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The growth of cooperatively rearranging regions was invoked long ago by Adam and Gibbs to ex-

plain the slowing down of glass-forming liquids. The lack of knowledge about the nature of the

growing order, though, complicates the definition of an appropriate correlation function. One op-

tion is the point-to-set (PTS) correlation function, which measures the spatial span of the influence

of amorphous boundary conditions on a confined system. By using a swap Monte Carlo algorithm

we measure the equilibration time of a liquid droplet bounded by amorphous boundary conditions

in a model glass-former at low temperature, and we show that the cavity relaxation time increases

with the size of the droplet, saturating to the bulk value when the droplet outgrows the point-to-set

correlation length. This fact supports the idea that the point-to-set correlation length is the natural

size of the cooperatively rearranging regions. On the other hand, the cavity relaxation time com-

puted by a standard, nonswap dynamics, has the opposite behavior, showing a very steep increase

when the cavity size is decreased. We try to reconcile this difference by discussing the possible hy-

bridization between mode-coupling theory and activated processes, and by introducing a new kind

of amorphous boundary conditions, inspired by the concept of frozen external state as an alterna-

tive to the commonly used frozen external configuration. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4720477]

I. INTRODUCTION

It is common wisdom that the spectacular slowing down

of supercooled liquids at low temperature is caused by the

growth of a correlation length of some sort. The underlying

idea is that of cooperativity: at lower temperatures, larger re-

gions (termed cooperatively rearranging regions) must move

together in order to fully relax.1 Unfortunately, the standard

tools used in critical phenomena to detect a growing correla-

tion length fail in glass-forming liquids, as it is not at all clear

a priori what the order parameter should be. If order is grow-

ing in glass-formers, it must be some sort of amorphous order,

and the corresponding order parameter must be nonstandard.

Indeed it is not obvious how to detect a domain or structure

that can distinguish a low temperature liquid from a high tem-

perature one, and it is only recently that techniques have been

proposed to identify such relevant structures.2–7

The use of amorphous boundary conditions (ABCs)

(Refs. 3, 4, and 8) is a recent promising approach that does

not make any assumption about the kind of order that is grow-

ing. The idea is the following.3 Consider a low-temperature

a)Electronic mail: tgrigera@inifta.unlp.edu.ar.
b)Electronic mail: paolo.verrocchio@unitn.it.

equilibrium configuration of a liquid and freeze all particles

outside a certain region. This region (or cavity) is then let

free to evolve and thermalize, subject to the pinning field

produced by all the frozen particles surrounding it. Clearly,

the smaller the region the stronger the effect of the pinning

field, hence keeping the region in a very restricted portion of

its own phase space. The idea, then, is to check how large the

region must be to emancipate from the boundary conditions,

i.e., to regain ergodicity and thermalize into a state different

from the surrounding one. The advantage of this method

is that the system chooses its own definition of “order” by

means of the amorphous boundary conditions, and we do not

need to have any a priori knowledge of the nature of such or-

der. Practically speaking, the procedure amounts to measure,

as a function of the size R of the region, the correlation (or

overlap) between the original region’s configuration (that of

the frozen surrounding) and that achieved after the region has

equilibrated subject to the amorphous boundary conditions.

This quantity is called point-to-set correlation function,9, 10

q(R), and it has shown an interesting feature:4, 8 its decay

length scale, ξ s, increases on lowering T. Regions smaller

than ξ scannot relax completely, even given infinite time, due

to the presence of the pinning ABC.
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Here, in order to get some information about the dynam-

ics of the cooperatively rearranging regions, we study the dy-

namical behavior of a cavity under ABC. Of course, we do

expect that the equilibration time of the cavity must be equal

to its bulk value for large enough values of R. What is not

trivial is at what specific value of R the saturation occurs and

whether the saturation occurs from above or from below, i.e.,

whether the equilibration time decreases or increases when

the cavity gets larger. As we shall see, we obtain different re-

sults according to the specific dynamics we use, giving rise to

several questions that we try to answer, albeit conjecturally.

To characterize the dynamics in the cavity we extract

a relaxation time from the equilibrium overlap fluctuations

(Sec. II). We obtain this time at several temperatures for sys-

tems of soft spheres confined with ABC in cavities of varying

sizes and with different dynamics.

We first (Sec. III) study the relaxation time vs. size by

means of a swap Monte Carlo dynamics, where standard par-

ticle shifts are combined by nonlocal swaps of particles of

different species (i.e., different sizes). These moves acceler-

ate the dynamics respect to standard Monte Carlo. With swap

Monte Carlo, we clearly find that the relaxation time saturates

from below (Figs. 2 and 4). In addition, the bulk relaxation

time is reached at a size R ∼ ξ s. This result seems to sup-

port the idea that ξ s is indeed the cooperativity length scale of

the system. This behavior can be interpreted within the ran-

dom first-order theory (RFOT) of supercooled liquids if one

allows for surface tension fluctuations (Sec. IV).

Of course, while swap Monte Carlo can be safely used to

study thermodynamic quantities, one may wonder about the

significance of dynamical swap results as compared to a more

realistic dynamics. We thus next (Sec. V) study the cavity re-

laxation with standard Monte Carlo, without swap moves. The

above result then changes qualitatively: the dynamics slows

down very steeply when the cavity size is decreased. Indeed,

the smallest cavities are completely stuck out of equilibrium.

Given this glaring contradiction, we put forward a con-

jecture that explains the different behavior of the two dynam-

ics. While highly speculative, this path opens a series of ques-

tions about liquid dynamics that we feel are worth pursuing.

Essentially, we propose (Sec. VI) that the observed relaxation

time is the lowest of the characteristic time of one of two re-

laxation mechanisms: mode-coupling or activation, and that

swap dynamics accelerates strongly the activated mechanism

but does not affect the mode-coupling one. This hybridization

picture predicts that small cavities are faster than the bulk but

that the relaxation time is nonmonotonic in the cavity size,

showing a maximum in the region between ξ s and the dy-

namic correlation length ξ d (Fig. 12). This maximum would

signal the crossover between mode-coupling theory (MCT)

and RFOT, and a closer inspection of the swap data shows a

bump at some temperatures (Fig. 14). This hint of an MCT–

RFOT crossover is perhaps the spatial analogue of the tem-

perature crossover found in Ref. 11.

The steep increase of the times as the cavity is reduced

found for standard dynamics would then be due simply to a

matter of scale, namely, the maximum being (not unreason-

ably) much higher for the nonswap case. The problem re-

mains, however, because in this scenario, no matter how high

the maximum, the times must eventually decrease, and thus

we should be able to equilibrate at least very small cavities.

Instead, our smallest cavities are completely stuck. We thus

argue (Secs. VII and VIII) that freezing the environment of the

cavity in a single configuration overconstrains the system, be-

cause relaxation within the cavity requires some cooperation

in the form of small elastic displacements.

This second conjecture leads us to present a last set of re-

sults (Sec. IX), obtained under a new setup: instead the stan-

dard ABCs (which we call frozen configuration (FC) setup),

we propose to use frozen state (FS) conditions, where the out-

side of the cavity is constrained to remain in a single state

(by imposing the constraint of a large overlap) but is other-

wise allowed particle shifts. These results, while still partial

and inconclusive, do indicate that standard dynamics is faster

under an FS boundary, and are compatible with an inversion

in the trend of the relaxation times at small cavity sizes.

Finally, we briefly comment on some experimental re-

sults on confined liquid systems (Sec. X) and we summarize

our conclusions and highlight the open issues in Sec. XI.

II. MODEL AND OBSERVABLES

We perform Monte Carlo (MC) simulations of a 3-d

soft-spheres binary mixture12 with parameters as in Ref. 8.

Our largest system has N = 16 384 particles in a box of

length L = 25.4 and we run simulations at T = 0.482, 0.350,

0.246, 0.214, 0.202. The first two temperatures correspond

to the high-temperature liquid, while the third is near the

“onset” or “landscape-influenced” temperature.13 The two

lowest temperatures lie in the supercooled regime where the

landscape is dominated by minima of the potential energy

rather than saddle points.14 We first equilibrate the whole

system with periodic boundary conditions to generate a set

of equilibrium configurations, and then run the amorphous

boundary simulations by picking an equilibrium configura-

tion and artificially freezing all particles but those occupying

a spherical cavity of radius R = 1.06, 1.68, 1.92, 2.12, 2.28,

2.61, 2.87, 3.29, 3.62, 4.15, 4.57, 5.75, 7.2, 9.14, and 10.95.

All results shown here (for both kinds of dynamics) were

obtained by averaging 16 samples for each T and R.

Our main physical observable is the overlap, which mea-

sures the correlation between the running configuration and

the reference one at t = 0. The cavity is partitioned in small

cubic boxes and ni is the number of particles in box i. The

side ` of the cells is such that ni = {0, 1}. We measure the

overlap within a small cubic volume v located at the center of

the sphere,8

q(t ; R) ≡
1

`3 Ni

X

i∈v

ni(t) ni(0), (1)

where the sum runs over all boxes and Ni is the number of

boxes in the central volume. To minimize statistical uncer-

tainty without losing the local nature we choose Ni = v/`3

= 125. On average, the overlap of two identical configu-

rations is 1, while for totally uncorrelated configurations

q = q0 = `3 = 0.062876. The asymptotic value of the over-

lap, q(R) ≡ hq(t → ∞; R)i, averaged over many realizations
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of the boundary conditions, is the point-to-set correlation

function.3, 4, 8, 10, 15

In order to define a time-scale we measure the connected

auto-correlation function of the overlap fluctuations,

C(t ; R) =
h(q(t0 + t ; R) − q(R)) (q(t0; R) − q(R))i

h(q(t0; R) − q(R))2i
. (2)

From this function we extract a characteristic time τ (R) as

explained in Appendix A.

III. SWAP DYNAMICS IN THE CONFINED CAVITY

We first focus on the results obtained with swap

dynamics.16 With a swap Monte Carlo dynamics we propose

(with probability 0.1) a move that swaps the position of two

particles of different species. Provided that the radii of the

two species are not too different, so that the swap move is not

always rejected, this kind of move decreases significantly the

time needed by a single particle to break its cage. (We remark

that the swap is not an empty move, since it exchanges

different particles, so that it brings the configuration to a

different place in phase space). On the other hand, the swap

dynamics has less of an impact on collective rearrangements,

and indeed the swap relaxation time increases dramatically

close to the glass transition, as the nonswap time.

Figure 1 shows the swap auto-correlation function C(t; R)

at various values of R for our lowest temperature T = 0.202.

We stress that for those values of R such that the order param-

eter q(R) 6= 0, ergodicity is broken.8 In this case the connected

correlation function (2) describes the equilibrium dynamics

within a restricted region of the cavity’s phase space.

From these data we obtain the swap relaxation time τ (R)

(Appendix A). In Fig. 2 we report τ (R) for our lowest temper-

ature, T = 0.202. Three features of this curve stand out: (i) the

swap relaxation time saturates for large R to a value indepen-

dent of the cavity size; (ii) the swap relaxation time grows

with R, so that saturation occurs from below; (iii) growth

and saturation are separated by a rather sharp kink at a well-

defined value of R. The first fact is obvious: the effect of the

boundary conditions is expected to fade away for large R, so

that τ (R) must eventually reach its bulk value, which is ex-
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FIG. 1. Autocorrelation function C(t; R) for a few representative sizes R at

T = 0.202.
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FIG. 2. Cavity relaxation time vs. R for T = 0.202. The kink between the

growth and the saturated regime occurs close to ξ s = 3.82 ± 0.46, which is

the point-to-set length scale for T = 0.202.8 Also shown is the bulk (periodic

boundary conditions) equilibration time (full line).

actly what happens. The remarkable point is that τ (R) reaches

its bulk value for R ∼ ξ s, where ξ s is the point-to-set correla-

tion length measured in Ref. 8.

This result can immediately be interpreted in terms of co-

operativity: For R < ξ s the whole region is correlated, because

the effect of the amorphous border breaks the ergodicity. For

R > ξ s, the effect of the border fades away and the region is

able to decorrelate by breaking up into smaller correlated sub-

parts: in this regime relaxation factorizes. Hence, it seems that

the point-to-set correlation length ξ s does indeed play a role

in the cooperative dynamics of the system. In Sec. IV we will

address this point more precisely.

IV. RFOT INTERPRETATION OF THE SWAP
RELAXATION TIME

According to the RFOT of the glass transition, whether

or not a region of radius R relaxes depends on the balance be-

tween the surface tension Y that develops when that region ac-

tually rearranges and the configurational entropy 6 unleashed

by the rearrangement: if Y > T6Rd−θ (d is the space dimen-

sion, θ is the surface tension—or stiffness—exponent) the

surface cost is larger than the entropic gain and the region

does not rearrange. On the other hand, if Y < T6Rd−θ the

entropic gain outweighs the surface energy cost and the re-

gion has a thermodynamic advantage to rearrange. The re-

arranging size where entropy and surface tension balance,

ξ s = (Y/T6)1/(d−θ), is the static correlation length of RFOT.

Therefore, within RFOT a cavity with amorphous bound-

ary conditions of radius R < ξ s has broken ergodicity, and can

only explore the state imposed by the boundary conditions.3

In this regime the relaxation time is the time needed to explore

that one state, which is roughly equal to the β-relaxation time,

τ (R) ∼ τ β .17, 18, 41 For R > ξ s, instead, rearrangement occurs

and ergodicity of the cavity is restored. In this regime the re-

gion is larger than the minimal rearranging size, so that relax-

ation factorizes: different subregions of size ξ s will rearrange

independently from each other, and the relaxation time will

be equal to its bulk value, i.e., τ (R) ∼ τ0 exp(ξ
ψ
s /T ), where
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τ 0 is an Arrhenius prefactor and ψ is the exponent regulating

the barrier growth.

Hence, within the sharp RFOT description, where the sur-

face tension has just one value, Y, a step-like jump of τ (R) at

R = ξ s is predicted. This is not what we observed in Fig. 2. In

order to reconcile data and theory, we note that for the typical

temperatures and sizes studied in simulations surface tension

fluctuations are relevant.8 If the surface tension fluctuates19, 42

(i.e., different ABCs give different Y), local excitations can

have different sizes and therefore different relaxation times.

When we measure these quantities by averaging over many

different sets of ABCs we smooth out the sharp step.

More precisely, as we show in Appendix B, in the

fluctuating case we define a typical mosaic correlation length

ξ s = (Yc/T6)1/(d−θ) and a distribution of sizes P(r; ξ s), peaked

on ξ s, which gives the probability that a region’s entropy and

surface tension will balance precisely at r. The relaxation

time is given by (Appendix B)

τ (R) = τβ

Z ∞

R

P (r; ξs) dr + τ0

Z R

0

P (r; ξs) erψ/T dr. (3)

To understand the behavior of τ (R) let us assume that

P(r; ξ s) has a compact support, being different from zero only

in the interval r ∈ [ξ s − δ: ξ s + δ]. We have three regimes of

R (see Fig. 3):

(i) for R < ξ s − δ the first integral in (3) is 1 and the second

integral is 0, so that τ (R) = τ β ;

(ii) for ξ s − δ < R < ξ s + δ the weight shifts from the first

to the second integral; because of the exponential, which

is large at low T, τ grows with growing R, thus giving

rise to a ramp that brings the relaxation time to a value

considerably larger than τ β ;

FIG. 3. Schematic view of the second integral in Eq. (3). The upper panel

represents the two functions within the integral, the lower panel is the result-

ing relaxation time.
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FIG. 4. Cavity relaxation time τ (R), normalized to its bulk value, at vari-

ous T. From right to left: T = 0.202, 0.246, 0.350, 0.482. At intermediate

temperatures there is a weak overshooting (whose origin we will discuss in

Secs. VI–VII). For this reason for each T we extract a length scale as the

smallest R such that τ (R) = τBULK (see Fig. 5).

(iii) for R > ξ s + δ, the first integral is 0, whereas the second

one has reached its saturation value; to know this value,

at low T we can use the saddle point approximation:

the maximum of the integrand occurs approximately for

r ∼ ξ s, so that τ (R) ∼ τ0 eξ
ψ
s /T . This last quantity is noth-

ing else than the bulk relaxation time, τ bulk.

What we have just described is a smooth growth of τ (R)

from τ β up to the bulk relaxation time τ bulk, taking place in a

range of R around ξ s;

τ (R) ∼

⎧

⎨

⎩

τβ for R < ξs − δ

growth for ξs − δ < R < ξs + δ

τ0 eξ
ψ
s /T for R > ξs + δ.

(4)

The precise expression for the growth depends on P(r; ξ s) (see

Appendix B), but it is not fundamental to the present consid-

erations.

The behavior described by (4) is in agreement with what

we have found in our swap simulations (Fig. 2). The relax-

ation time grows with the radius of the cavity, and it saturates

to its bulk value at R ∼ ξ s, so that we can use the satura-

tion point as an estimate of the static correlation length ξ s.

In Fig. 4 we report the cavity swap relaxation time normal-

ized by its bulk value for several different temperatures. We

can see that the saturation point moves to larger values of R

at lower temperatures, a phenomenon consistent with the ex-

pectation that the correlation length grows when cooling the

system. This fact consolidates the idea that the point where

the cavity relaxation time saturates is indeed the same static

correlation length as extracted from the point-to-set correla-

tion function.

We test this interpretation by plotting in Fig. 5 the length

scale of saturation of the swap relaxation time vs. the value of

the static correlation length extracted by the point-to-set cor-

relation function computed in Ref. 8. Considering that both

length scales have a degree of arbitrariness in their measure-

ment, we normalize them in order to be equal at one specific

temperature (see the caption of Fig. 5). Even though we defi-

nitely would need a wider temperature range to say something
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ity relaxation time (abscissa) and the point-to-set (PTS) correlation length

(ordinate). Extracting the length scale where τ (R) saturates from Fig. 4 is not

straightforward in the cases where τ (R) has an overshooting. For this reason

we use substantial error bars on ξ form τ (R). The PTS correlation length has

been defined as the value of R at which the PTS correlation function crosses

a certain value η. Given the arbitrariness of η, its value has been chosen in

such a way to have the two length scales equal at T = 0.482.

certain, we can conclude that the two length scales track each

other quite reasonably. This supports the idea that the point-

to-set correlation length (an eminently static concept) can ac-

tually be measured also by using the swap relaxation time of

a cavity subject to amorphous boundary conditions.

Note that at intermediate temperatures there is an over-

shooting of the relaxation time τ (R) (Fig. 4). We will explain

the origin of this important overshooting in Secs. VI–VII. For

the time being, let us say that this is due to the presence

of two length scales: a static and a dynamic one. Here we

are discussing the static one, which should be identified with

the smallest value of R where the relaxation time reaches its

bulk value from below, and that should be compared with the

point-to-set correlation length, as we do in Fig. 5. The dy-

namic length scale approximately corresponds to the larger

value of R where the relaxation time reaches its bulk value

from above. This dynamic length is a remnant of the mode-

coupling regime. At very low T there is no overshooting, so

that the dynamic length scale cannot even be defined. Strictly

speaking, then, it is only in such low T regime that we can say

that the dynamics is entirely ruled by the increase of the static

correlation length. At intermediate temperatures, there is an

interplay between the two length scales. We ask the reader to

be patient, as all this will be discussed in depth in Sec. V.

For now, we simply record the existence of these two scales

when the relaxation time is non-monotonic in R. The one we

are focused on at the moment is the smallest scale, which we

identify with the point-to-set correlation length.

A possible objection at this point is that the highest tem-

peratures used in Figs. 4 and 5 are too high to be amenable

to an RFOT description. Even though we indeed must be

careful in applying RFOT arguments to temperatures that are

not very low, there are two reasons for including them here.

First, not much is known about the crossover from RFOT to

another kind of description (such as MCT) as temperature in-

creases. Indeed, it seems that surface tension is relevant up to

FIG. 6. Schematic view showing how an inversion of the cold and hot

relaxation times can take place. By lowering the temperature two (related)

phenomena occur: (i) the correlation length increases, so that the distribution

P(r; ξ s) moves overall to the right (it also becomes more peaked, see Ref. 20,

but this is irrelevant here); (ii) the asymptotic bulk relaxation time increases,

so at saturation τ (R) reaches a higher level. These two phenomena give rise

to a regime, between the two correlation lengths, where the relaxation time

of the colder cavity is lower than that of the hotter cavity.

T = 0.35,22 which is higher than the MCT Tc, and even higher

than the onset temperature. Second, the physical fact that

the two length scales are clearly correlated is independent of

RFOT and it seems to hold very nicely even at the highest

temperatures. This is a meaningful information by itself: the

static correlation length out of the point-to-set correlation

function is linearly correlated with a correlation length ex-

tracted from the cavity relaxation time. Hence, it makes sense

to include in our plots all temperatures for which we have

measured the corresponding point-to-set correlation length.

A. When cooler is faster

Both the stepwise behavior and the smooth growth of

τ (R) (Eqs. (B1) and (4)) have an interesting consequence: at

some values of R a colder cavity may be faster than a hot-

ter cavity. How this happens is pictorially explained in Fig. 6.

By lowering the temperature, ξ s increases, so we push to the

right the support of P(r; ξ s), and therefore the range of R over

which the growth of τ (R) occurs; at the same time, the bulk

relaxation time increases, so that the low T curve must satu-

rate at a higher level than the high T curve. This mechanism

gives rise to a crossing of the cold and hot relaxation times, so

that in the region of R between the cold and hot value of ξ s,

we have that the lower T cavity has a smaller relaxation time

than the higher T cavity.

This odd phenomenon is confirmed by our swap simula-

tions. In Fig. 7 we show the cavity swap relaxation time at
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FIG. 7. Swap simulations show that an inversion of the relaxation time in-

deed happens: there is an intermediate regime of R ∈ [1.5, 2.5] where the low

temperature cavity (full circles, T = 0.202) is faster than the high temperature

cavity (open squares, T = 0.350). Inset: the autocorrelation function at fixed

R = 1.68 at the two different temperatures. Irrespective of the definition of

the relaxation time, the cooler cavity is faster.

two different values of T. It can be seen quite clearly that for

certain values of the radius the cold cavity is faster than the

warm cavity. In the inset of Fig. 7 we directly show the two

autocorrelation functions for one specific value of R, just to

make clear that the effect does not depend on the particular

definition of τ .

As we have seen, this behavior is quite naturally ex-

plained in the context of RFOT. In the sharp scenario, the

inversion of cold and warm relaxation times is a direct con-

sequence of the presence of two qualitatively different times:

the short in-state time, τ β , and the long out-state relaxation

time, τ bulk. The existence of these two times means that at

a certain value of R a cold cavity may still be trapped into its

original state, therefore having a short in-state relaxation time,

whereas a warm cavity may be unlocked, and therefore have

a longer relaxation time. We remark, once again, that one is

comparing qualitatively different times: the in-state time τ β is

the time needed to relax within a state, with no cooperative re-

arrangement, while the relaxation time of a large cavity, τ bulk

is the time needed for a full rearrangement. Such distinction is

sharp, and easy to detect, only in the stepwise scenario. How-

ever, as we have seen, in the real case τ (R) (averaged over

many samples) is a smooth function, with a ramp connecting

the in-state time to the bulk time, so that it is harder to dis-

tinguish the two different processes from the full τ (R) curve.

The inversion of cold and hot relaxation times is therefore an

interesting remnant of the presence of these two different time

scales.

The nonmonotonic behavior we have just described is

somewhat reminiscent of the results obtained in Ref. 11,

where a dynamical length scale was found to have a non-

monotonic behavior in temperature. However, to what extent

the similarity holds is unclear for two reasons. First, the con-

fined geometry used in Ref. 11 was different from the present

one (a frozen wall and a free semi-infinite space, rather than

a cavity). Second, it is unclear whether or not the relaxation

time under confinement vs. temperature (the object we stud-

ied here) is nonmonotonic in Ref. 11, because in Fig. 2(b) of
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FIG. 8. Standard nonswap Monte Carlo dynamics. Connected overlap as a

function of time for four different sizes of the cavity. The connected overlap

is obtained by subtracting its equilibrium infinite time limit, q(R), obtained

with swap, and its asymptotic value must be equal to zero. Smaller sizes are

significantly slower than larger sizes. For R ≤ 3.5 the dynamics is completely

stuck. T = 0.246.

Ref. 11 the relaxation time is normalized by the bulk time.

Despite this caveats, the impression remains that the non-

monotonic behavior of some dynamical observables may be a

common feature of systems under confinement, and perhaps a

distinctive signature of the RFOT scenario. We shall see other

manifestations of this behavior in Secs. V–XI.

V. NONSWAP DYNAMICS IN THE CONFINED CAVITY

The dynamical behavior of the cavity when we switch off

the swap moves is completely different from what we have

seen until now: in contrast to the swap case, the relaxation is

slower the smaller the cavity. In the bulk, the dynamics with-

out swap is known to be significantly slower than with swap16

(this is why swap has been introduced in the first place). How-

ever, in the cavity, not only is nonswap dynamics slower, but

the whole dynamical behavior as a function of R is reversed.

We observe this phenomenon in Fig. 8, where we report

the connected overlap as a function of time in the nonswap

case for different values of R. The connected overlap is ob-

tained by subtracting from q(t) its equilibrium infinite time

limit, q(R), obtained with swap. The asymptotic value of the

connected overlap must be equal to zero for all R and this

makes it easier to compare different sizes on the same plot.

Smaller cavities are dramatically slower than larger ones. Un-

der these conditions, it is clear that we cannot compute the

overlap autocorrelation function in the nonswap case, as the

system is robustly out of equilibrium. The only time correla-

tion function that we can use is the overlap itself, q(t), and to

extract a relaxation time, τ (R), we cross q(t) with an arbitrary

value, q̄. For those (few) values of R for which this procedure

is viable, we report τ (R) in Fig. 9.

In smaller cavities, below R ∼ 4, the nonswap overlap is

completely stuck out of equilibrium: it remains stationary for

several decades at a level which is above its equilibrium value

(see Appendix C for details on this and for an equilibration

test of the swap data). Hence, below this value of R at this T
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FIG. 9. Standard nonswap Monte Carlo dynamics. Relaxation time obtained

by crossing the connected overlap time series in Fig. 8 with the arbitrary value

q̄ = 0.25. For smaller values of R the nonswap dynamics is completely stuck,

and an extrapolation of q(t) does not make any sense (see Fig. 18).

it is not even possible to roughly estimate τ : no extrapolation

of q(T), however wild, makes sense with these data.

We should stress that this slowing down is striking be-

cause it happens also at rather high temperatures (it is already

noticeable at the onset temperature): the effect of the confine-

ment on the relaxation time is really drastic, and the difference

between swap and nonswap dynamics stark. Incidentally, we

note that without swap dynamics it would be impossible to

measure the point-to-set correlation function (which is the

equilibrium value of q), due to this hyper-slowing down. The

slowing down of the dynamics in a confined cavity was noted

before in Ref. 23 for molecular dynamics.

In Secs. VI–XI we address the conflict between the swap

and nonswap results.

VI. THE CONTRADICTION BETWEEN SWAP
AND NONSWAP

At this point we are left with a contradictory scenario. On

one hand, with swap Monte Carlo the relaxation time grows

up to its bulk value when increasing the cavity radius R, seem-

ingly saturating when R reaches the point-to-set correlation

length ξ s. This behavior suggests that ξ s is indeed the typi-

cal size of the cooperatively rearranging regions, which dom-

inate activated dynamics at low temperatures. On the other

hand, with standard nonswap Monte Carlo (as well as molec-

ular dynamics23), the cavity relaxation time is larger than its

bulk value and grows with decreasing R.

A dramatic increase of the nonswap relaxation time

might suggest the existence of some kind of phase transition.

A possibility would be that the spectacular increase of the

nonswap τ close of the phase transition becomes less spec-

tacular when swap is used, due to the swap acceleration of

the dynamics (swap too, though, would eventually detect the

phase transition). As a matter of fact, a scenario involving a

true phase transition has been recently described in Ref. 24.

However, an essential ingredient of any phase transition is the

thermodynamic limit. There is no true divergence at finite vol-

ume, but rather an unbounded growth of the relaxation time

with volume. The transition discussed in Ref. 24 applies to

geometries where it is possible to send the system size to in-

finity (for example, scattered frozen particles or a sandwich

geometry—see Ref. 23), in which case the relaxation time for

R ∼ ξ s should diverge. However, in our cavity geometry, the

size is always finite, so that a phase transition does not seem

the right explanation of what we see.

As we have seen in Sec. IV, arguments based on RFOT

predict a monotonically increasing τ (R), in line with the

swap results. At first glance, the nonswap results are in plain

contradiction with RFOT. However, what we have actually

shown in Sec. IV is that a purely activated scenario based

on RFOT, predicts a monotonically increasing τ (R). As we

shall see in Subsection VI A, if we extend the scenario to in-

clude nonactivated phenomena, the prediction becomes more

complex.

It must also be said that, if we re not in the mood of

looking for complicated new variations of RFOT, a theory

of the glass transition based on the idea that dynamics is fa-

cilitated by (localized) defect propagation25 seems in reason-

able agreement with a τ (R) that increases for decreasing R:

the smaller the cavity volume, the smaller the number of de-

fects and the slower the dynamics. Although a bit simplistic,

this syllogism is fundamentally sound within the borders of a

defects-based theory. Even within this view, though, as within

the RFOT one, there are unclear issues.

First, at small values of R defects-based theories become

hard to formulate, since they involve a coarse-graining at their

core. One should work at temperatures so low that the whole

“small R regime” is at R large enough to make the coarse-

graining legitimate. At the state of the present simulations and

temperatures this is very hard. Similarly, the small R regime

is a problem also in the RFOT context: the whole concept

of configurational entropy, and how it scales with the volume,

Rd, becomes somewhat fuzzy with very small number of parti-

cles. Even in the RFOT case one would like to simulate lower

temperatures, so to have larger correlation length, and thus a

larger cavity. Small cavities are bad for any theory that needs

scaling arguments of any kind.

Second, even at medium-high values of R, not all defect-

based models behave in the same way in a cavity. The square

plaquette model (SPM) described in Ref. 26 has a τ that

clearly increases for decreasing R, as we find here, and as we

would naively expect from a defect-based model. However,

the SMP is known to be a strong, purely Arrhenius model,

where defects obey simple diffusion, hence not really suitable

to describe fragile glass-formers. On the other hand, the trian-

gular plaquette model (TPM),26 has a fragile, super-Arrhenius

behavior, but its cavity relaxation time hardly depends on R

(in fact, if it does it seems to increase with R). Therefore, in

the case of the TPM the naive expectation that the smaller

the cavity, the lower the number of defects, the higher the re-

laxation time, is too simplistic. Of course, more kinetically

constrained models (KCM) investigations under amorphous

boundary conditions would help a lot clarifying the situation.

Whatever the theoretical framework we adopt, it is clear

that a complete physical picture needs to account also for the

swap results (in particular the intriguing saturation of τ at

R ∼ ξ s) and to resolve the apparent swap-nonswap
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contradiction. This is what we attempt, in a rather spec-

ulative way, in Secs. VI A, VII, and VIII.

A. The hybridization between MCT and activation

1. In the bulk

To better understand what is going on in the cavity, we

have to go back to the bulk. According to some theories of the

glass transition,15 there are two relaxation channels: a nonac-

tivated channel, well described by MCT,27 which is ruled by

unstable stationary points of the potential energy (saddles),

and a second channel, consisting of activated barrier crossing.

The first mechanism has a singularity at the MCT transition

temperature Tc, where the MCT relaxation time diverges as

a power law. On the other hand, the activated channel is in-

sensitive to Tc, and its relaxation time increases in a super-

Arrhenius fashion, due the the low-T increase of the static

correlation length, ξ s.

We make the hypothesis that the real (observed) relax-

ation time of the system is the lowest of the two relaxation

times, because the dynamics always follows the fastest relax-

ation channel. We can then get an impression of what happens

in Fig. 10. The observed time follows the MCT branch up to

close to Tc, where it crosses over to the activated branch, thus

avoiding the MCT divergence. This hybridization between

MCT and activated branches is (very roughly speaking) the

origin of the dynamical crossover near Tc.15

Consider now what happens to this scenario when we use

a swap dynamics. In general the activated relaxation time can

be written as,

τACT = τ0 exp
¡

ξψ
s /T

¢

, (5)

FIG. 10. A schematic view of bulk relaxation. We hypothesize that there are

two different channels of relaxation: (i) The mode-coupling theory (MCT)

channel, which is related to a relaxation which uses unstable stationary points

(saddles) of the potential energy. The MCT dynamics has a relaxation time

that diverges at Tc. (ii) The activated barrier-crossing channel. The actual dy-

namics “chooses” the fastest of the two channels, so that the observed relax-

ation time is the lowest of the two. Below Tc, there is a dynamical crossover

between the MCT branch to the activated branch. The crossover (forming the

“knee” of the blue curve at Tc) is exaggerated here to illustrate the point; the

actual behavior will be much smoother in the T ∼ Tc region.

FIG. 11. When we use a swap dynamics we are significantly lowering the

prefactor of activated barrier crossing, hence shifting the activated branch

downwards. As a result, there is no significant hybridization between the two

branches and the resulting (observed) swap relaxation time does not detect

any particular crossover close to Tc.

where ξ s is the static correlation length. Based on the data

of Fernández et al.28 we conjecture that the effect of swap

dynamics on the activated branch is essentially to decrease

significantly the prefactor τ 0 in Eq. (5)

τ
swap

ACT = τ
swap

0 exp
¡

ξψ
s /T

¢

, with τ
swap

0 ¿ τ0. (6)

This amounts to a downward shift of the activated branch

(Fig. 11). Due to this, the hybridization between the two

branches disappears, and the observed relaxation time does

not display any significant crossover close to Tc. We also see

that if we fix a temperature T & Tc, in the nonswap case the

bulk time is dominated by the MCT channel, whereas in the

swap case it is dominated by the activated channel (also see

Fig. 1 of Ref. 28, which shows how the MCT plateau seen in

time correlation functions is lost with swap dynamics).

2. In the cavity

Let us now turn to the cavity, bearing in mind that the

large R value of τ (R) is nothing else than the bulk time, whose

behavior we have just examined. It has been suggested that

the MCT cavity relaxation time, as a function of R, should

have a divergence at R∼ξ d, where ξ d is the dynamic correla-

tion length.29 A possible interpretation of this fact is that in a

smaller cavity the frozen boundary conditions stabilize unsta-

ble saddles, thus increasing the MCT relaxation time. Below

ξ d the cavity runs out of saddles and nonactivated relaxation

becomes impossible. On the other hand, the activated relax-

ation time obeys the scenario described by Eqs. (3) and (4): it

increases with R, saturating at the static correlation length, ξ s.

Like in the bulk, we can speculate that the observed relax-

ation time in the cavity will be the smallest of the two times.

Let us fix a temperature slightly above Tc, so that the nonswap

bulk relaxation is dominated by the MCT channel (Fig. 10).

In Fig. 12 we get a picture of what happens. Let us start from

large values of R: the relaxation time follows the MCT branch,

therefore giving an increase of τ (R) for decreasing R. But at
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FIG. 12. In the cavity, for T & Tc the hybridization between MCT and ac-

tivated branch may give rise to a nonmonotonic τ (R). Starting from large

cavities, the relaxation time follows the MCT branch, which has a divergence

at the dynamical correlation length, ξd. In the proximity of such divergence

the observed τ (R) crosses over to the activated branch, thus decreasing with

decreasing R.

some point the MCT branch crosses the activated one (and it

eventually diverges at ξ d), so beyond this point the dynamics

sticks to the activated channel, giving rise to a maximum of

τ (R). Hence, for small values of R we recover a regime where

τ (R) decreases for decreasing R.

The large R regime of this nonmonotonic curve was also

discussed in Ref. 15, where it was noted that above Tc τ (R)

should approach its bulk value from above. This behavior,

namely, a relaxation time that increases from its bulk value

when decreasing R, is indeed what we find with nonswap dy-

namics, Fig. 9. However, in the nonswap case the increase of

the relaxation time is so sharp that we struggle to follow this

curve down to medium-small R, so we cannot access the over-

shooting.

What happens when we use swap dynamics? As in the

bulk, by using swap we are decreasing the prefactor of acti-

vation, thus shifting the whole activated branch downwards.

From Fig. 13 we see that this shift has the effect to weaken, or

even wash out entirely, the nonmonotonic behavior of τ (R).

Something similar happens by lowering the temperature (get-

ting closer to Tc), because in that way we are narrowing

the difference between the MCT and the activated branch

(Fig. 10). In the cavity, this amounts to closing the gap be-

tween the two branches at large R. Hence, we expect that

lowering T too has the effect to iron out the maximum of

τ (R), eventually making it disappear.43 Summarizing, we ex-

pect swap dynamics to display little sign of a nonmonotonic

cavity relaxation time τ (R), and to become completely mono-

tonic at low T.

In Fig. 14 we show a close-up of the cavity relaxation

time with swap dynamics at two different temperatures: there

is a clear overshooting of τ (R) at medium-high temperature,

but it completely disappears a the lowest T. Our theoretical

expectation of a nonmonotonic τ (R) within some tempera-

ture range is therefore supported by the data. We remark that

once again we find a nonmonotonic behavior (supported by

FIG. 13. When we use swap dynamics in the cavity we shift the whole

activated branch downwards, hence lowering the degree of hybridization of

the two branches. In this way, the overshooting of relaxation time may be

completely washed out, and τ (R) have a purely monotonously increasing

behavior.

the data) as a signature of RFOT, and in particular (in this

case) of the interplay between RFOT and MCT.11, 15

We remark that this interpretation of our numerical

results, and in particular of the overshooting of the relaxation

time τ (R), is due to the presence of two length scales ξ s

and ξ d, static and dynamic, respectively. From the sketch in

Fig. 12, we see that ξ s < ξ d on general grounds, and when

the overshooting is very marked, the curve carries a signature

of both scales, in such a way to make it somewhat hard to dis-

entangle and extract them from the data. In our determination

of ξ s from the curves of τ (R) presented in Fig. 4 we decided

to simply estimate ξ s as the smallest value of R such that

τ (R) = τBULK. According to the sketch in Fig. 12 we are prob-

ably underestimating ξ s in this way. Strictly speaking, it is

10
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FIG. 14. Cavity relaxation time with swap dynamics. This is a zoom-in of

Fig. 4, made to emphasize the nonmonotonic behavior of τ (R). At the high-

est temperature (open squares, T = 0.350) there is an overshooting of τ (R),

caused by the hybridization between the MCT and activated branches. At

the lowest temperature (filled circles, T = 0.202) the overshooting disappears

due to the decreased gap between the MCT and the activated branch. The

relaxation times are normalized by their bulk value.
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only when the overshooting disappears, at low enough T, that

the static correlation length can be safely extracted from τ (R),

as it happens for example at T = 0.202 (see Fig. 14). Also, one

can say that it is only in this temperature regime, when only

one length scale is left, ξ s, that we can rightfully say that the

the dynamics is ruled by ξ s. In the intermediate temperature

regime there must be a (nontrivial) interplay between MCT

(and therefore ξ d) and activation/RFOT (and therefore ξ s).

On the other hand, if we want to be less RFOT–MCT

friendly, we must note that an overshooting of the relaxation

time as a function of the amount of frozen particles, can be

found also in systems that have nothing to do with RFOT,

namely, plaquette models, as shown in Ref. 30. In that Refer-

ence, though, the relevant variable is not the cavity radius R,

but the density of frozen scattered particles f.

According to the scenario described in this section, in

the nonswap case one should see an increase of τ (R) over

its bulk value when decreasing the cavity size from large R

(saturation from above), whereas in the swap case (and at low

T) the cavity relaxation time should decrease below its bulk

value when decreasing the radius (saturation from below).

This prediction seems to be in qualitative agreement with our

numerical findings.

Unfortunately, there is a problem with the scenario we

have just described, namely, the fact that nonswap dynamics

at very small R is stuck. If we interpret the great increase of the

nonswap cavity relaxation time in going from large R down to

medium R (Fig. 8) as the large R regime of a nonmonotonic

τ (R) (Fig. 12), a question stands out: why we do not see any

hint of the low R regime of Fig. 12, where the cavity relax-

ation time decreases for small radii? It is well possible that

for intermediate R the relaxation time is significantly larger

than the bulk limit. However, for very small R the relaxation

time must drop again. Yet, we do not see this. In fact, very

small cavities are completely stuck, as shown in Fig. 18.

This phenomenon is not only in open disagreement with

our theoretical expectation, but it also seems to contradict

common sense: when any other relaxation mechanism (MCT,

saddles, defects, whatever) has been exhausted at very low R,

only activation remains. But activation predicts that a region

of size R will relax at worst in a time of order exp (Rd/T).

Hence, a decrease of τ with R is bound to happen. But we do

not see it. We must address this inconsistency.

VII. A POSSIBLE EXPLANATION OF THE
CONTRADICTION: THE ROLE OF BOUNDARY
REARRANGEMENTS

The fact that swap dynamics thermalizes a small cavity

quite rapidly while nonswap dynamics remains stuck, is

weird; it indicates that swapping different particles in a

small volume becomes prohibitive for standard dynamics.

Of course, the exchange of two particles of different sizes

for the standard dynamics is the result of many moves. Yet

swapping two different particles is definitely not a terribly

collective rearrangement and it should not implicate a very

large activation barrier, nor a very hard kinetic prefactor of

activation. If it does, it means that either the barrier or the

kinetic prefactor have been made dramatically large by the

amorphous boundary conditions. Why is that?

A possible explanation is that by freezing the external

configuration we are preventing the surrounding system to

elastically accommodate for the small rearrangements within

the cavity. Although exchanging two different particles is not

a collective rearrangement, i.e., one in which many particles

move a lot, to happen it still needs that many particles move

a little. This phenomenon was studied in Ref. 14, where the

distribution of particle displacements in moving from a local

energy minimum to nearby one connected by a saddle of order

1 was calculated. It was found that this process corresponds

to few particles (order 2–3) moving an amount comparable to

the interparticle distance and many particles moving very lit-

tle, just to make space to the rearranging ones. Elasticity is

also a central ingredient in the local elastic expansion model

(also called “shoving model”) of viscous relaxation.31 More

in general, one might argue that the whole short-time dynam-

ics (not only elastic modes) plays a relevant role.

By freezing all the particles in the configuration exter-

nal to the cavity we are inhibiting this contribution, perhaps

making unnaturally large an otherwise modest barrier. Swap

dynamics, on the other hand, needs not to pass through the top

of a barrier to exchange two particles, and therefore is less af-

fected by the suppression of the high-frequency response, and

by the subsequent barrier’s increase. This may be the origin

of the very different qualitative behavior of swap vs. nonswap

dynamics observed at low R.

What we are proposing is that something similar to the

dilatancy effect in granular media is at work in our case.32

In a highly compact granular system, volume fluctuations are

needed to relax an applied shear, basically for the mere rea-

son that particles need to pass on top of each other in order

to change positions. Hence, if the volume is kept fixed, the

granular system may be virtually unable to relax the shear.

In our case barriers are not infinite as in a granular system,

of course. Yet the reduction of the volume, together with the

impossibility to produce any volume fluctuations, increases

these elementary barriers so much as to create a phenomenol-

ogy very similar to the dilatancy effect.

In Sec. VIII we propose a general approach to cope with

this situation and to restore the short-time dynamics which is

not limited to the elastic case. Our approach is suggested by

an alternative description of the problem in the RFOT spirit.

VIII. FROZEN CONFIGURATION VS. FROZEN STATE

An alternative description of the over-constraining due

to the boundary can be given in terms of configurations

vs. states. The original aim of the amorphous boundary

conditions3 was to keep the system surrounding the cavity

within one fixed state (say α), one of the exponentially many

metastable states the supercooled liquid phase is composed of

Ref. 33. According to this spirit, the external particles should

be allowed to move enough to visit the many configurations

belonging to state α, but not enough to reach configurations

that do not belong to α. By choosing and fixing just one con-

figuration within state α, however, we are over-constraining

the amorphous boundary, and this may have some side-effects
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on the dynamics of small rearrangements in the cavity when

a standard dynamics is used.

In view of this, it seems reasonable to try to relax the

constraint on the outer particles by changing the current FC

setup, in favour of a FS one. This means that instead of com-

pletely freezing the particles outside the sphere, we let them

relax subject to the condition that the overlap qext(t) between

the initial external configuration and the one at time t remains

at some value q̂ext,

qext(t) ≥ q̂ext. (7)

The FC setup would be recovered by taking simultaneously

the limits q̂ext → 1 and ` → 0. In this way, the external con-

figuration is not allowed to move at all, so this amounts to a

complete freezing.44

Of course, the choice of q̂ext is critical: with too large

a value we go back to the frozen configuration case, while

too small a value destroys any point-to-set correlation in the

cavity. In fact, in the limit q̂ext = 0 the cavity must be ergodic

and the overlap must relax to zero for any value of R. A

sensible physical choice is,

q̂ext = qEA, (8)

where qEA is the self-overlap of a metastable state. In this way

we ensure that the external system does not make any major

structural rearrangement, and yet allows for minor move-

ments of the particles, which can have an important elastic

effect. To chose the correct value of qEA we use the thermo-

dynamic potential V (q) recently discussed in Ref. 22, whose

secondary minimum indicates the value of the self-overlap

qEA. At the temperature T = 0.246, where we will run the FS

simulations, a reasonable choice is (see Fig. 5 of Ref. 22),

qEA = 0.4. (9)

Of course, at this rather high temperature states probably

comprise much more than configurations connected be

simple vibrations around some structure, and indeed the very

notion of state becomes hard to define. Here we do not dwell

into this issue, but simply proceed pragmatically, noting that

according to Ref. 22, at this temperature the generalized

free energy w(q) has a nontrivial shape compatible with

the existence of states, and surface tension still seems to

be nonzero. The final test for this choice of qEA is that the

point-to-set correlation must not be lost. Switching from FC

to FS will certainly imply that the infinite time limit of the

overlap, q(R), will be smaller at all values of R. We must

ensure that q(R) 6= 0 at least in some range [0: R], in order to

have a physically significant point-to-set correlation function.

IX. CAVITY DYNAMICS WITH FROZEN STATE
BOUNDARY CONDITIONS

Conceptually, FS simulations are straightforward: we

simply reject all moves on the external particles that violate

constraint (7). In practice, FS simulations are much more de-

manding than FC ones, because now we have to update all

particles in the system, not simply those within the cavity. For

this reason we restricted our investigation of the frozen state

TABLE I. Point-to-set correlation function q(R): FS vs. FC.

M R qFS(R) qFC(R)

20 1.68 0.222 ± 0.004 0.578 ± 0.001

50 2.27 0.142 ± 0.003 0.479 ± 0.001

100 2.88 0.095 ± 0.002 0.314 ± 0.002

setup to just 3 cavity sizes, M = 20, 50, 100 particles, corre-

sponding to R = 1.68, 2.27, 2.88, and to just one temperature,

T = 0.246, using 16 samples for each R as before (see Ap-

pendix D for additional technical details).

We first check what happens to the point-to-set corre-

lation function, i.e., to the asymptotic value of the overlap,

q(R), in the FS setup at this temperature. To do this we run a

swap β-initial condition (BIC) test (Appendix C) with FS, to

be sure to get the thermalized asymptotic overlap. We report

these values in Table I, where we also report the correspond-

ing values for the standard FC setup. Recall that the effective

zero of the overlap, i.e., the value it has for two uncorrelated

configurations, is q0 = 0.062876.

As expected, there is a significant decrease of q(R) in the

FS case, due to the fact that particles in the external config-

uration are now partly free to move, hence lowering the con-

straint on the inner particles. However, q(R) is still nonzero

with FS, so that the PTS correlation function is nontrivial. We

stress that the values in Table I have been obtained from a

swap BIC test: the lower branch of the BIC test grows with

time up to its asymptotic limit. We are therefore quite sure

that the FS values of q(R) that we report are nonzero.
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FIG. 15. Frozen configuration (FC) vs. frozen state (FS) setup, standard non-

swap dynamics. We plot the connected overlap, obtained by subtracting its

equilibrium infinite time limit q(R) (obtained with a swap BIC test). The

asymptotic equilibrium value of the connected overlap is zero. The three

values of R investigated here are small, so that the FC dynamics (dashed

line) is completely stuck at an out of equilibrium level. On the contrary, the

FS dynamics (full line) is not stuck and, even though longer runs would be

needed, it is approaching equilibrium (i.e., connected overlap equal to zero).

T = 0.246.
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Next, we turn to the time series of the overlap q(t) in the

FS setup, compared to the FC setup (Fig. 15). Here we are

using standard nonswap Monte Carlo dynamics, both for FC

and FS. We report in Fig. 15 data for three different values of

R. In order to make the FS/FC comparison easier, we plot the

connected overlap, i.e., the overlap with the (FS, swap) equi-

librium value, q(R), subtracted. The connected overlap must

go to zero for infinite time.

At these values of T and R, the FC time series (dashed

lines) are completely stuck at an off-equilibrium value, so

much as to make it impossible to even estimated the relax-

ation time. We already observed this phenomenon in Fig. 18.

On the other hand, the FS time series (full lines) are starkly

different: the connected overlap does not remain stuck at any

specific level; in fact, it seems to be decaying steadily towards

zero. Unfortunately 2 × 106 Monte Carlo steps (our largest

time) are not enough to directly observe the time where the

connected overlap goes to zero. However, a reasonable ex-

trapolation suggests that, for all three values of R, this time is

somewhere between 106 and 107 Monte Carlo steps.

We conclude that the cavity dynamics with frozen state

boundary condition no longer remains stuck at an off-

equilibrium level. This result goes in the direction we ex-

pected: allowing for the in-state motions of the external con-

figuration unleashes some minor, but necessary, relaxation

modes that are otherwise frozen in the FC setup. We can say

something more precise about this: in the FS case even a non-

swap dynamics is able (after a while) to exchange particles of

different size, while in the FC case this never happens.

This phenomenon is shown in Fig. 16. We report in this

figure the standard cavity overlap, q(t), together with the

binary cavity overlap, qbin(t): the first is insensitive to the ex-

change of different particles, whereas the second is sensitive

to it (see Appendix D for the exact definition). What we see is

that in the FC setup (upper panel) the two overlaps coincide

up to the longest time, meaning that particles exchanges

never happen.45 On the other hand, in the FS case (lower

panel) there is a decoupling between the two overlaps at

about 5 × 105 Monte Carlo steps.46 Hence, even the nonswap

dynamics is able to exchange different particles (and thanks

to this to relax the cavity), provided that we confine the

external system within a state, rather than a configuration.

The last open issue is the behavior of the relaxation time

as a function of R. We recall here the situation schematically

summarized in Fig. 12: the cavity relaxation time for medium

R can be significantly larger than the bulk time when relax-

ation is dominated by the MCT channel. However, for small

enough R one should go back to a regime where τ decreases

for decreasing R. This overshooting scenario is what happens

with a swap dynamics at medium-high temperatures, Fig. 14,

and our expectation was that it should also happen with a nor-

mal nonswap dynamics, provided that we use an FS setup. Is

this scenario confirmed or disproved by the data in Fig. 15?

Longer simulations (at least one order of magnitude

longer) and several more values of R and T would be required

to clear up unambiguously this matter. Still, we can make

some observations. First, if define a timescale by crossing the

connected overlap with an arbitrary value (say q̄ = 0.25, as

we did to produce Fig. 9), the smallest cavity (lowest panel)

 0.2
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FIG. 16. Frozen configuration (FC) vs. frozen state (FS) setup, standard non-

swap dynamics. We plot the standard overlap (lines) and the binary overlap

(symbols). These two overlaps are the same as long has no particles of differ-

ent size have been swapped. On the other hand, when the (nonswap) dynam-

ics starts swapping particles, the binary overlap gets smaller than the standard

one. This never happens in the FC setup (upper panel), whereas it happens

for sufficiently long times in the FS setup (lower panel). This fact explains

why the FC dynamics is stuck, while the FS one is not. R = 2.88, T = 0.246.

yields the smallest time. Of course, 0.25 is not a very small

value, hence this procedure is not quite safe, as different re-

laxation regimes may kick-in when the connected overlap be-

comes very small. If we then perform an unscrupulous extrap-

olation of the data in Fig. 15, in order to extract the timescale

where the connected overlap truly goes to zero, it seems that

the intermediate sized cavity, R = 2.27, has the largest relax-

ation time, definitely closer to the right side of the [106: 107]

window, whereas the smallest and largest cavities, R = 1.68

and R = 2.88, both seem to have a smaller relaxation time,

closer to the 106 side. We do not report any extrapolation on

the plot, though, as we prefer the reader make up her/his own

mind about this point.

Even taking into account that comparing FC and FS at

fixed R is rather tricky (because introducing FS might lead to

a renormalization of the characteristic length ξ s) just looking

at the FS data for different R, it seems that the smallest cavity

is not the slowest one. In particular, from the extrapolation it

would seem that we are around the maximum of τ (R) that we

depicted schematically in Fig. 12 and that we are starting to

see a hint of the expected decrease of τ with decreasing R.

Needless to say, we cannot push this interpretation of the data

too far. Let us be content in saying that current simulations

with frozen state boundary conditions and nonswap dynamics

do not rule out the existence of a low R regime where smaller

cavities have smaller relaxation times.
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Further work to clear up this issue is currently in

progress. Unfortunately there is no easy way to settle this.

The only thing to do is to push the simulations at longer times,

which is computationally very costly.

X. SOME EXPERIMENTAL RESULTS UNDER
CONFINEMENT

At the experimental level, there has been considerable in-

terest in studying liquids in confinement conditions, in partic-

ular since nanoporous materials with well-defined pore radius

have been available (see Refs. 34–36 and references therein)

and more recently materials such as carbon nanotubes.37

For liquids confined in nanopores the experimental glass

transition temperature (as measured with differential scanning

calorimetry) is reduced as the pore becomes smaller,35 i.e.,

confined systems are faster than the bulk. However, the situa-

tion is rather more complicated, as relaxation experiments34, 36

point to the existence of at least two regions in space, with dif-

ferent dynamics: a slow layer of molecules directly in contact

with the pore walls and a fast region inside the cavity and far

from the walls.

A particularly interesting case is reported in Ref. 36: the

relaxation time of salol confined in nanoporous silica glass

was found with dielectric relaxation measurements (unable to

distinguish the interfacial and central regions of the pore) to

be larger for increasing confinement. However, after coating

the pore walls with a hydrophobic lubricant (thus reducing the

H bonds between salol and the pore surface) it was found that

smaller cavities are faster. In particular, they are significantly

faster than the bulk. Hence, in this experimental case, once

the interactions that slow down the interfacial layer were sup-

pressed, the relaxation time as a function of the radius has a

qualitative behavior similar to Fig. 2. The authors of Ref. 36

used this to determine a cooperativity length scale.

There are intriguing similarities, as well as obvious dif-

ferences, with our case. In both cases the original interaction

with the cavity interface was too stiff, suppressing some re-

laxation channels that are not cooperative, and yet necessary

to equilibrate the cavity. The strategy in Ref. 36 was to lu-

bricate the inside of the cavity, thus hindering the H bonds

responsible for the artificial slowing down; our strategy was

the make the surrounding system softer. In the experimental

case the effect was clear: lubricated cavities are faster than un-

lubricated ones; smaller cavities are faster than larger cavities.

In our case, we also obtain that FS cavities are faster than FC

cavities; whether or not smaller cavities are faster than larger

ones is unclear, but the data do not rule this out.

The differences are also relevant. In the experimental

case the confined (free) system is liquid salol, and the pore

is glass. Hence, even though one may say that there are amor-

phous boundary conditions, these are certainly not drawn

from the Gibbs-Boltzmann equilibrium distribution of an ex-

ternal salol system. Moreover, the reasons for the original

“stiffness” are also different. In the experimental case it is the

formation of H bonds between internal salol and the surface

of the pore. In our case, the nature of the bonds between par-

ticles within the cavity and across the interface is exactly the

same; however, the complete freezing of the cavity suppresses

the swap, uncooperative, rearrangements useful to reach equi-

librium. Accordingly, the solutions adopted are also different.

We cannot say whether or not the similarities overcome

the differences, so to make this experimental case significant

to our context. We limit ourselves to register the fact that the

problem of an artificial slowing down in confining geometries

has already occurred in experiments and that, when solved,

the cavity dynamics can change very dramatically.

XI. CONCLUSIONS

We have studied the dynamics of a confined cavity, us-

ing different Monte Carlo algorithms and different amorphous

boundary conditions. Our bare findings are:

1. FC—swap—low T: the cavity relaxation time τ is larger

the larger R and it saturates at R ∼ ξ s, where ξ s is the

point-to-set correlation length.

2. FC—swap: in the region R ∼ ξ s a colder cavity relaxes

faster than a hotter cavity.

3. FC—swap: at higher T the relaxation time τ (R) displays

an overshooting that disappears on lowering T.

4. FC—nonswap: τ is larger the smaller R.

5. FC—nonswap: small cavities (R < 4) are completely

stuck at an off-equilibrium level.

6. FS nonswap dynamics is significantly faster than FC

nonswap dynamics; with FS small cavities are no longer

stuck.

7. The FS point-to-set correlation function q(R) is nonzero

in the region of interest of T and R.

8. FS—nonswap: data are compatible with a nonmono-

tonic τ (R), namely, with the possibility that in small cav-

ities τ is smaller the smaller R.

We have proposed a theoretical scenario whose aim is to

organize all these results into one coherent picture. Our sce-

nario rests on two main ideas. First, depending on the values

of R and T, and on the type of dynamics, there may be an hy-

bridization between MCT and activated relaxation channels;

this hybridization, when present, gives rise to a nonmonotonic

cavity relaxation time τ (R). Second, the frozen configuration

setup is unsuitable to run nonswap dynamics, and in general

it is not very physical, as it may give rise to an artificial dy-

namical freezing. We have introduced a FS setup, based on

the idea that the amorphous boundary condition must select a

certain state, not simply a certain configuration. If we accept

these two hypothesis, then we can find an interpretation for

the very diverse results we find.

Result 1 supports the idea that ξ s is the relevant scale of

cooperativity in the system. According to the RFOT with fluc-

tuating surface tension, the activated relaxation time is equal

to the in-state relaxation time for R ¿ ξ s, it grows when R gets

across the support of the probability distribution of the rear-

ranging sizes P(R, ξ s), and it finally saturates to its bulk value

for R À ξ s. Hence, when the cavity is larger than the scale of

cooperativity relaxation factorizes, whereas when the cavity is

smaller than ξ s the whole cavity must rearrange collectively.

This RFOT interpretation is supported by result 2: an inver-

sion of the relaxation time (cooler is faster) happens because

a colder cavity may still be confined within just one state, thus
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experiencing only the short, in-state relaxation time, while (at

the same value of R) a hotter cavity may be already unlocked,

thus sporting the full, bulk relaxation time.

The maximum displayed by the swap τ (R) at medium-

high T (result 3) is one piece of evidence in support of

the (rather speculative) scenario described in Sec. VIII:

the hybridization between nonactivated MCT channels and

activated channels gives rise in the bulk to the crossover

between MCT and activation close to Tc, while in the cavity

it gives rise to a nonmonotonic τ (R). This hybridization

implies that for large R the cavity relaxation time follows

the MCT branch, so that τ is larger for smaller R, which is

in agreement with the nonswap dynamics result 4. On the

other hand, switching to swap dynamics has the effect of

eliminating the Tc crossover (in the bulk) and flattening the

maximum of τ (R) (in the cavity).

We have speculated that the complete freezing out of

small cavities with nonswap dynamics (result 5) is not quite

physical, and we have suggested that it could be an artifact

of the suppression of some elastic (noncooperative) relax-

ation modes due to the frozen configuration setup. We have

proposed a practical way to implement amorphous boundary

conditions with a frozen state and we have found that this

setup speeds up significantly the nonswap dynamics, unlock-

ing small cavities (result 6). We have also checked that the

point-to set correlation remains nonzero, despite a significant

reduction due to the smaller degree of confinement by the ex-

ternal state (result 7).

Finally, we tried to understand what was the behavior of τ

as a function of R in the frozen state case. This issue is impor-

tant: if we cannot find any regime of R and T where the non-

swap τ is smaller for smaller R, then we have a problem. Our

entire construction relies on the idea that for small enough

R the MCT branch must be gone, so that all that remains is

the activated branch, and this must be faster the smaller the

cavity. Moreover, apart from our theoretical scenario, general

arguments suggest, as we have seen, that very small cavities

should be fast. Our time series (Fig. 15) are too short to settle

this issue. But we can at least say that the data do not rule out

this possibility (result 8). With a little more optimism, we can

even conclude that the smallest cavity is not the slowest one,

which is all we need to support our theoretical scenario.

The whole scenario still admits considerable improve-

ments in both clarity and numerical support. As we have said,

longer simulation with nonswap dynamics in the FS setup

are needed to study carefully τ (R), and this should be done

at several values of R and of T. At the same time, FS swap

simulations should be run in order to reconstruct the entire

point-to-set correlation function, q(R), to check whether or

not it retains its essential properties. Is it still a nonexponen-

tial function8 at lower temperature? How does the FS corre-

lation length ξ s compare to its FC counterpart? Work in this

direction is in progress.
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APPENDIX A: DETERMINATION OF RELAXATION
TIMES

Before estimating the relaxation time τ we check that

the autocorrelation function does not depend on the size of

the time window 1t used to measure it. For example, Fig. 17

shows the autocorrelation function at our lowest temperature

and at different values of the time window 1t, at two values

of R: there is no significant dependence of C(t; R) on 1t.

We estimate τ from the integral of the correlation func-

tion as discussed by Sokal in Ref. 38: we solve the equation

τ =

Z ατ

0

dtC(t ; R), (A1)

where the optimal value of α has been found to be 20. In this

way one is sure to sample the phenomenon on a time window

that is self-consistently much larger than the relaxation time.

APPENDIX B: RFOT INTERPRETATION OF THE SWAP
EQUILIBRATION TIME

Within the sharp RFOT description, where the surface

tension has just one value, Y, one expects a step-like jump:

τ (R) ∼

(

τβ R < ξs

τ0 eξ
ψ
s /T R > ξs .

(B1)
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To see how surface tension fluctuations give rise to a smooth

τ (R), let us write the surface tension distribution as P(Y; Yc),

where Y is the fluctuating tension and Yc is its typical scale,

defined by the peak of the distribution. This means that a

region of radius R will rearrange or not rearrange, depending

on the value of Y; accordingly, its relaxation time can be the

either the in-state time τ β , or the time needed to activatedly

rearrange the region,

τ (R, Y ) ∼

(

τβ Y > T 6Rd−θ

τ0 exp
£

1
T

(Y/T 6)
ψ

d−θ

¤

Y < T 6Rd−θ .
(B2)

The macroscopic relaxation time will be given by an average

over Y of the time in (B2),

τ (R) = τβ

Z ∞

T 6Rd−θ

P (Y ; Yc) dY

+ τ0

Z T 6Rd−θ

0

P (Y ; Yc) exp

·

1

T
(Y/T 6)

ψ

d−θ

¸

dY.

(B3)

The first term in (B3) corresponds to regions surrounded by

large surface tension, which do not rearrange, and it equals

at most τ β . The second term corresponds to the low surface

tension regions that do rearrange, and at low temperatures

this term is large. Clearly, if P(Y; Yc) = δ(Y − Yc) we recover

the step-like behavior of τ (R) of (B1). If, on the other hand,

P(Y; Yc) is broad, the result is nontrivial.

Defining the typical mosaic correlation length, ξ s

= (Yc/T6)1/(d − θ) (Ref. 8) suggests an obvious change of

variables useful to recast Eq. (B3) into (3).

As discussed in Sec. IV, Eq. (3) gives a smooth growth

of τ (R) from τ β up to the bulk relaxation time. It is difficult

to specify the shape of the smooth growth around ξ s with

no knowledge of the distribution P(r; ξ s) (or equivalently

P(Y; Yc)). Still, in the saddle point limit (low T) there is

something we can say: the second integral in (3) is dominated

by the exponential, and for R < ξ the saddle-point coincides

with the right edge of the integration domain, rSP = R. In this

case we have,

τ (R) ∼ τ0 eRψ/T , ξs − δ < R < ξs + δ. (B4)

1. An unexpected inequality

In order to have a finite bulk equilibration time, we need

the second integral in equation (B3) to be finite for R → ∞.

Therefore, P(Y; Yc) must decay sufficiently fast to suppress

the Arrhenius factor. If we make the reasonable assumption,

P (Y ; Yc) ∼ e−(Y/Yc)ν , Y À 1, (B5)

we must have,

ν ≥
ψ

d − θ
. (B6)

As we have seen, the distribution P(Y; Yc) implies an equiv-

alent distribution of the rearranging regions’ size, P(R; ξ s),

inequality (B6) means that P(R; ξ s) must decay fast enough

to suppress the growth of the equilibration times for large R.

This is reasonable. In Ref. 8 it was shown that the exponent

ν is related to the anomaly exponent ζ that rules the nonex-

ponential decay of the point-to-set correlation function q(R),

q(R) ∼ e−(R/ξs )ζ , (B7)

with

ζ = ν(d − θ ), ζ ≥ 1. (B8)

where θ is the surface tension (or stiffness) exponent. This

leaves us with the inequality,

ζ ≥ ψ. (B9)

On increasing the temperature the anomaly ζ must go to 1,

as the point-to-set correlation function q(R) becomes a pure

exponential.8 If ψ is temperature-independent, relation (B9)

then implies,

ψ ≤ 1. (B10)

We note that the value ψ ∼ 1 previously reported in Ref. 21

satisfies (B10). Of course, if we allow ψ to depend on T (as ζ

does), then there would be no reason for (B10) to be valid in

general, whereas (B9) would still hold.

APPENDIX C: THE β-INITIAL CONDITION TEST
ON THE OVERLAP

The BIC test is a tool that allows us to verify that the

asymptotic t → ∞ overlap reaches its equilibrium value with

the swap dynamics, as well as to realize that it definitely does

not with small cavities and standard dynamics. The idea is

to initialize the cavity in a configuration β which has over-

lap equal to zero with the α configuration used to thermalize

the system, and which is frozen in the boundary condition. In

this way, the BIC overlap qαβ (t) is zero at time zero, and it

must increase to the same asymptotic value as the standard

overlap qαα(t). When thermalization of the cavity is achieved

the two overlaps must meet at the same equilibrium value,

q(R). This is somewhat similar to the tests introduced by Bhatt

and Young39 and later Katzgraber et al.40 as a thermalization

check in simulations of spin glasses.

A positive BIC test is shown in the upper panel of Fig. 18

for the swap dynamics at small R: the two overlap branches

meet at their asymptotic value, q(R). We have run BIC tests

for all our values of R and T in the swap case, always getting

a positive result (the same holds for the data of Ref. 8). In the

lower panel of the same figure we see what happens in the

nonswap case for the same value of R: despite the fact that

the overlap is stationary for several decades, it is definitely not

thermalized, as there is a clear and significant gap between

the two branches, none of which reaches the equilibrium

value q(R) (dotted line).

APPENDIX D: FS SIMULATIONS:
TECHNICAL DETAILS

In this as well as in previous works,4, 8 the overlap is de-

fined in such a way that it does not detect the exchange of par-

ticles of different size. The same definition has been adopted

by other groups.11, 23 However, we cannot use this definition
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FIG. 18. BIC test comparison between swap and nonswap dynamics. In the

BIC test the configuration is initialized both in the same configuration α as

the frozen boundary (upper, full curve) and in a different configuration β

with respect to the frozen boundary (lower, dashed curve). The upper and

lower curves must reach the same asymptotic value q(R) for infinite times.

The BIC test is positive for the swap dynamics; all of our swap data, fore

every value of R and T, have passed the BIC test. On the other hand, the BIC

test is negative for the nonswap dynamics. Nevertheless, the nonswap time

series is stationary, making it impossible to estimate a reasonable value of

the relaxation time. R = 2.27, T = 0.246.

for imposing the constraint on the external particles: an ex-

change of two different particles, perhaps quite far from each

other, must not be allowed. Hence, the constraint must be im-

posed on an overlap that is sensitive to the exchange of par-

ticles of different kind (whereas we still do not distinguish

the exchange of identical particles). Let us call this the binary

overlap, defined as

qbin(t) ≡
1

`3 Ni

X

i∈v

£

nA
i (0)nA

i (t) + nB
i (0)nB

i (t)
¤

, (D1)

where nX
i (t) is the number of particles of kind X in box i. This

is also the definition used in Ref. 22 to compute the thermo-

dynamic potential V (q). For the FS simulations we thus use

qbin to put the constraint on the outside particles. On the other

hand, in order to compare with the previous results, we con-

tinue using the standard overlap within the cavity.

Finally we note that, as in the FC case, in the FS setup

we use a hard wall potential enclosing the particles within

the cavity. In this way, particles cannot cross the surface of

the cavity: whoever is in, stays in, and whoever is out, stays

out. This procedure is essential in order to obtain the correct

thermodynamic ensemble.
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