translation are modulated in an attempt to provide
stoichiometric expression, an important arbiter dictating the final
concentration of proteasomes might be the abundance of one or
more factors in limiting supply. Nevertheless, multiple studies
have documented the concerted transcriptional regulation of
proteasome genes during development or in response to stress,
and have contributed to a growing body of evidence for common
signaling pathways regulating their expression.

In yeast, mammals and plants, the controlled expression
of proteasome subunit genes is achieved by the unrelated
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FIGURE 2 | Transcriptional Regulation of Proteasome Subunit Genes. (A) Regulation of proteasome gene expression in yeast. Expression of the transcription factor

Rpn4 is controlled by various cis-regulatory elements bound by transcription factors, such as Hsf1, Pdr1, and Yap1. Rpn4 has an extremely short half-life and is

continuously ubiquitylated and degraded by the 26S proteasome under normal growth conditions, a pathway initiated by the E2 Rad6 and the E3 Ubr2. A

ubiquitin-independent route for Rpn4 degradation also exists. When proteasome capacity is exceeded or impaired, Rpn4 is stabilized and translocates to the nucleus,

where it binds to a hexameric consensus nucleotide sequence [(A/G)GTGGC], known as the proteasome-associated control element (PACE), present in the promoters

of most proteasome subunit genes. This binding leads to increased expression of proteasome subunits, along with additional genes involved in protein ubiquitylation,

DNA repair, and other stress responses. One of the latter genes encodes Yap1, which can further increase Rpn4 levels via a positive-feedback loop. HSE, heat shock

element; YRE, Yap response element; PDRE, pleiotropic drug response element; aa, amino acids. (B) Regulation of proteasome gene expression in mammals and

plants. The mammalian transcription factor NRF1 is a type II endoplasmic reticulum (ER) membrane protein that is continuously retro-translocated to the cytosol via the

ER-associated protein degradation (ERAD) pathway, a process requiring activity of the E3 ligase HRD1 and the AAA-ATPase CDC48/p97. Retro-translocated NRF1 is

rapidly ubiquitylated and degraded by the 26S proteasome. When proteasome capacity is exceeded or impaired, NRF1 is stabilized during retro-translocation, where

it is cleaved by the aspartyl protease DDI2. The resulting active form of NRF1 is deglycosylated by PNG1 and then translocates to the nucleus, where it binds

antioxidant response elements (AREs) to activate transcription of its target genes, including those encoding proteasome subunits. The Arabidopsis transcription

factors NAC53 and NAC78 control proteasome subunit gene expression and are predicted to be ER-localized transmembrane proteins. Given that Arabidopsis DDI1

also contains an aspartyl protease domain, we predict that transcriptional regulation of the proteasome in plants proceeds by a similar mechanism as in mammalian

cells, by which the processed NAC53/78 dimer enters the nucleus and binds to proteasome-related cis-elements (PRCEs) to activate transcription.

but functionally analogous transcription factors Rpn4, NRF1/2,
and NAC53/78, respectively (Figure 2). This regulation is
best understood in yeast, where the C2H2-type zinc finger
transcription factor Rpn4 binds to a six nucleotide sequence
[(A/G)GTGGC)] known as the proteasome-associated control
element (PACE) that can be found in the promoter region of
genes encoding most proteasome subunits and related factors
(Mannhaupt et al., 1999; Xie and Varshavsky, 2001; Shirozu
et al., 2015). Rpn4 has an extremely short half-life due to rapid
proteasomal degradation (Xie and Varshavsky, 2001). However,
when proteasome capacity fails to keep up with demand, Rpn4
turnover slows, leading to a rise in its levels and a concomitant
increase in proteasome gene expression (Figure 2A). Rpn4
itself is integrated into a broader stress-responsive regulatory
network, including controls on RPN4 gene expression by several

transcription factors including Hsf1, Pdr1, Pdr3, and Yap1
(Figure 2A; Owsianik et al., 2002; Hahn et al., 2006).

The proteasomal degradation of Rpn4 under low proteasome
demand is mediated by two distinct degrons, both of which must
be blocked to stabilize Rpn4 (Ju and Xie, 2004). One degron is
independent of ubiquitin (Ha et al., 2012), while the second relies
on phosphorylation-induced ubiquitylation of specific lysines
via the E2 Rad6 and the E3 Ubr2 (Wang et al., 2004; Ju and
Xie, 2006; Ju et al., 2007). The ubiquitin-independence of one
breakdown route is unusual for a short-lived protein, but it
might ensure that Rpn4 is sensitive principally to fluctuations
in proteasome activity, rather than ubiquitin availability, which
is separately regulated (Hanna et al., 2007). Controlling Rpn4
levels and activity, and hence proteasome abundance, is critical
for yeast survival in response to multiple stresses, including DNA
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damage, proteotoxic stress, and changes in redox balance (Wang
et al., 2008, 2010a; Ma and Liu, 2010).

A similar regulatory loop exists in mammalian cells, where a
concerted increase in the expression of proteasome subunits is
observed in response to proteasome inhibition (Meiners et al.,
2003). However, the lack of obvious mammalian orthologs of
Rpn4 and PACE sequences within proteasome subunit genes
suggested early on that novel mechanism(s) are in play. It is
now clear that the transcription factors NF-Y, FOXO4 and STAT3
collectively drive the constitutive expression of proteasome genes
(Vilchez et al., 2012; Xu et al., 2012; Vangala et al., 2014). NF-Y
dictates the expression of loci encoding six CP subunit (α2, α5, α7,
β3, β4 and β6), five RP subunits (RPT1, RPT5, RPT6, RPN10, and
RPN11), and one assembly chaperone (NAS6/p28), each of which
contains one or more CCAAT cis-elements in their promoter
regions (Xu et al., 2012). FOXO4 promotes RPN6 expression,
which contributes to high proteasome activity in pluripotent
stem cells (Vilchez et al., 2012), while STAT3 regulates the
expression of numerous β-subunit genes (Vangala et al., 2014).

Additionally, two basic leucine zipper family transcription
factors appear to fulfill the role of yeast Rpn4 in up-regulating
proteasome gene expression when capacity is impaired: nuclear
factor erythroid 2-related factor 1 (NRF1, also known as NFE2L1)
and, to a lesser extent, NRF2 (Radhakrishnan et al., 2010;
Steffen et al., 2010; Lee C. S. et al., 2011; Koizumi et al.,
2018). Chromatin immunoprecipitation (ChIP)-seq experiments
identified (A/G)TGACTCAGC as the consensus binding site for
NRF1 in mice (Baird et al., 2017), which notably exists in the
enhancer or promoter regions of all proteasome subunit genes.

Similar to yeast Rpn4, NRF1 is rapidly degraded by the
UPS, albeit via a different mechanism (Figure 2B). NRF1 is
a type II integral ER membrane protein (Wang and Chan,
2006; Zhang et al., 2007) that is retro-translocated continuously
from the ER back to the cytosol under normal conditions via
the ER-associated protein degradation (ERAD) pathway, where
it is rapidly ubiquitylated and removed by 26S proteasomes
(Figure 2B; Steffen et al., 2010; Radhakrishnan et al., 2014; Sha
and Goldberg, 2014). This turnover requires ubiquitylation of
NRF1 by the ER-resident E3 HRD1 [which also acts as the retro-
translocation channel (Schoebel et al., 2017)], and subsequent
extraction by Ccd48/p97 (Steffen et al., 2010; Radhakrishnan
et al., 2014). When proteasomal capacity is limited, NRF1 stalls
during retro-translocation and is instead deglycosylated and
proteolytically liberated from the ER in an active form that
subsequently translocates into the nucleus to drive transcription
(Figure 2B; Radhakrishnan et al., 2014; Sha and Goldberg, 2014;
Lehrbach et al., 2019).

After some initial controversy regarding the identity of the
responsible protease (Sha and Goldberg, 2014, 2016; Vangala
et al., 2016), it is now clear that this cleavage is performed
by the UBL-UBA protein DDI2, using the aspartyl protease
activity provided by its distinctive retroviral protease-like domain
(Figure 2B; Koizumi et al., 2016). A likely scenario is that
this shuttle factor selectively recognizes ubiquitylated NRF1
through their ubiquitin-binding capacities and then direct its
cleavage. An analogous mechanism exists in Caenorhabditis
elegans (Lehrbach and Ruvkun, 2016, 2019), suggesting that this
activation mechanism is widely conserved among animals. Once

inside the nucleus, NRF1 stability is additionally regulated by at
least two CRL E3s that trigger its ubiquitylation and subsequent
degradation, with this turnover also sensitive to proteasome
capacity (Biswas et al., 2011; Tsuchiya et al., 2011).

In Arabidopsis, the co-ordinated expression of proteasome
subunit genes is controlled by at least two transcription factors
from the NAM/ATAF1/CUC2 (NAC) family, NAC53 andNAC78
(Yabuta et al., 2011; Nguyen et al., 2013; Gladman et al., 2016).
NAC78 (also known as NTL11 or RPX1) was initially identified
as a gene whose expression was up-regulated in response to
intense light and heat stress (Nishizawa et al., 2006; Morishita
et al., 2009), and whose knock-out increased leaf organ size
(Nguyen et al., 2013). A role in proteasome gene expression was
then identified by over-expression studies showing that NAC78
positively regulates the expression of core proteasome subunit
genes, and that its putative DNA-binding site [TGGGC, known
as the proteasome-related cis-element (PRCE)] is present within
many, but not all, associated promoters (Morishita et al., 2009;
Yabuta et al., 2011; Nguyen et al., 2013). Interestingly, while
many proteasome subunits are encoded by paralogous genes in
Arabidopsis and other plants (Fu et al., 1998a, 1999; Shibahara
et al., 2002; Yang et al., 2004; Book et al., 2010), often only
one gene of a pair is responsive to NAC78 over-expression or
treatment with proteasome inhibitors (Gladman et al., 2016),
suggestive of non-redundancy. Besides proteasome genes, an
extended collection of genes encoding proteasome accessory
proteins, assembly chaperones, autophagy components, and
detoxifying enzymes are also included within the “proteasome
stress” regulon, suggesting that plant cells use an assortment of
strategies to combat proteasome insufficiency besides assembling
more particles (Gladman et al., 2016).

Promoter-binding and phylogenetic analyses identified a close
homolog of NAC78, termed NAC53 (also known as NTL4)
that works in concert (Gladman et al., 2016). The two proteins
interact, and the elimination of both, but not each individually,
severely impairs up-regulation of the proteasome stress regulon
in response to proteasome inhibition, rendering the double nac53
nac78 mutant plants hyper-sensitive to CP inhibitors such as
MG132 and bortezomib (Figure 2B). Given that NAC53 and
NAC78 are predicted to possess a C-terminal transmembrane
domain, and that other members of the membrane-bound
NAC family have been reported to use proteolytic release from
membrane stores to regulate their transcriptional activity (Kim
et al., 2007), we predict that a cleavage mechanism similar to
that employed to release mammalian NRF1 from membranes
operates in plants (Figure 2B). In support, Arabidopsis harbors
a homolog of DDI2 (Farmer et al., 2010) that could use its
internal retroviral protease domain to cleave NAC53 and NAC78,
thus permitting their release from the ER and entry into the
nucleus where they would then activate the proteasome stress
regulon (Figure 2B).

REGULATED ASSEMBLY OF THE
PROTEASOME CORE PROTEASE

Assembly of the holo-26S proteasome following subunit
synthesis is a highly complex process that requires numerous
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dedicated chaperones and maturation factors (Figure 3; Howell
et al., 2017; Rousseau and Bertolotti, 2018). Construction of the
CP and the Rpt ring of the RP are particularly challenging as
compared to their bacterial and archeal counterparts, due to
diversification of the α, β and Rpt subunits. This heterogeneity
imposes positional constraints on the ordered assembly of the
corresponding α and β heptameric rings and the Rpt hexameric
ring, and subsequent docking of these rings in correct register
with each other. As such, proteasome assembly is a relatively
slow process, with an experimentally determined half-time of
around 20min in yeast (Chen and Hochstrasser, 1996), and
between 30 and 80min in mammalian cells (Yang et al., 1995;
Heink et al., 2005; Hirano et al., 2005). Because the individual
subunits of the α, β and Rpt rings share substantial sequence
and structural similarity, having likely evolved from a common
ancestor (Gille et al., 2003), mis-assembly can and does occur,
leading to faulty assembly intermediates that sterically occlude
or otherwise interfere with construction and/or activity of the CP
and/or RP (Gerards et al., 1997, 1998; Yao et al., 1999; Takeuchi
and Tamura, 2004; Ishii et al., 2015). Thus, mechanisms to limit
the formation of these dysfunctional products, and remove any
that arise inadvertently, are essential for maintaining a healthy
proteasome pool.

CP assembly begins with formation of individual α-rings
(Hirano et al., 2008), which then provide a platform onto which
the β-subunits incorporate (Figure 3; Frentzel et al., 1994; Nandi
et al., 1997; Schmidtke et al., 1997). Initial assembly of the α-
ring is controlled by two hetero-dimeric chaperones, termed
Pba1-Pba2 and Pba3-Pba4 in yeast, and PAC1-PAC2 and PAC3-
PAC4 in mammals, that provide scaffolds upon which the α-rings
are built (Hirano et al., 2005; Kock et al., 2015; Wani et al.,
2015). Pba1-Pba2 can associate with individual α-subunits in
vitro and in vivo to initiate α-ring formation (Hirano et al., 2005;
Le Tallec et al., 2007). Both chaperone subunits also contain a
HbYX motif that allows them to bind and stabilize adjacent α-
subunits as they associate (Kusmierczyk et al., 2011). The HbYX
motif of Pba1 inserts into a pocket formed at the α5-α6 subunit
interface, whereas that of Pba2 inserts at the α6-α7 interface,
which together likely generate an α5-α6-α7 trimer (Kusmierczyk
et al., 2011). How the α1, α2, α3 and α4 subunits are subsequently
integrated is unknown, but a role for the Pba3-Pba4 chaperone is
likely (see below). Although still viable, yeast cells lacking Pba1-
Pba2 accumulate immature CP species containing structurally
unstable α-rings, from which α5 and α6 readily dissociate (Wani
et al., 2015), while mammalian cells with reduced levels of PAC1-
PAC2 accumulate fewer complete α-rings (Hirano et al., 2005).

Through binding to the pockets between the α5, α6 and α7
subunits, Pba1-Pba2 also prevents premature association of CP
assembly intermediates with the RP or other activating factors
(Stadtmueller et al., 2012). In mature 26S proteasomes, one of
the α5-α6 or α6-α7 pockets is occupied by the HbYX motif of
Rpt5 (Tian et al., 2011; Beck et al., 2012; Schweitzer et al., 2016).
Because Pba1-Pba2 appears to have a much higher affinity for
α5-α6-α7 present in the CP intermediates as compared to those
in the mature CP, they can outcompete Rpt5 and the rest of the
RP for binding until the α-ring matures (Wani et al., 2015). It
remains unclear what causes this affinity switch of Pba1-Pba2

for the α-ring, but allosteric effects caused by processing of
the β-subunit propeptides, or steric alterations in the sizes of
the α-ring pore and HbYX-binding pockets, might be involved
(Kusmierczyk et al., 2011; Stadtmueller et al., 2012; Kock et al.,
2015; Wani et al., 2015).

The Pba3-Pba4 heterodimer also participates in the early
stages of α-ring assembly (Hirano et al., 2006, 2008; Le Tallec
et al., 2007; Yashiroda et al., 2008). It binds tightly to the
surface of the α5 subunit that faces the β-subunits (Kusmierczyk
et al., 2008; Yashiroda et al., 2008), and is thus displaced from
the ring by incoming β4 (Figure 3; Hirano et al., 2008). Pba3-
Pba4 has a unique role among assembly chaperones in that
it ensures formation of canonical 20S proteasomes in which
each α-subunit is present in its correct position (Kusmierczyk
et al., 2008). In the absence of Pba3-Pba4, aberrant α-subunit
rings accumulate, containing an invariant α5-α6-α7-α1 hetero-
tetramer, plus various arrangements of α2, α3 and α4 (Velichutina
et al., 2004; Kusmierczyk et al., 2008; Takagi et al., 2014;
Padmanabhan et al., 2016). Only in the presence of Pba3-Pba4 are
all seven α-subunits integrated in correct register, thus generating
a uniform CP architecture.

Upon completion, the α-ring provides a platform for
assembling the β-ring, formation of which starts with β2, followed
by sequential incorporation of the β3, β4, β5, β6 and β1 subunits
(Figure 3). Entry of the “early” β subunits β2, β3 and β4 creates a
semi-stable 13S intermediate (Li et al., 2007; Hirano et al., 2008),
while subsequent entry of β5, β6 and β1 gives rise to a semi-stable
15S intermediate (Li et al., 2007; Hirano et al., 2008). In both
yeast andmammals, β7 is the last β-subunit to integrate (Marques
et al., 2007; Hirano et al., 2008; Li et al., 2016), leading to a
transient species called the “half-proteasome.” Most β-subunits,
excluding β3 and β4, are synthesized as precursors bearing an
N-terminal propeptide, which helps with ring assembly and is
then removed in mature particles. For example, the propeptides
in β2 and β5 are essential for recruiting and incorporating β3 and
β6, respectively, into the β ring (Chen and Hochstrasser, 1996;
Hirano et al., 2008). For β1, β2, and β5, it is also critical that
these extensions be removed to expose their N-terminal catalytic
threonine residues that are essential for peptide bond cleavage
(Chen and Hochstrasser, 1996; Schmidtke et al., 1996; Seemuller
et al., 1996; Huber et al., 2016; Li et al., 2016).

Construction of the β-ring is also aided by binding of
the Ump1 chaperone at the center of the α-ring prior to or
concomitant with β2 binding (Figure 3; Ramos et al., 1998; Sá-
Moura et al., 2013). Yeast lacking the intrinsically disordered
Ump1 accumulate CP precursors, arguing that it plays a positive
role in assembly (Ramos et al., 1998). However, genetic studies
have implied a negative role, specifically by preventing premature
dimerization of partially assembled α/β-ring precursors until a
complete 15S half-proteasome is formed (Li et al., 2007). The
N-terminal third of Ump1, which is dispensable for CP binding
(Burri et al., 2000), performs this checkpoint function. The
proximity of this region to β6 ideally positions Ump1 to both
block dimerization and sense the arrival of β7 as the final subunit
to be incorporated (Kock et al., 2015).

Integration of β7 promotes dimerization of two half-
proteasomes by insertion of its C-terminal tail into a groove
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FIGURE 3 | Assembly Pathway for 26S Proteasomes in Yeast. Formation of the CP begins with assembly of the α-subunit ring, which is mediated by two

hetero-dimeric chaperone complexes, Pba1-Pba2 and Pba3-Pba4. Upon α-ring completion, the CP β-subunits are incorporated in a specific order, starting with β2

followed by β3, β4, β5, β6 and β1, resulting in sequential formation of 13S, 15S and half-proteasome intermediates. Assembly of the β-ring is assisted by the Ump1

chaperone, and the resulting half-proteasome is capped by Blm10. The β7 subunit is then incorporated, which promotes the association of two half-proteasomes to

generate a complete CP. Auto-catalytic removal of the β-subunit propeptides then activates the CP and leads to Ump1 degradation. The RP base assembles from

three separate chaperone modules, namely Nas2-Rpt4-Rpt5, Nas6-Rpt3-Rpt6-Rpn14, and Hsm3-Rpt1-Rpt2-Rpn1. These modules associate with one another in an

ordered manner to construct the Rpt ring, followed by incorporation of Rpn2, Rpn13, and finally Rpn10 to form the completed base. The RP lid assembles largely

spontaneously, beginning with dimerization of Rpn8 and Rpn11, followed by sequential recruitment of Rpn6, Rpn5, Rpn9, a trimeric Rpn3-Rpn7-Sem1 complex, and

finally, Rpn12. The lid and base then combine to form a complete RP. Upon completion of CP and RP assembly, the two sub-complexes associate to form the mature

26S holo-proteasome. This association occurs via insertion of C-terminal HbYX motifs from the Rpt subunits into pockets between adjacent CP α-subunits. Finally,

correct CP-RP association is confirmed by an Ecm29-mediated checkpoint.

between β1 and β2 in the opposite β-ring (Figure 3). Following
this coupling, the propeptides of β1, β2 and β5 undergo auto-
catalytic cleavage to expose their N-terminal catalytic threonine.
These active sites then proteolytically trim the neighboring
propeptides of β6 and β7 (Chen and Hochstrasser, 1996;
Schmidtke et al., 1996; Seemuller et al., 1996; Huber et al., 2016;
Li et al., 2016). Ump1 remains bound through half-proteasome
dimerization and β-subunit processing and ultimately becomes
trapped inside the CP when assembly is complete. It is then
degraded by the nascent β-subunit active sites, thus becoming the
first substrate of each proteasome (Ramos et al., 1998; Burri et al.,
2000; Griffin et al., 2000; Li et al., 2007; Hirano et al., 2008).

Finally, the CP is transiently capped with Blm10 (known as
PA200 in plants and humans). This >200 kDa HEAT-repeat
protein forms a dome on top of the CP (Schmidt et al., 2005;
Sadre-Bazzaz et al., 2010) using its C-terminal HbYXmotif for α-
ring docking (Dange et al., 2011). Blm10 likely confers increased
stability to the CP (Li et al., 2007; Lehmann et al., 2008). For
example, when deletion of the β7 tail is combined with deletion of

the BLM10 gene, yeast cells exhibit a severe CP assembly defect
(Marques et al., 2007). Additional functions have been ascribed
to Blm10, including the potential to block entry of substrates
into the CP lumen (Sadre-Bazzaz et al., 2010; Dange et al., 2011),
promote CP import into the nucleus (Weberruss et al., 2013),
and deliver dissociated CP into cytoplasmic proteasome storage
granules (PSGs) in response to metabolic stress (Weberruss et al.,
2013; Marshall and Vierstra, 2018b). In addition, CP-Blm10
complexes are particularly abundant upon treatment of cells with
proteasome inhibitors (Marshall et al., 2015; Welk et al., 2016).
Although the function(s) of these particles remain unknown,
the association of Blm10 with the CP could reflect accelerated
assembly of 26S proteasomes during such proteotoxic stress.

Although assembly of immuno- and thymo-proteasomes
proceeds in a similar step-wise manner, the three catalytic
subunits (LMP2, MECL1 and LMP7/PSMB11) are co-operatively
and preferentially incorporated in place of their constitutive
counterparts (β1, β2, and β5, respectively). One notable difference
is that LMP2 enters the immuno-proteasome assembly pathway
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much earlier than for standard proteasomes, where β1 is
typically the penultimate subunit to be incorporated (Li et al.,
2007; Hirano et al., 2008). An intermediate complex is formed
containing an α-ring, LMP2, MECL1, β3 and β4 (Nandi
et al., 1997), with LMP2 and MECL1 being incorporated
simultaneously in a mutually dependent manner (Groettrup
et al., 1997; Griffin et al., 1998; Kingsbury et al., 2000). LMP7 is
then recruited preferentially over β5 into LMP2- and MECL1-
containing intermediates (Griffin et al., 1998; Kingsbury et al.,
2000). LMP7 binds more tightly to POMP/UMP1 than β5, and
can incorporate independently of β4 (Bai et al., 2014), both
of which promote immuno-proteasome assembly. The inter-
dependency of LMP2 and MECL1 incorporation typically results
in assembly of homogenous immuno- and thymo-proteasomes
that contain all three inducible subunits (Kingsbury et al.,
2000). These variants amass approximately four times faster
than standard proteasomes (Heink et al., 2005), enabling a rapid
response to immune and inflammatory stimuli.

REGULATED ASSEMBLY OF THE
PROTEASOME REGULATORY PARTICLE

Unlike the CP, which is composed entirely of ring structures, the
RP is more architecturally heterogeneous, with the base and lid
sub-complexes assembling independently of each other (Lander
et al., 2012; Beckwith et al., 2013; Tomko and Hochstrasser,
2014; Tomko et al., 2015). As with the CP, the RP base depends
heavily on dedicated assembly chaperones for correct positioning
for the six members of the Rpt ring (Figure 3). Thus far, four
Rpt chaperones have been described: Nas2, Nas6, Hsm3 and
Rpn14 in yeast, known as p27, p28, S5b, and PAAF1, respectively,
in mammals (Funakoshi et al., 2009; Kaneko et al., 2009; Le
Tallec et al., 2009; Park et al., 2009; Roelofs et al., 2009; Saeki
et al., 2009). These chaperones are unrelated in sequence and
independently bind to the C-terminal domain of a distinct Rpt
subunit, resulting in the formation of three precursor assembly
modules: Nas2-Rpt4-Rpt5, Nas6-Rpt3-Rpt6-Rpn14, and Hsm3-
Rpt1-Rpt2-Rpn1 (Figure 3; Lee S. Y. et al., 2011; Barrault et al.,
2012; Takagi et al., 2012; Park et al., 2013; Satoh et al., 2014).
These modules are stabilized in part by the intertwining N-
terminal coiled-coil regions of the Rpt subunit pairs (Zhang et al.,
2009), which at least for one pair (Rpt1-Rpt2) is thought to begin
co-translationally (Panasenko et al., 2019). As described below,
the Nas2 and Nas6 modules first associate with each another,
followed by incorporation of the Hsm3 module, along with Rpn2
and Rpn13. Rpn10 is then recruited to complete assembly of the
RP base. A checkpoint involving ubiquitylation of Rpt5 by the
RING E3 Not4 helps ensure that the chaperone-bound modules
are integrated in the correct order (Fu et al., 2018).

Currently, two mutually non-exclusive routes for base
assembly have been proposed; in the first, the base assembles
alone, whereas in the second, base assembly is templated by
the CP. The first model is supported in yeast by the detection
of fully-constructed base sub-complexes containing assembly
chaperones, coupled with the absence of these chaperones in
holo-26S proteasomes (Kriegenburg et al., 2008; Funakoshi et al.,

2009; Le Tallec et al., 2009; Park et al., 2009; Roelofs et al.,
2009; Saeki et al., 2009). Immunoprecipitation experiments then
showed that Nas2 readily co-purifies with all components of the
Nas2 and Nas6/Rpn14 modules, but not with components of
either the Hsm3 module, lid, or CP (Tomko et al., 2010). An
analogous stepwise incorporation was inferred in mammalian
cells (Kaneko et al., 2009), although the Nas2 module, rather
than the Hsm3 module, was proposed to be the last to enter
the emerging RP base. Fully constructed base sub-complexes
complete with chaperones could also be achieved in E. coli by co-
expressing the nine base subunits along with the four constitutive
base assembly chaperones (Beckwith et al., 2013). As E. coli is
devoid of proteasomes and associated proteins, this recombinant
system defined the minimal environment for base assembly and
provided unequivocal evidence that the RP base can self-organize
independently of the CP and RP lid.

In the templated model of base assembly, base modules are
delivered to the CP and connected directly on the surface of
the CP α-ring. This model originated from the detection of
base assembly intermediates associated with the CP when the α-
ring was compromised (Kusmierczyk et al., 2008). Additionally,
C-terminal truncations of Rpt4 and Rpt6 created strong base
assembly defects, suggesting that docking of the C-terminal
HbYX motifs in these subunits onto the CP is critical for base
assembly in vivo (Park et al., 2009). Both models agree that
chaperones must dissociate from the assembled base to properly
dock the RP onto the CP to then trigger gate opening. The
base appears to exploit ATP-dependent conformational changes
in the Rpt subunits to evict the chaperones and allow stable
RP-CP association (Roelofs et al., 2009; Park et al., 2013). This
mechanism was recently described in detail for Nas6 (Nemec
et al., 2019); upon lid-base association, interaction of Rpn5 with
the base promotes an ATP-dependent conformational change in
Rpt3 that drives release of Nas6 from the nascent proteasome.

Recently, Adc17 was identified as an adaptive proteasome
assembly chaperone that regulates the Nas6-Rpt3-Rpt6-Rpn14
module in yeast (Hanssum et al., 2014). Adc17 associates
with the N-terminal domain of Rpt6 and appears to promote
Rpt3-Rpt6 dimerization, which in turn enhances proteasome
assembly under conditions that elicit proteotoxic stress.
Expression of Adc17 is induced under these conditions via
a mechanism independent of Rpn4 but regulated by the
central stress and autophagy regulator Tor1/2 (Hanssum
et al., 2014). Pharmacological or genetic inhibition of Tor1/2
enhances expression of Adc17 (and other proteasome assembly
chaperones) via the mitogen-activated protein kinase Mpk1
(ERK5/MAPK7 in mammals; Rousseau and Bertolotti, 2016),
thus representing a novel route for up-regulating 26S proteasome
assembly when its capacity is exceeded.

Co-expression studies imply that RP lid biogenesis begins with
dimerization of Rpn8 and Rpn11, followed by recruitment of
Rpn6 (Estrin et al., 2013), which then conscripts Rpn5 and Rpn9
to the particle (Sharon et al., 2006). In parallel, Rpn3 and Rpn7
are brought together by Sem1 to form a hetero-trimeric complex
(Figure 3; Fukunaga et al., 2010; Tomko and Hochstrasser, 2011,
2014). These two sub-complexes then combine to create a nearly
complete lid intermediate that lacks only Rpn12, which becomes
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the final subunit to associate (Fukunaga et al., 2010; Tomko
and Hochstrasser, 2011; Tomko et al., 2015). While no assembly
chaperones have yet been identified for the RP lid, the unusual
proteasome subunit Sem1 likely plays a critical role (Tomko
and Hochstrasser, 2014). Sem1 escaped detection for many
years because of its small size, near-complete lack of secondary
and tertiary structure, and an absence of lysine residues that
challenged its detection by proteomic methods (Russell et al.,
2013; Kragelund et al., 2016). Well-resolved cryo-EM views have
since shown that it binds to a hydrophobic pocket between
Rpn3 and Rpn7 to stabilize an otherwise weak interaction during
the early stages of lid biogenesis (Wei et al., 2008; Tomko and
Hochstrasser, 2014; Dambacher et al., 2016).

It is also becoming clear that Rpn12 is pivotal to lidmaturation
by inducing several conformational changes upon integration
(Estrin et al., 2013; Tomko et al., 2015). The RP intermediate
lacking Rpn12 adopts a more compact state as compared to
that found in the complete RP and, surprisingly, introduction
of just the C-terminal α-helix of Rpn12 is sufficient to drive
this large-scale conformational re-organization (Tomko et al.,
2015). The Rpn12 α-helix sits centrally within a helical bundle
created by clustering of the C-termini of most Rpn subunits,
and thus might be responsible for “sensing” the assembly state
of the lid.

The Rpn8-Rpn11 deubiquitylating module also undergoes
a conformational change during lid maturation (Dambacher
et al., 2016). In the isolated lid, this module is positioned
perpendicular to its orientation in the holo-proteasome, which
is likely incompatible with base binding and, importantly, might
auto-inhibit the deubiquitylating activity of Rpn11 until RP
assembly is complete (Tomko et al., 2015; Dambacher et al.,
2016). It also remains possible that additional motions beyond
those involving Rpn12 and Rpn8-Rpn11 are necessary for the
lid-base connection.

The final step in 26S proteasome assembly is association of
the RP with the CP (Figure 3). Binding is driven by docking of
the C-terminal HbYX motifs from several Rpt ring subunits into
pockets between adjacent CP α-subunits, which also promotes
gate opening and substrate entry into the CP lumen (Smith
et al., 2005, 2007; Rabl et al., 2008; Tian et al., 2011; Park et al.,
2013). This association occurs spontaneously in vitro (Liu et al.,
2006; Livnat-Levanon et al., 2014), is stabilized by ATP (Smith
et al., 2005; Liu et al., 2006), and is fully reversible (Bajorek
et al., 2003; Kleijnen et al., 2007; Wang et al., 2010b; Marshall
and Vierstra, 2018b). Rpn6 is thought to help tether the RP to
the CP through binding to the α2 subunit (Lander et al., 2012;
Pathare et al., 2012). Several additional factors have also been
implicated, including Ecm29, which appears to provide a critical
quality control checkpoint by binding to structurally aberrant
proteasomes and repressing both the ATPase activity of the RP
and gate opening of the CP in these particles (Lehmann et al.,
2010; Lee S. Y. et al., 2011; Panasenko and Collart, 2011; Park
et al., 2011; De La Mota-Peynado et al., 2013; Wang et al., 2017).
Hsp90 has also been implicated in CP-RP assembly (Imai et al.,
2003; Yamano et al., 2008), but its precise role(s) remain unclear.

At present, there is only a rudimentary understanding of
26S proteasome assembly in plants. Proteasome preparations
from Arabidopsis routinely contain free CP, RP, and singly- and

doubly-capped 26S particles, along with a definitive relative of
Blm10 (PA200) connected to the CP (Yang et al., 2004; Book
et al., 2010). Mutants eliminating PA200 do not display defects
in phenotype, ubiquitin conjugate accumulation, proteasome
activity, or sensitivity to proteasome inhibitors (Book et al.,
2010). However, a role for PA200 in proteasome regulation is
inferred by its ability to bind to the CP under conditions that
induce proteotoxic stress (Book et al., 2010; Marshall et al., 2015),
like its mammalian counterpart (Welk et al., 2016). PA200 is
also essential for the entry of free CPs into PSGs during fixed-
carbon starvation, and thus has a role in proteasome storage
(Marshall and Vierstra, 2018b; see below). Possible orthologs of
the yeast assembly chaperones, Pba1, Pba2, Pba3, Pba4, Ump1,
Nas2, Nas6, Hsm3, and Ecm29 have also been detected in plants,
but their amino acid sequence similarities are sufficiently low
to prevent conclusive assignments (D. C. Gemperline, R. S.
Marshall, and R. D. Vierstra, unpublished data). However, the
expression of most, if not all, of these putative chaperones is up-
regulated upon proteasome inhibition in Arabidopsis (Gladman
et al., 2016), as might be expected for factors needed to assemble
proteasomes when supply is limited.

SUBCELLULAR LOCALIZATION OF 26S
PROTEASOMES

Fully assembled 26S proteasomes are not static entities, but
instead exhibit dynamic behavior by dissociating into free RP and
CP sub-particles, shuttling between the cytoplasm and nucleus,
and re-locating between compartments in response to different
growth, development or environmental challenges. When tagged
with GFP, most proteasome subunits fully incorporate into their
appropriate sub-complexes, thus enabling live cell imaging of
the CP, RP, and/or holo-26S particles. Using these reporters in
yeast, mammals and plants, it is evident that the CP and RP
are diffusely spread throughout both the cytosol and nucleus,
though often substantially enriched in the latter compartment
(Figure 4A; Reits et al., 1997; Enenkel et al., 1998; Russell et al.,
1999; Brooks et al., 2000; Pack et al., 2014; Marshall et al., 2015).
Measurements of proteasome activity in the two compartments
have varied greatly (Gardner et al., 2005; Chen andMadura, 2014;
Dang et al., 2016). Numerous studies, including recent cryo-
electron tomographic imaging in the green alga Chlamydomonas
reinhardtii, found that proteasomes are not distributed evenly
within the nucleus, but instead accumulate at the inner nuclear
membrane, in the vicinity of nuclear pore complexes (Enenkel
et al., 1998; Takeda and Yanagida, 2005; Albert et al., 2017).

Fluorescence correlation spectroscopy determined the
absolute concentration of the 26S proteasome in actively
dividing yeast cells to be 830–980 nM in the nucleus but only
140–200 nM in the cytoplasm (Pack et al., 2014), with similar
concentrations observed in cultured mammalian neuronal
cells (Asano et al., 2015). However, proteasome concentration
can be much higher in localized areas at the inner nuclear
membrane, being recorded at over 8µM in C. reinhardtii (Albert
et al., 2017). By contrast, proteasomes in quiescent cells are
exported from the nucleus and sequestered into reversible,
motile cytoplasmic PSGs that collectively reflect a rapid and
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FIGURE 4 | Intracellular Localization of 26S Proteasomes in Arabidopsis and Yeast. The location of proteasomes was tracked by tagging proteasome subunits with

GFP, which allows in vivo detection via confocal fluorescence microscopy (A–E), and a quantitative assay for proteaphagy by measuring the release of free GFP from

the tagged subunits upon entry into vacuoles (F). (A) 26S proteasomes are found in the cytosol and nucleus of Arabidopsis and yeast cells grown in nutrient-rich

conditions. Shown is localization of the PAG1-GFP protein in root tip cells of a 7-day-old Arabidopsis seedling (left), or the Pre10-GFP or Rpn5-GFP proteins in

exponential phase yeast cells (top right and bottom right, respectively). Scale bars, 25µm (left) and 1µm (right). (B) Yeast 26S proteasomes localize into IPOD-like

structures upon inhibition, but to PSGs upon carbon starvation. Cells expressing Pre10-GFP and the IPOD marker Rnq1-mCherry were grown in nutrient-rich medium

then switched to either medium containing 80µM MG132 (top) or medium lacking carbon (bottom) for 8 h and imaged by confocal fluorescence microscopy. Scale

bar, 1µm. (C) Yeast 26S proteasomes are delivered to the vacuole upon nitrogen starvation but sequester into cytoplasmic PSGs upon carbon starvation in yeast.

Cells expressing Pre10-GFP were grown in nutrient-rich medium, switched to medium lacking either nitrogen or carbon for 8 h, and then imaged by confocal

fluorescence microscopy. Scale bar, 1µm. (D) 26S proteasomes are sequestered into cytoplasmic PSGs upon fixed carbon starvation in Arabidopsis. 7-day-old

Arabidopsis seedlings expressing PAG1-GFP were grown in the light in sucrose-containing medium and then switched to growth in the dark in sucrose-free medium

for 16 h. Root cells of the lower elongation zone were imaged by confocal fluorescence microscopy. Scale bar, 10µm. (E) Arabidopsis 26S proteasomes are

sequestered in autophagic bodies inside vacuoles upon nitrogen starvation. Seedlings expressing PAG1-GFP or RPN5a-GFP were grown on nutrient-rich medium

and then switched to growth on nitrogen-free medium plus 1µM concanamycin A for 16 h. Root cells of the lower elongation zone were imaged by confocal

fluorescence microscopy. Scale bar, 10µm. (F) Time course for the autophagy-mediated release of free GFP from Pre10-GFP upon nitrogen starvation in yeast.

Wild-type (WT) or autophagy-defective 1atg7, 1atg10, or 1atg13 cells expressing Pre10-GFP were grown in nutrient-rich medium then switched to medium lacking

nitrogen for the indicated times (left panel) or 8 h (right panel). Total protein extracts were then assayed for accumulation of free GFP by immunoblot analysis with

anti-GFP antibodies. Open and closed arrowheads locate the Pre10-GFP fusion and free GFP, respectively. Immunodetection of histone H3 was used to confirm

near-equal protein loading. In panels (A–E); N, nucleus; V, vacuole; IPOD, insoluble protein deposit; PSG, proteasome storage granule. Images were adapted with

permission from Marshall et al. (2015, 2016) and Marshall and Vierstra (2018b).

dramatic re-localization of 26S proteasomes out of the nucleus,
presumably for storage (Figures 4B–D; Bingol and Schuman,
2006; Laporte et al., 2008; Yedidi et al., 2016; Gu et al., 2017;
Marshall and Vierstra, 2018b). Re-feeding with a fresh carbon
source immediately reverses this process by stimulating rapid
import of the RP and CP sub-particles back into the nucleus
followed by holo-26S proteasome assembly. While not found
in granules, aged proteasomes (over 3 days old) were similarly
found to be largely cytosolic in mouse embryonic fibroblasts
(Tomita et al., 2019).

Given the sheer size of 26S proteasomes and their RP and
CP sub-particles, a major challenge to cells during proteasome
re-localization is the transport of these particles into and out of
the nucleus through their size-limited nuclear pores (Beck and
Hurt, 2017). In proliferating yeast, proteasomes are imported
into the nucleus as CP and RP assembly intermediates, each
of which bears one or more nuclear localization signals (NLS;
Tanaka et al., 1990; Nederlof et al., 1995). The NLS is recognized
by an importin-α/β heterodimer assembled from two members
of the β-karyopherin family, termed Srp1/Kap60 and Kap95,
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respectively (Enenkel et al., 1995). Given that only a small
number of proteasome subunits contain an NLS, it was originally
speculated that yeast proteasomes enter the nucleus as separate
CP, RP lid and RP base sub-complexes (Lehmann et al., 2002;
Wendler et al., 2004; Isono et al., 2007). However, several
studies subsequently implied that the final steps of CP assembly
occur in the nucleus after importin-α/β dependent transport.
For example, co-immunoprecipitation studies with Srp1 detected
its association with CP assembly intermediates but not with
the mature CP, as reflected by the presence of unprocessed
β5 subunit propeptides (Lehmann et al., 2002). Additionally,
yeast CP assembly intermediates accumulate in the nucleus
when their maturation is suppressed by deletion of Ump1
(Lehmann et al., 2002).

The CP has been proposed to exist in import-competent and
import-incompetent configurations, depending on accessibility
of the NLS within specific α-subunits (Tanaka et al., 1990). Recent
cryo-EM structures support this hypothesis by showing that NLS
sequences in the CP are exposed in assembly intermediates due to
disorder within the α-rings (Kock et al., 2015; Wani et al., 2015),
but are masked in more mature particles due to conformational
changes that close the α-rings and permit RP binding. In a similar
fashion, the RP base appears to be imported by itself into the
nucleus using an NLS within the Rpt2 or Rpn2 subunits that
binds importin-α/β (Wendler et al., 2004; Isono et al., 2007;
Savulescu et al., 2011; Weberruss et al., 2013). Blm10, a protein
structurally related to Rpn2, also facilitates nuclear import of
mature CP upon resorption of PSGs, when quiescent cells resume
growth following periods of starvation (Weberruss et al., 2013).

A collection of studies also indicate that entire holo-
proteasomes can undergo nuclear translocation without
disassembly (Reits et al., 1997; Chen et al., 2011; Savulescu
et al., 2011; Pack et al., 2014). This should be possible given
that the channel of the nuclear pore complex can expand to
accommodate cargo with a diameter of up to 39 nm (Pante and
Kann, 2002), although the mechanism by which this might occur
remains obscure (Burcoglu et al., 2015). The most convincing
evidence comes from a genetically stabilized 26S proteasome
in which the α4 subunit of the CP was translationally fused
to the Rpt1 or Rpt2 subunits of the RP, thus blocking CP-RP
dissociation. Surprisingly, these 26S proteasomes did not exhibit
obvious structural defects and were distributed normally in the
nucleus, even upon exit of cells from stationary phase when
cytosolic PSGs dissolve and the levels of nuclear proteasomes
returned back to normal (Laporte et al., 2008; Pack et al.,
2014). Since protein synthesis is stalled during quiescence,
CP precursors were not available for import, leading to the
conclusion that a nuclear import pathway exists that makes
use of the older, mature, stabilized complexes (Pack et al.,
2014). As will be described below, nuclear 26S proteasomes also
become substrates of autophagy following nitrogen starvation or
inactivation, which a priori requires export from the nucleus. A
current model posits that 26S particles dissociate into free, stable
CP and RP sub-complexes, which are then separately exported
(Nemec et al., 2017).

In addition to nuclear and cytoplasmic proteasomes, a plasma
membrane-localized form of the CP was recently described
in mammalian neurons (Ramachandran and Margolis, 2017).

This novel CP is exposed to the cell surface, and appears to
exclusively degrade ribosome-associated nascent polypeptides
in a ubiquitin-independent manner upon their synthesis after
neuronal stimulation (Ramachandran et al., 2018). An intriguing
possibility is that these bound proteasomes directly extrude
peptides out of the cell to attenuate neuronal activity-induced
calcium signaling (Ramachandran and Margolis, 2017). Whether
such membrane-associated proteasomes exist in other organisms
or cell types remains to be determined.

PROTEASOME REGULATION BY
POST-TRANSLATIONAL MODIFICATION

Post-translational modifications of 26S proteasomes offer
additional opportunities to influence proteasome assembly,
activity, localization and abundance. Thus far, over 350
sites of post-translational modification have been identified
on the 26S particle, which include acetylation, ADP-
ribosylation, glycosylation, methylation, myristoylation,
oxidation, phosphorylation, SUMOylation, ubiquitylation, and
proteolytic processing (Kikuchi et al., 2010; Cui et al., 2014;
Hirano et al., 2016). In fact, the same proteasome site might be
targeted by more than one modification, suggesting cross-talk
between different types (Zong et al., 2014). Unfortunately,
the functional consequences for most of these alterations are
currently unclear.

One common modification is phosphorylation, which affects
almost all proteasome subunits and is directed by an assortment
of proteasome-interacting kinases and phosphatases (Iwafune
et al., 2002; Lu et al., 2008; Kikuchi et al., 2010). As an
example of the importance of phosphorylation, treatment of
purified mammalian proteasomes with alkaline phosphatase
leads to dissociation of the CP and RP (Satoh et al., 2001).
Phosphorylation of Ser-120 in RPT6 by protein kinase A (PKA),
and its dephosphorylation by protein phosphatase 1γ (PP1γ),
likely regulates the interaction between RPT6 and the α2 subunit
of the CP to effect this dissociation (Satoh et al., 2001; Asai et al.,
2009). Ser-14 of RPN6 also becomes phosphorylated by PKA,
which leads to increased levels of doubly-capped proteasomes,
thus stimulating overall protein degradation rates (Lokireddy
et al., 2015), consistent with the proposed role for RPN6
in mediating CP-RP association (Lander et al., 2012; Pathare
et al., 2012). Another example is the phosphatase UBLCP1,
which binds to RPN1 via a UBL domain and subsequently
dephosphorylates RPT1. This modification regulates nuclear
proteasome assembly, again by controlling association of the
RP and CP (Guo et al., 2011; Sun et al., 2017). The interaction
of Ecm29 with the proteasome is similarly regulated by
phosphorylation of the CP subunit α7 (Wani et al., 2016).

Ubiquitylation of 26S proteasomes has been shown to
have multiple effects. Extensive ubiquitylation of the yeast
and Arabidopsis particles directs non-functional complexes for
autophagic degradation via specific receptors that bind to both
the ubiquitin moieties on the impacted proteasome subunits and
ATG8 (Marshall et al., 2015, 2016; Cohen-Kaplan et al., 2016;
see below). As mentioned above, specific ubiquitylation of the
proteasomal ubiquitin receptors Rpn10 and Rpn13 suppresses
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their ability to recognize substrates (Isasa et al., 2010; Lipinszki
et al., 2012; Jacobson et al., 2014; Zuin et al., 2015), while
ubiquitylation of Rpt5 appears to be an important checkpoint
during Rpt ring assembly (Fu et al., 2018).

The function(s) of other 26S proteasome modifications are
less well-defined. The Rpt2 subunit of the RP has been shown
to be N-myristoylated in multiple species, which could tether
proteasomes to membrane surfaces (Shibahara et al., 2002;
Gomes et al., 2006; Kimura et al., 2012, 2016). In yeast,
the N-terminus of Rpt1 is mono- or di-methylated, and a
mutant strain blocking this modification is more sensitive to
proteotoxic stress induced by hydrogen peroxide or the amino
acid analog canavanine (Kimura et al., 2013). Other examples
include glutathionylation of the α5 subunit, which might affect
gating of the yeast CP (Demasi et al., 2003; Silva et al., 2012),
and attachment of N-acetylgalactosamine to mammalian RPT2,
which inhibits the ATPase ring of the RP base and hence
reduces overall proteasome degradation rates (Zhang et al., 2003).
A role for N-acetylation of proteasome subunits by the NatB
complex in assembling PSGs has been inferred from the effects
of 1nat3 and 1mdm20 mutants on this re-localization (van
Deventer et al., 2015; Marshall and Vierstra, 2018b). Further
work is clearly needed to establish the reasons for the myriad of
other modifications.

AUTOPHAGY-MEDIATED CONTROL OF
26S PROTEASOME ABUNDANCE

While the synthesis and assembly of proteasomes has been
studied for over a decade, their turnover had remained
obscure until recently. Proteasomes are stable complexes
(Pack et al., 2014), with a half-life of 16 h in mouse
embryonic fibroblasts (Tomita et al., 2019) and over 2 weeks
when measured in rat liver cells (Tanaka and Ichihara,
1989), but under specific conditions their degradation can
be rapid and extensive. One turnover mechanism involves
caspase-mediated cleavage. Following induction of apoptosis
in human cells, the RP subunits RPT5, RPN2 and RPN10
are cleaved by caspase-3, resulting in impaired proteasome
activity and the accumulation of ubiquitylated substrates
(Sun et al., 2004). Similarly, caspase-3 activation in D.
melanogaster cells leads to cleavage of the α2, α4 and β4
subunits of the CP, and the RPT1 subunit of the RP (Adrain
et al., 2004). Presumably these impaired proteasomes are
then removed, possibly by autophagy (see below). A second
pathway is the removal of non-functional proteasome subunits
by the UPS itself prior to their integration into the holo-
proteasome. Hsp42 was shown to be important in yeast by
coalescing these polypeptides into cytoplasmic condensates
from which they are cleared by active 26S proteasomes
(Peters et al., 2015; Nahar et al., 2019).

A third pathway for degrading 26S proteasomes that has
recently gained in appreciation is autophagy, via a route termed
proteaphagy (Figure 5; Marshall and Vierstra, 2015; Marshall
et al., 2015, 2016). Autophagy involves the delivery of cytoplasmic
material to the vacuole (in plants and yeast) or lysosome

(in mammals) for breakdown by resident hydrolases (Reggiori
and Klionsky, 2013; Gatica et al., 2018; Marshall and Vierstra,
2018a; Levine and Kroemer, 2019). It is the preferred catabolic
route for large, heterogeneous cytoplasmic material, such as
protein aggregates, organelles, lipid droplets, or even invading
pathogens whose sizes exceed the spatial capacity of proteasomes.
The defining feature of the most common autophagic route,
macroautophagy (referred to here as autophagy), is the de novo
formation of a cup-shaped membrane called the phagophore (or
isolation membrane) that encircles portions of cytoplasm. The
phagophore ultimately seals to generate a double membrane-
bound autophagosome, the outer membrane of which then fuses
with the vacuole or lysosome to release the internal vesicle as an
autophagic body (see Figure 6). The contents of the autophagic
body and its limiting membrane are rapidly consumed by a
collection of vacuolar hydrolases with acidic pH optima (Parzych
and Klionsky, 2018), with the constituent amino acids, fatty acids,
carbohydrates and nucleotides ultimately re-used for survival or
to power new growth.

Through studies on a variety of organisms over the past
two decades, the core machinery underpinning autophagy has
emerged, driven by a conserved collection of “autophagy-related”
(Atg) proteins. These are traditionally classified into distinct
biochemical and functional groups that act at specific stages
during autophagy, and include: (i) the Atg1 serine/threonine
kinase complex that initiates autophagy in response to upstream
signals from nutrient-sensitive kinases, such as Snf1 and Tor1/2;
(ii) the Atg9 transmembrane protein required for membrane
delivery; (iii) the class III phosphatidylinositol-3-kinase (PI3K)
complex that generates the phosphatidylinositol-3-phosphate
(PI3P) signal important for autophagosome nucleation; (iv) the
Atg2-Atg18 complex involved in membrane extension at the site
of PI3P labeling; and (v) the ubiquitin-fold protein Atg8 and
its conjugation machinery that are crucial for autophagosome
dynamics and cargo recruitment (Ohsumi, 2001; Marshall and
Vierstra, 2018a; Levine and Kroemer, 2019).

Atg8 (known as MAP1LC3 or GABARAP in mammals) is the
signature element of the autophagy system. Its functions depend
on attachment to the lipid phosphatidylethanolamine (PE) via a
conjugation cascade mechanistically analogous to ubiquitylation.
Atg8 is activated by the E1 Atg7, transferred to the E2 Atg3, and
finally connected via an ether linkage to PE by a hexameric E3
ligase complex comprised of a conjugate between Atg5 and Atg12
which is then bound to Atg16.

Lipidated Atg8 becomes embedded in the autophagic
membranes, where it serves two purposes. One is to promote
membrane expansion, autophagosome closure, and final docking
with the vacuole or lysosome through interactions with a
collection of adaptors that bind both components of the vesicular
transport machinery and the Atg8-PE adduct. The other is to
tether cargo to the enveloping phagophore through interactions
between Atg8-PE and a plethora of receptors that recognize
specific cargo (Rogov et al., 2014; Farré and Subramani, 2016;
Gatica et al., 2018; Marshall and Vierstra, 2018a). The best-
known adaptors/receptors bind Atg8 with low micromolar
affinity through an Atg8-interacting motif [AIM, also called an
LC3-interacting region (LIR)] bearing two hydrophobic residues
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FIGURE 5 | Pathways for Autophagic Degradation of 26S Proteasomes. (A) A model for starvation-induced proteasome degradation versus storage in yeast. When

cells are subjected to nitrogen or carbon starvation, 26S proteasomes dissociate into the CP and RP sub-complexes and are exported from the nucleus via the

exportin Crm1. Upon nitrogen starvation, the CP and RP coalesce into cytoplasmic foci in a Snx4/41/42-dependent manner. They are then encapsulated by the

expanding phagophore and delivered to the vacuole for degradation, a process requiring the Atg1 kinase complex and the Atg8 lipidation machinery. Deubiquitylation

of one or more CP subunits by Ubp3/Bre5 may also be required. Whether specific Atg8-binding autophagy receptors are involved remains unknown. In contrast,

carbon starvation, which results in cytoplasmic acidification and reduced ATP levels, triggers re-localization of the CP and RP into cytoplasmic proteasome storage

granules (PSGs). This accretion requires numerous factors, including Blm10 for the CP, Spg5 and the C-terminus of Rpn11 for the RP, and the NatB N-terminal

acetylation complex (consisting of Nat3 and Mdm20) for both. PSGs act to store proteasome sub-complexes and protect them from autophagic degradation.

Preventing sequestration of proteasomes into PSGs leads to their Atg1- and Atg8-dependent turnover. (B) A model for starvation-induced proteasome degradation in

humans. When HeLa cells are subjected to amino acid starvation, the proteasome subunits RPN1, RPN10, and RPN13 become poly-ubiquitylated by one or more E3

ligases, facilitating their recognition by the autophagy receptor p62/SQSTM1. By simultaneous interaction with lipidated ATG8/LC3, p62 delivers inactive proteasomes

to the expanding phagophore for eventual turnover by autophagy, a process requiring the TOR kinase and the ATG8/LC3 lipidation machinery. (C) A model for

inhibitor-induced proteaphagy in Arabidopsis and yeast. Proteasomes subjected to chemical or genetic inhibition, including by the pathogen effector HopM1, are

exported from the nucleus and aggregate in an Hsp42-dependent manner into insoluble protein deposit (IPOD)-like structures that are distinct from PSGs. The

aggregated proteasomes are then ubiquitylated by one or more E3 ligases, facilitating their recognition by the selective proteaphagy receptors Cue5 in yeast or

RPN10 in Arabidopsis. By simultaneous interactions with lipidated ATG8, these receptors deliver inactive proteasomes to enveloping autophagic vesicles for final

turnover in the vacuole. PE, phosphatidylethanolamine; PI3P, phosphatidylinositol-3-phosphate.

that insert into complementary hydrophobic pockets on the
surface of Atg8 (Noda et al., 2008, 2010; Klionsky and Schulman,
2014; Maqbool et al., 2016; Rogov et al., 2018), although
additional binding mechanisms have recently been described
(Marshall et al., 2019).

Through a rapidly expanding collection of receptors, a wide
array of selective autophagic routes have emerged, including
dedicated pathways for clearing protein aggregates, stress
granules, mitochondria, peroxisomes, chloroplasts, ER, nuclear
components, lipid bodies, ribosomes, and intracellular pathogens
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FIGURE 6 | The Life Cycle of a 26S Proteasome. Proteasome subunit synthesis from individual amino acids is regulated by transcription factors such as Rpn4 in

yeast, NRF1 in mammals, and NAC53/NAC78 in plants, the activities of which are sensitive to changing physiological conditions, in particular proteotoxic stress. The

various subunits then assemble in a co-ordinated manner to form the mature holo-26S proteasome, with assistance from a suite of dedicated chaperones.

Proteasomes localize to either the cytosol or nucleus, where their activity can be regulated by an array of post-translational modifications and associated factors. They

ultimately recognize and degrade poly-ubiquitylated substrates in a process mediated by intrinsic and extrinsic ubiquitin receptors. Finally, excess or damaged

proteasomes can be degraded in the vacuole or lysosome via one of several autophagic pathways, some which are mediated by signals from the nutrient-responsive

Atg1 kinase, subunit ubiquitylation, and/or a variety of autophagy receptors, including Cue5 in yeast, p62/SQSTM1 in mammals, and RPN10 in plants. Autophagic

degradation of 26S proteasomes recycles amino acids, which can then be used for the synthesis of new particles.

(Kraft et al., 2008; Mochida et al., 2015; Farré and Subramani,
2016; Khaminets et al., 2016; Yamano et al., 2016; Gatica et al.,
2018; Marshall and Vierstra, 2018a; Wyant et al., 2018). As will
be described below, proteasomes are also rapidly cleared by
autophagy using at least two proteaphagic routes (Marshall and
Vierstra, 2015; Marshall et al., 2015, 2016; Cohen-Kaplan et al.,
2016; Waite et al., 2016; Nemec et al., 2017).

AUTOPHAGIC DEGRADATION OF 26S
PROTEASOMES UPON NUTRIENT
STARVATION

Autophagic flux is up-regulated upon nutrient starvation,
which includes lack of nitrogen, fixed-carbon, phosphate,

and various micronutrients such as zinc, resulting in the
bulk degradation of cytoplasmic material, often in a non-
specific manner (Takeshige et al., 1992; Thompson et al.,
2005; Adachi et al., 2017; Kawamata et al., 2017). Early
hints that 26S proteasomes could be targets for autophagic
degradation came from immuno-electron microscopy studies
that observed 20S proteasome subunits in rat liver lysosomes,
particularly upon starvation (Cuervo et al., 1995). Subsequently,
multiple proteomic studies cataloging autophagosome contents
identified proteasome subunits as cargo (Gao et al., 2010;
Dengjel et al., 2012; Mancias et al., 2014; Le Guerroué
et al., 2017), while more recent multi-omics studies in
humans and maize confirmed that proteasomes are extensively
degraded by both basal and starvation-induced autophagy
(Zhang et al., 2016; McLoughlin et al., 2018).
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Autophagic degradation of proteasomes can easily be
visualized using subunits tagged with GFP or other fluorescent
reporters. For example, transfer of the fluorescent signals
from the nucleus and cytoplasm to autophagic bodies in the
vacuole is evident within hours of nitrogen starvation in both
Arabidopsis and yeast, and within 12 h almost all proteasomes
from both organisms have moved to the vacuole via autophagy
(Figures 4C,E). This transfer and subsequent breakdown can
then be quantified by immunoblot analysis of the proteasome
subunits fused to GFP-type reporters (Figure 4F). Whereas, the
tagged proteasome subunit is rapidly degraded as the autophagic
body breaks down, the GFP moiety is remarkably stable and
accumulates in the vacuole. The ratio of the GFP fusion to
free GFP thus provides a reliable assay to measure autophagic
turnover rates. Using this assay in yeast, it was shown that more
than 80% of cellular proteasomes are degraded by autophagy after
8 h of nitrogen starvation (Figure 4F; Marshall et al., 2016).

The starvation-induced autophagic degradation of
proteasomes, along with similarly abundant ribosomes
(Kraft et al., 2008; Wyant et al., 2018), will rapidly provide
a pool of free amino acids that can sustain cell viability when
nitrogen is scarce. Given the fast induction of autophagy when
nutrients are limiting (Takeshige et al., 1992; Thompson et al.,
2005), proteasomes themselves probably play little role in
starvation-induced degradation of cellular proteins. The fact that
proteasomes are restricted to degrading proteins one at a time,
coupled with the high energy requirements of the ubiquitylation
machinery and the proteasome itself (Peth et al., 2013b; Collins
and Goldberg, 2017), likely make bulk autophagic degradation of
whole proteasomes and other cellular material a more effective
strategy for rapid nutrient re-mobilization than up-regulation of
the UPS.

A significant barrier to the recruitment of proteasomes to
phagophores is the fact that most proteasomes are located in the
nucleus (Reits et al., 1997; Enenkel et al., 1998; Russell et al.,
1999; Brooks et al., 2000; Pack et al., 2014; Marshall et al.,
2015), whereas the autophagy machinery is found exclusively
in the cytosol. Little is currently known about autophagic
degradation of nuclear components. In mammals, autophagy of
nuclear lamina has been reported (Dou et al., 2015), while in
budding yeast, a pathway called piecemeal microautophagy of the
nucleus (PMN) has been described that requires nuclear-vacuole
junctions formed by Nvj1, Lam5 and Lam6 (Roberts et al.,
2003; Krick et al., 2008; Mijaljica et al., 2012; Elbaz-Alon et al.,
2015). More recently, selective autophagy of nuclear components
mediated by the receptor Atg39 was also reported (Mochida et al.,
2015), a process distinct from PMN.

Initial studies on the degradation of nuclear proteasomes
following nitrogen starvation in yeast surprisingly revealed that
neither Atg39-mediated nucleophagy nor components of the
PMN pathway were required (Marshall et al., 2016; Waite
et al., 2016; Nemec et al., 2017). Instead, a role for direct
nuclear export of proteasomes mediated by the exportin Crm1
appears crucial (Stade et al., 1997; Hutten and Kehlenbach,
2007). Notably, a temperature-sensitive CRM1 allele (termed
xpo1-1) that strongly interferes with Crm1-dependent nuclear
export substantially attenuates proteaphagy at non-permissive

temperatures, although bulk autophagic flux remains unaffected
(Figure 5A; Nemec et al., 2017).

In addition to Crm1, targeted deletion of a suite of autophagy
components revealed many factors required for starvation-
induced proteaphagy in yeast (Figure 5A). These include all
subunits of the Atg1 and PI3K complexes, the entire Atg8
lipidation pathway, the Atg9 membrane delivery system, the
vacuolar protease Pep4, the vacuolar phospholipase Atg15 that
degrades the autophagic body membrane, and the sorting nexins
Snx4/Atg24 and Snx41 or Snx42 (which function as Snx4-
Snx41 or Snx4-Snx42 heterodimers, with Snx41 and Snx42
acting redundantly; Marshall et al., 2016; Waite et al., 2016;
Nemec et al., 2017). Presumably, the involvement of Atg1
allows starvation signals emanating from up-stream nutrient-
responsive kinases, such as Snf1 and Tor1/2 to up-regulate 26S
proteasome clearance. The involvement of the sorting nexins
suggests that starvation-induced proteaphagy is selective, as
Snx4, Snx41 and/or Snx42 are not required for bulk autophagy
in yeast (Nice et al., 2002; Reggiori and Klionsky, 2013). This
mirrors the situation for ribosomes, which are selectively targeted
for degradation in response to starvation (Kraft et al., 2008;
Wyant et al., 2018). Snx4 is also required for autophagic clearance
of the fatty acid synthase complex (Shpilka et al., 2015) and
the small and large subunits of the ribosome (Nemec et al.,
2017), suggesting that it might assist in degrading large protein
complexes more generally. Interestingly, the sorting nexins
appear to promote the formation of proteasome-containing
cytoplasmic puncta that accumulate when autophagy is impaired
(Waite et al., 2016; Nemec et al., 2017).

Multiple lines of evidence suggest that the CP and RP likely
dissociate in the nucleus prior to their autophagic degradation.
For example, turnover of the CP, but not the RP, upon nitrogen
starvation in yeast was shown to be dependent upon the DUB
Ubp3, suggesting that the two sub-complexes are degraded by
separate routes (Waite et al., 2016; Marshall and Vierstra, 2018b).
Using the “anchor-away” technique to tether the CP or RP sub-
complexes in either the cytoplasm or nucleus (Haruki et al.,
2008), Nemec et al. (2017) showed that disassembly of the CP,
RP lid and RP base occurs prior to nuclear export, as CP or
RP base degradation was not impacted when the RP lid was
anchored inside the nucleus. It is currently unclear why CP-
RP dissociation is necessary for proteaphagy, as fully assembled
proteasomes have been reported to pass intact through the
nuclear pore on their way into the nucleus (Savulescu et al.,
2011; Pack et al., 2014). However, because CP activity is much
lower when separated from the RP (Groll et al., 2000; Dambacher
et al., 2016), dissociation of the nuclear 26S particles into sub-
complexes might help attenuate CP activity until encapsulated
by autophagosomes, thus preventing a sudden influx of active
26S proteasomes into the cytosol that could interfere with
proteostasis in this compartment.

While proteasomes are rapidly degraded by autophagy upon
nitrogen starvation, they surprisingly remain stable upon carbon
starvation in both plants and yeast (Figure 5A; Waite et al., 2016;
Marshall and Vierstra, 2018b), even though this treatment also
activates bulk autophagy (Takeshige et al., 1992; Thompson et al.,
2005; Adachi et al., 2017). Instead, carbon starvation leads to
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dissociation of the CP and RP, followed by their rapid export
out of the nucleus and subsequent re-location into discrete PSGs
that appear within an hour of transfer to carbon-free media
(Figures 4B–D, 5A; Laporte et al., 2008; Marshall and Vierstra,
2018b). Surprisingly, 26S proteasome levels also remain stable
upon simultaneous nitrogen and carbon starvation, implying that
carbon starvation overrides the proteaphagic response elicited by
the lack of nitrogen.

Cytologically, PSGs appear as membrane-less condensates
that coalesce in response to the reduced ATP levels and/or
cytoplasmic acidification that occur in the absence of a carbon
source (Laporte et al., 2008; Peters et al., 2013; Sagot and Laporte,
2019). These puncta seemingly dissolve within minutes when
carbon availability improves, suggesting that they represent a
storage form of the complex. More than 40 factors have been
identified that affect PSG formation (Gu et al., 2017), including
Blm10 (for the CP), Spg5 and the C terminus of Rpn11 (for
the RP), and the NatB N-terminal acetylation complex for both
(Hanna et al., 2012; Saunier et al., 2013; Weberruss et al.,
2013; van Deventer et al., 2015; Marshall and Vierstra, 2018b),
but it remains unclear how many of these factors participate
directly in PSG formation. By analogy with other liquid-liquid
phase separation events (Alberti et al., 2019; Wang and Zhang,
2019), unstructured regions within proteasome subunits could
contribute to this condensation (Aufderheide et al., 2015b).

The reasons for proteasome accretion into PSGs were initially
enigmatic. However, observations that PSGs also form as yeast
enter quiescence (Laporte et al., 2008), and that the sequestration
of proteasomes into PSGs is antagonistic to proteaphagy
(Marshall and Vierstra, 2018b), implied that PSGs act to store
proteasomes under conditions that reduced growth due to lack of
energy. In particular, attenuation of PSG assembly upon carbon
starvation through mutants eliminating Blm10, Spg5, and NatB,
or truncating Rpn11, strongly re-directs 26S proteasomes to
autophagy, suggesting that proteaphagy is the default response
to starvation, with PSGs providing a novel adaptation to save
proteasomes during carbon stress (Marshall and Vierstra, 2018b).

The ability to store proteasomes in turn confers increased cell
fitness to yeast. PSG formation during stationary phase, upon
replicative aging, or in response to carbon starvation promotes
rapid resumption of cell growth when nutrient availability
improves (van Deventer et al., 2015; Marshall and Vierstra,
2018b), while blocking PSG formation instead suppresses the
ability of cells to resume growth upon restoration of a carbon
source (Marshall and Vierstra, 2018b). Presumably, the retained
proteasomes enable more rapid initiation of cell division, given
the importance of 26S proteasomes, and the UPS in general,
for degrading regulators responsible for cell cycle progression
(Ciechanover et al., 1984; Goebl et al., 1988).

Autophagic degradation of proteasomes in response to
amino acid starvation has also been reported in mammals
(Figure 5B; Cohen-Kaplan et al., 2016). Surprisingly, and in
contrast to the situation in plants and yeast (Marshall et al.,
2015, 2016), starvation-induced proteaphagy in HeLa cells is
accompanied by increased subunit ubiquitylation on RPN1,
RPN10 and RPN13 (Cohen-Kaplan et al., 2016). The attached
poly-ubiquitin chains appear essential for proteaphagy, as

siRNA-mediated silencing of the E1 or over-expression of a
ubiquitin variant lacking the internal lysine residues necessary for
chain concatenation reduced rates of proteasome degradation.
This turnover requires the autophagy receptor p62/SQSTM1,
which recognizes ubiquitylated cargo via its UBA domain and
ATG8/LC3 via a canonical AIM (Noda et al., 2008, 2010;
Cohen-Kaplan et al., 2016). It thus appears that, at least in the
HeLa cell system, starvation induces significant ubiquitylation of
proteasomes to promote recognition by the autophagymachinery
(Figure 5B; Cohen-Kaplan et al., 2016).

More recently, the Atg16 homolog ATG16L1 was implicated
in proteaphagy in the social amoeba Dictyostelium discoideum
(Xiong et al., 2018). Unexpectedly, ATG16L1 directly binds to
RPN1 and RPN2 in vitro, and co-localizes with these subunits
in autophagosome-type puncta decorated with ATG8 in vivo.
As D. discoideum undergoes a dramatic transformation from a
single amoeba into a social pseudopod upon nutrient starvation,
an appealing notion is that the interaction of ATG16L1 with
26S proteasomes provides a direct way to tether the particles
to the enveloping autophagic membranes during starvation-
induced proteaphagy (Xiong et al., 2018). Taken together,
while starvation-induced proteaphagy is likely universal, the
mechanism(s) and identity of the receptor(s) involved (if any)
likely vary among eukaryotes (Marshall et al., 2015, 2016; Cohen-
Kaplan et al., 2016; Xiong et al., 2018).

AUTOPHAGIC DEGRADATION OF
INACTIVE 26S PROTEASOMES

In addition to starvation-induced proteaphagy, a second pathway
has been described in plants and yeast that enables clearance
of non-functional 26S proteasomes (Marshall et al., 2015,
2016; Nemec et al., 2017). This proteaphagic route occurs
independently of the Atg1 kinase, and can be stimulated in
vivo by treatment with chemical inhibitors, such as MG132
and bortezomib, by genetic mutations that impair CP or RP
assembly, and even by pathogen effectors, such as HopM1 from
Pseudomonas syringae (Figure 5C; Marshall et al., 2015, 2016;
Üstün et al., 2018). In both Arabidopsis and yeast, proteasome
inhibition leads to the accumulation of ubiquitylated species
associated with the complex (Marshall et al., 2015, 2016).
These species are not stalled targets awaiting turnover, but
instead reflect extensive modification of the 26S proteasome
itself (Book et al., 2010; Kim et al., 2013; Marshall et al.,
2015, 2016). The identities of the modified subunits are not
yet known, but analysis of the CP and RP sub-complexes
individually suggests that RP subunits are dominant targets
(R. S. Marshall and R. D. Vierstra, unpublished data).
Subsequent studies revealed that these ubiquitin moieties are
recognized by selective autophagy receptors, which then bridge
the inhibited, ubiquitylated proteasomes to Atg8 lining the
expanding phagophore (Figure 5C).

The autophagy receptor for clearing inhibited proteasomes
in Arabidopsis is RPN10, which uses two distinct UIMs to
tether proteasomes to the enveloping autophagic vesicle. One
UIM binds the ubiquitin moieties attached to 26S proteasomes,
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while the other surprisingly binds ATG8 (Marshall et al., 2015,
2019). This non-canonical, UIM-mediated interaction between
RPN10 and ATG8 is striking, as it does not involve the canonical
LIR/AIM docking site (LDS) on ATG8, but instead requires an
alternative hydrophobic patch recently termed the UIM docking
site (UDS; Marshall et al., 2019). The yeast version of Rpn10
is truncated compared to its Arabidopsis counterpart, meaning
it lacks the Atg8-binding UIM sequence and consequently has
no discernable role in proteaphagy. Instead, Cue5 acts as the
yeast receptor for ubiquitylated proteasomes, using a CUE
domain to bind ubiquitin and a canonical AIM to bind Atg8
(Figure 5C; Marshall et al., 2016). The UIM1-UIM2 pairing for
Arabidopsis RPN10 and the CUE-AIM pairing for Cue5 thus
provides an elegant example of convergent evolution, where
different interacting motifs are exploited to generate the same
outcome, namely tethering of ubiquitylated proteasomes to
autophagic membranes.

Cue5 and its human counterpart TOLLIP have been
implicated in the autophagic clearance of various aggregation-
prone proteins (Lu et al., 2014) and, intriguingly, inhibitor-
induced proteaphagy in yeast is likewise preceded by aggregation
of 26S proteasomes into peri-vacuolar insoluble protein deposit
(IPOD)-type structures (Kaganovich et al., 2008; Marshall
et al., 2016), suggesting some degree of overlap between the
proteaphagy and aggrephagy machineries. The IPODs seen
upon proteasome inhibition are distinct from PSGs (Marshall
and Vierstra, 2018b), although there might be some overlap
between the two types of puncta during early stages of carbon
starvation (Peters et al., 2016). The two condensates can be
easily distinguished based on their co-localization with either
Blm10 (in PSGs) or the aggregation-prone prion protein Rnq1
(in IPODs; Figure 4B).

IPOD formation is dependent on the oligomeric chaperone
Hsp42, which helps coalesce aggregated proteins (Specht et al.,
2011; Malinovska et al., 2012; Miller et al., 2015). The
accumulation of yeast 26S proteasomes into IPODs upon
inhibition, and their subsequent autophagic breakdown, were
also found to require this aggregase (Marshall et al., 2016).Where
inactive 26S proteasomes become ubiquitylated is currently
unclear; one possibility is that dysfunctional proteasomes are
first ubiquitylated and then delivered to IPODs with the help of
Hsp42, while the other is that Hsp42 first delivers dysfunctional
proteasomes into IPODs, which are then ubiquitylated through
one or more IPOD-resident E3s.

Whereas chemical inhibitors compromising the CP induce
autophagic degradation of both CP and RP, possibly due to
the tighter interaction between the two sub-complexes that
allosterically results from CP inhibition (Kleijnen et al., 2007),
mutations that compromise proteasome assembly instead appear
to induce turnover of the affected CP and RP sub-particles
separately. For example, the doa5-1 allele that compromises the
α5 subunit of the CP triggers the Cue5-dependent turnover of
the rest of the CP, but not the RP, while the rpn51C mutation
impacting Rpn5 triggers the Cue5-dependent turnover of the
rest of the RP, but not the CP (Marshall et al., 2016). These
observations imply that proteaphagy can be initiated for both
the whole 26S particle, and for the individual CP and RP sub-
complexes separately.

Clearly, an important feature of inhibitor-induced
proteaphagy is its ability to discriminate between functional
and dysfunctional particles. One possibility is that stalled or
compromised 26S proteasomes acquire a distinct conformation
that is recognized by Hsp42 and/or the ubiquitylationmachinery,
which directs their accumulation into IPODs. An intriguing
factor in this scenario was Ecm29, as it binds specifically
to mutant forms of 26S proteasomes, and thus could detect
inappropriate conformations induced by inactivation (Lehmann
et al., 2010; Lee S. Y. et al., 2011; Panasenko and Collart, 2011;
Park et al., 2011). However, analysis of yeast 1ecm29 mutants
suggested this it is not involved in proteaphagy (Marshall and
Vierstra, 2018b). Several E3s have been detected in association
with 26S proteasomes that could instead provide this quality
control (Xie and Varshavsky, 2000; Crosas et al., 2006; Panasenko
and Collart, 2011), some of which ubiquitylate specific subunits
(Besche et al., 2014; Fu et al., 2018), but their function(s)
in relation to proteaphagy, if any, remain to be determined.
Further work is certainly required to fully unravel the mysteries
surrounding this last chapter in the life of a proteasome.

CONCLUSIONS AND PERSPECTIVES

Since the discovery of the UPS over three decades ago, great
progress has been made in our understanding of selective
proteolysis by this system. This includes intricate knowledge
of the 26S proteasome itself, which combines strict substrate
selectivity with extreme promiscuity with respect to substrate
processing to enable the degradation of thousands of proteins
with exquisite specificity. Recent technological advances in
cryo-EM imaging have generated increasingly detailed models
describing substrate recognition and processing by the 26S
proteasome (Lander et al., 2012; Lasker et al., 2012; Bhattacharyya
et al., 2014; de la Peña et al., 2018; Dong et al., 2019; Finley
and Prado, 2019). In parallel, a multitude of additional studies
across several kingdoms have advanced our knowledge of the
26S proteasome life cycle, including its biosynthesis, assembly,
localization, and ultimately turnover (Figure 6; Collins and
Goldberg, 2017; Rousseau and Bertolotti, 2018). The combined
studies reveal the use of common mechanisms to control 26S
proteasome assembly, activity, and degradation, though often by
exploiting distinct factors and machineries.

However, despite these advances, much remains unknown.
Areas of continued uncertainty include, but are not limited to: (i)
which transcription factors are responsible for proteasome gene
expression under non-stressed conditions in plants and yeast;
(ii) the identities of additional proteasome assembly chaperones,
particularly for the RP lid; (iii) how ubiquitin-chain topologies
and the geometric or structural features of the substrate influence
recognition and turnover by the proteasome; (iv) how extrinsic
factors, proteasome-interacting proteins, and post-translational
modifications regulate the various proteasome activities; (v)
whether proteasomes are selectively chosen for proteaphagy
during nutrient starvation using dedicated receptor(s), or
degraded in bulk along with the rest of the cytoplasm; and
(vi) how dysfunctional proteasomes are detected prior to
autophagic degradation, and which subunit(s) are ubiquitylated
by which E3(s).
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The UPS is involved in nearly all cellular processes in
eukaryotes, and its mis-regulation often contributes to
aging and disease, or loss of crop yield (Saez and Vilchez,
2014; Rape, 2018; Li et al., 2019). This has fed a desire
to understand the dynamic regulation of proteasomes,
simultaneously advancing our knowledge of basic cellular
processes that control this proteolytic machine, and providing
a potential avenue for the development of novel therapies to
ameliorate a variety of diseases related to 26S proteasomes and
their activity.
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