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Abstract. This paper presents the dynamics problems of stochastic vibratory machine systems. The random responses of the

vibratory machine systems with stochastic parameters subjected to random excitation are researched using a stochastic perturbation

method. The numerical results are obtained. The dynamic characteristics of nonlinear stochastic vibratory machine are analyzed.

1. Introduction

The vibratory machines are widely employed in the

many industry fields, such as mine and metallurgy etc..

During the last three decades, there has been consid-

erable research activity in the area of engineering re-

search. A substantial of development of the vibratory

machines has taken place rapidly and evidently [1–8].

Since the manufacturing error, measurement error of

mechanical systems, the respective materials and geo-

metric characteristics, all have randomness, it is very

important to investigate uncertain vibratory machine

problem. In the theory of random vibration, the me-

chanical systems are generally expressed as determin-

istic model and the external input is treated as a stochas-

tic process to analyze the statistic response. But un-

certainty of system parameters is inherent in most en-

gineering problems, and its effects on mechanical re-

sponse should be assessed.

It is clear that stochastic analysis requires informa-

tion of the distributions, or joint distribution. In prac-

tice they are often unavailable or difficult to be deter-

mined from insufficient data. Furthermore, even when

the required distributions can be specified, it is still dif-

ficult to exercise relevant numerical integration. But

the method presented in this paper is independent of

those distributions, so it is natural that there is no more

any difficulty with such distributions as well as their

integration. As long as the first order moment and

second order moment of mechanical random param-

eters are known, the first order moment and second

order moment of responses can be determined. This

paper presents an approximate solution for stochastic

vibratory machines. The system is a multi-degree-of-

freedom nonlinear random vibratory system with ran-

dom parameters. Stochastic perturbation technique is

employed to systematically the random responses of

the vibratory machines. This formulation is easily

amenable to computational procedures.

2. Nonlinear random vibration mechanical system

The nonlinear stiffness and damping are generally

used in the vibratory machine. There are many ad-

vantages in the nonlinear mechanism relative to the

linear mechanism. The nonlinear two-mass vibratory

machine shown in Fig. 1. The stochastic differential

equation is represented as

m1ẍ1 + cẋ1 − cẋ2 + (k0 + k)x1

−(k0 + k)x2 + ϕ(ẋ, x) = k0r sin ωt
m2ẍ2 − cẋ1 + cẋ2 − (k0 + k)x1

+(k0 + k)x2 − ϕ(ẋ, x) = −k0r sinωt















(1)

where m1 and m2 are two-masses, c is damping co-

efficient, k0 is spring stiffness of connecting rod, k is
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Fig. 1. Nonlinear vibratory machine. (a) Actual work mechanism;

(b) Mechanical model.

spring stiffness of main vibration system. ω is the fre-

quency of main shaft, r is the eccentricity of main shaft.

t is time, x1, x2, ẋ1, ẋ2, ẍ1, ẍ2 are the displacements,

velocities, accelerations of mass 1 and mass 2. ϕ(ẋ, x)

represents nonlinear damping and stiffness, namely

ϕ(ẋ, x)

=































0
−e � x1 − x2 � e

∆c(ẋ1 − ẋ2) + ∆k(x1 − x2 − e)
e � x1 − x2 � ∞

∆c(ẋ1 − ẋ2) + ∆k(x1 − x2 + e)
−∞ � x1 − x2 � −e

(2)

where ∆c and ∆k are damping and stiffness coeffi-

cients of interval spring. e is the interval of the spring.

In engineering, the masses are mostly assumed to be de-

terministic, and the probabilistic effects are described

through the random parameters of spring stiffness and

damping.

3. Stochastic perturbation technique

In the recent years much research has been done to

quantify uncertainties in engineering systems and their

combined effect on the response. The stochastic per-

turbation techniques have proven to be efficient in non-

linear random vibration mechanical system. A major

advantage of these techniques is that the joint probabil-

ity density or distribution functions need not be known,

but only the first two moments.

Consider the motion of a nonlinear multi-degree-of-

freedom system with random parameters subjected to

the random excitations and described by the differential

equation

Mẍ + f(R, x, ẋ) = F (R, t) (3)

where M , f , x and F are the generalized mass, in-

ternal force, displacement, and external force, re-

spectively; and a superscript dot represents the time

(t) derivative. The probabilistic effects are de-

scribed through the random parameter vector R =
(r1, r2, . . . , rq)

T of order q, which can include the

probabilistic distributions of all random variable prop-

erties. Obviously, Eq. (3) is a vector-valued and matrix-

valued function equation.

The random parameter ri, mass matrix M , internal

force vector f , displacement vector x, velocity vector

ẋ, acceleration vector ẍ, and external force vector F

are expanded as

ri = rid + εrir, M = Md + εMr,

f = fd + εfr, x = xd + εxr,
(4)

ẋ = ẋd + εẋr, ẍ = ẍd + εẍr,

F = F d + εF r

where ε is a small parameter, here ε is used to deter-

mine the order of formulated equations. The part that

expressed by subscript d is certain part in the random

parameters and the part that expressed by subscript r
is the random part with zero mean value in the random

parameters. Obviously, it is required that the values of

the random part are much smaller than the values of the

certain part. Both sides of Eq. (4) is evaluated about

the mean value of random variables as follows

E(ri) = E(rid) + εE(rir) = rid (5)

E(x) = E(xd) + εE(xr) = xd,

E(ẋ) = E(ẋd) + εE(ẋr) = ẋd, (6)

E(ẍ) = E(ẍd) + εE(ẍr) = ẍd
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Similarly, both sides of Eq. (4) are evaluated taking

the variance of random variables as follows

Cov(r, rj) = ε2E(rirrjr) (7)

Cov(x) = ε2E(x, xT
r ),

Cov(ẋ) = ε2E(ẋrẋ
T
r ), (8)

Cov(ẍ) = ε2E(ẍrẍ
T
r )

Substituting Eq. (4) into Eq. (3), yields

(Md + εMr)(ẍd + εẍr) + fd(R, x, ẋ)
(9)

+ εfr(R, x, ẋ) = Fd(R, r) + εF r(R, t)

Expanding the above equation, and equaling the

terms of like powers of ε, we obtain

ε0 Mdẍd + fd(R, x, ẋ) = F d(R, t) (10)

ε1 Mdẍr + fr(R, x, ẋ) = F r(R, t)
(11)

−Mrẍd

The solutions for the certain part, namely xd, ẋd, ẍd,

the mean values of the responses are studied from

Eq. (10). The mean values of the random responses are

represented as

E(x) = xd, E(ẋ) = ẋd, E(ẍ) = ẍd, (12)

For determining the variances and covariances, M r,
fr, xr, ẋr, ẍd and F r are expanded about the mean

values R of the random parameters in the first approx-

imation via Taylor series, namely,

Mr =

q
∑

i=1

∂Md

∂ri

rir , fr =

q
∑

i=1

∂fd

∂ri

rir ,

xr =

q
∑

i=1

∂xd

∂ri

rir , ẋr =

q
∑

i=1

∂ẋd

∂ri

rir, (13)

ẍr =

q
∑

i=1

∂ẍd

∂ri

rir , F r =

q
∑

i=1

∂F d

∂ri

rir ,

Substituting Eq. (13) into Eq. (11), yields

q
∑

i=1

(

Md

∂ẍd

∂ri

rir +
∂fd

∂ri

rir

)

(14)

=

q
∑

i=1

(

∂F d

∂ri

rir −
∂Md

∂ri

rirẍd

)

and comparing the coefficient rir , the sensitivity equa-

tion is obtained as

Md

∂ẍd

∂ri

+
∂fd

∂ri

=
∂F d

∂ri

−

∂Md

∂ri

ẍd (15)

Quantities ∂xd/∂ri, ∂ẋd/∂ri, ∂ẍd/∂ri, can be de-

termined by solving Eq. (15) using numerical meth-

ods. Substituting ∂xd/∂ri, ∂ẋd/∂ri, ∂ẍd/∂ri, into

Eq. (8), the variances and covariances of the responses

can be computed. They are represented as

Cov(x)

=

q
∑

i=1

q
∑

j=1

(

∂xd

∂ri

) (

∂xd

∂rj

)T

Cov(ri, rj),

Cov(ẋ)

=

q
∑

i=1

q
∑

j=1

(

∂ẋd

∂ri

) (

∂ẋd

∂rj

)T

Cov(ri, rj), (16)

Cov(ẍ)

=

q
∑

i=1

q
∑

j=1

(

∂ẍd

∂ri

) (

∂ẍd

∂rj

)T

Cov(ri, rj),

The mean values, variances and covariances, E(x),
E(ẋ), E(ẍ), Cov(x), Cov(ẋ), Cov(ẍ), of the ran-

dom vibration responses, x, ẋ, ẍ, are obtained from

the Eqs (12) and (16). Obviously, the mean values,

variances and covariances are accurate to only the first

order. Because the results are only good up to the first

order, the analysis presented is restrictive, but it can be

useful in many practical applications.

4. Numerical example

Consider a vibratory machine is modeled as Fig. 1

with m1 = 130.66 (kg), and m2 = 270.72 (kg). The

random stiffnesses k0 and k of springs are mutual in-

dependent random variables, its mean value and stan-

dard variance are taken as k0 = (50000, 2500) (N/cm)

and k = (15680, 784) (N/cm). The damping co-

efficient c is c = 20.5 (Ns/cm). The damping and

stiffness coefficients ∆c and ∆k of interval spring are

∆c = 10.0 (Ns/cm) and ∆k = 292000 (N/cm). The

interval e of interval spring is e = 0.39 (cm). The

frequency ω of the main shaft is ω = 57.5 (1/s). The

eccentricity r of the main shaft is r = 1.6 (cm). The

matrix R of the random parameters is R = [k0, k]T ,

where its joint probability density or distribution func-

tions does not be given, but only the first two moments.

The mean value and standard variance of displace-

ment x1 are depicted in Figs 2 and 3, the covariance

of displacements x1 and x2 is depicted in Fig. 4. The

Figs 3 and 4 show random variations (standard variance

and covariance) with respect to a synthesis influence of



280 Y. Zhang et al. / Dynamic research of a nonlinear stochastic vibratory machine

Fig. 2. The mean displacement x1.

Fig. 3. The standard variance of displacement x1.

the random parameters k0 and k. The each order equa-

tions derived earlier are by the implicit Newmark-β
method.

The calculation of the random responses requires the

knowledge of the probability distributions, or the joint

distribution. In practice, the available information or

data may be sufficient only to evaluate the first and sec-

ond moments; namely, the mean values, variances and

covariances of the respective random variables. Prac-

tical measures of responses, therefore, must often be

limited to functions of these first two moments. Under

this condition, the implementation of responses must

necessarily be limited to a formulation based on the

first and second moments of the random variables. The

method has proven to be efficient in vibratory machines.

A major advantage of the technique is that the joint

probability density or distribution functions need not

be known, but only the first two moments. Besides, In-

put of independent random parameters can not bring on

output of independent random responses in the system

with random parameters. The responses of the system

are generally correlative, and the theory in the paper

educe the same conclusion.

Fig. 4. The covariance of displacements x1 and x2.

5. Conclusion

A vibratory machine with random parameters is usu-

ally effected random excitations. Randomness may be

mathematically modeled either as a random variable or

a stochastic process. Machines with random parame-

ters are complicated to analyze, since the response is

statistically correlated to these parameters. This paper

bases on the stochastic perturbation technique to sys-

tematically investigate the random responses of a vibra-

tory machine. The mechanical development has been

obtained. The results obtained are easily amenable to

computational procedures.
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