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Abstract: Superconducting high-Tc coated conductor (CC) wires comprise a ceramic thin film with a 

large aspect ratio. This geometry can lead to significant dissipative losses when exposed to an 

alternating magnetic field. Here we report experimental measurements of the ‘dynamic resistance’ of 

commercially available SuperPower and Fujikura CC wires in an AC perpendicular field. The onset 

of dynamic resistance occurs at a threshold field amplitude, which is determined by the total DC 

transport current and the penetration field of the conductor. We show that the field-dependence of the 

normalised magnetisation loss provides an unambiguous value for this threshold field at zero 

transport current. From this insight we then obtain an expression for the dynamic resistance in 

perpendicular field. This approach implies a linear relationship between dynamic resistance and 

applied field amplitude, and also between threshold field and transport current and this is consistent 

with our experimental data. The analytical expression obtained yields values that closely agree with 

measurements obtained across a wide range of frequencies and transport currents, and for multiple 

CC wires produced by different wire manufacturers and with significantly differing dimensions and 

critical currents. We further show that at high transport currents, the measured DC resistance includes 

an additional non-linear term which is due to flux-flow resistance incurred by the DC transport 

current. This occurs once the field-dependent critical current of the wire falls below the DC transport 

current for part of each field cycle. Our results provide an effective and simple approach to 

calculating the dynamic resistance of a coated conductor wire, at current and field magnitudes 

consistent with those expected in superconducting machines.              
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1. Introduction 

Dynamic resistance occurs in a superconductor carrying a direct electrical current whilst experiencing an 

applied alternating magnetic field [1-4]. This form of superconducting AC loss arises from interactions 

between the driven DC current and moving fluxons within the superconducting wire, which leads to a time-

averaged potential drop along the wire that is proportional to the magnitude of the current [3, 4]. Dynamic 

resistance is a dissipative loss which presents a heat load to a cryogenic system, so accurate predictions are 

essential to the design of high-Tc superconducting (HTS) magnets and machines which experience AC fields 

[5-8]. In recent years, coated conductor HTS wire has emerged as the dominant HTS wire for next generation 

electrical machines, and it is therefore critically important to be able to predict dynamic losses in this type of 



2 

 

 

 

 

 

 

superconductor. Dynamic resistance has also been identified as a key underlying feature of recently reported 

HTS flux pump devices [9-13] in which a coated conductor stator wire is exposed to an alternating 

perpendicular magnetic field. Such devices are of significant interest as they eliminate the requirement for 

current leads connecting the magnet coil to a power supply, and thus enable an HTS magnet coil to be 

operated in quasi-persistent mode [14]. 

 HTS coated conductor (CC) wire comprises a thin (typically ~1 µm) film of superconducting rare-earth 

barium cuprate (ReBCO) material which is supported upon a planar metal tape [15]. The results in a very 

high aspect ratio (a/t ~ 4000), which causes large differences in the observed AC losses for perpendicular, 

versus parallel, magnetic fields. In perpendicular field, the flux distribution within a CC wire closely 

approximates to a superconducting ‘strip’ of finite width 2a, and infinitesimal thickness (2𝑡 → 0) as shown 

in figure 1a, whilst in parallel field it can be approximated as a superconducting ‘slab’ of finite width 2t, and 

infinite thickness, (2𝑎 → ∞).  

 

 

 
 

Figure 1. (a) Geometry and dimensions of superconducting strip in perpendicular field. The parameter 2t 

refers to the thickness of the ReBCO film within a coated conductor HTS wire. (b) Experimental 

arrangement for the measurement of dynamic resistance in a ReBCO coated conductor HTS wire. Inset 

shows arrangement of inductively cancelling voltage taps [16]. 
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 When either a superconducting strip or slab is exposed to an alternating magnetic field, magnetisation 

currents flow in the outer regions of the conductor. If the amplitude of the alternating applied field Ba, is less 

than a defined threshold field Bth, then a shielded region of “frozen flux” is maintained at the centre of the 

conductor [17, 18], such that any DC current flowing in this shielded region will not experience a change in 

the applied field. In this case, no electrical power is dissipated and the dynamic resistance is equal to zero [3, 

4]. However, once the applied field exceeds Bth, the central region is no longer shielded throughout the entire 

cycle, and a net flow of flux will pass across the DC current-carrying region [4], causing dynamic resistance 

to occur.  

 For the purposes of the discussion below, we shall assume that any magnetic field dependence of Jc can 

be neglected, such that Jc =Jc0 = Ic0/4at at all times. Figures 2a and 2b show the current distribution in a strip 

conductor carrying a DC current It, whilst exposed to applied field magnitudes > |𝐵𝑡ℎ|. Under these 

conditions, the current density is equal to Jc0 at all points within the strip, except for a small current-reversal 

zone which separates the positive and negative current-carrying regions and in which |J| < Jc0. The current 

reversal zone has a total width, 𝛿, which slowly decreases with increasing applied field amplitude above Bth 

[17, 18]. As in the slab case [3, 4], the constant DC transport current flows in the central region of the 

conductor between y=-ia and y=+ai, where i = It/Ic0. 

 

 
Figure 2. Diagrams (a) and (b) indicate approximate current distribution across strip for (a) positive applied 

fields > 𝐵th,⊥, and (b) negative applied fields < −𝐵th,⊥. The DC transport current (It) flows within the central 

region of the conductor between y=-ai and y= +ai, whilst shielding currents occupy the remainder of the 

conductor volume. Plot (c) shows normalised AC magnetization losses by Ba
2 according to the Brandt 

equation [17] and the ‘Slab’ model [19]. These have been calculated for example “strip” (𝐵⊥) and “slab” (𝐵∥) 

geometries. The example strip is 4 mm wide, 1 µm-thick, and has a Jc0 of 2.63 x 1010 A/m2 (equivalent to a 

self-field Ic0 of 105.3 A). The slab has a width of 4 mm, is infinitely thick, and has the same Jc0 value as the 

strip. 
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 Now, the local perpendicular field at a point, y, across the strip conductor is given by [17]: 

 

𝐵⊥(𝑦) =
𝜇0𝑡

2𝜋
∫

𝐽(𝑢)

𝑦−𝑢
𝑑𝑢

𝑎

−𝑎
+ 𝐵𝑎,⊥      (1) 

 

 When the magnitude of the applied field is > |𝐵𝑡ℎ|, the current distribution outside of the current-reversal 

zone does not change with field. As δ≪a, we can then state that within the DC current carrying region: 

 

 𝐵⊥(𝑦) ≈  
𝜇0𝑡

2𝜋
∫

𝐽th(𝑢)

𝑦−𝑢
𝑑𝑢

𝑎

−𝑎
+ 𝐵th,⊥ + (𝐵a,⊥ − 𝐵th,⊥)            for 𝐵a,⊥ >  𝐵th,⊥and |𝑦| < 𝑎𝑖 

= 𝐵⊥(𝑦, 𝐵a = 𝐵th,⊥) + ∆𝐵       (2) 

 

where ∆𝐵 = 𝐵𝑎,⊥ − 𝐵th,⊥ and 𝐽th(𝑢) is the current distribution at the threshold field. 

 

 Now, the electrical work done when perpendicular flux, ∆Φ, crosses a current 𝐼t, is given [20] by 𝑄 =
𝐼t∆Φ.  As such, if the applied field is alternately cycled between –Ba and +Ba, the time-averaged dissipated 

power, P, per unit length, L, is given by: 

 

𝑃 = 𝑄𝑓 = 𝐼t. 2𝑎𝑖𝐿∆𝐵𝑓 =
4𝑎𝑓𝐿𝐼t

2

𝐼c0
(𝐵a − 𝐵th)    (3) 

 

where f is the frequency of the alternating field. The dynamic resistance, 𝑅d⊥, of the strip is then obtained 

from 𝑃 = 𝐼t
2𝑅d⊥, as: 

 
𝑅d⊥

𝐿
=

4𝑎𝑓

𝐼c0
(𝐵a,⊥ − 𝐵th,⊥)     (4) 

 

 Equation 4 is equivalent to that previously derived for the slab geometry, except that the wire dimension 

and threshold field parameters now relate to the strip case (ie perpendicular field). In the slab geometry, 

Oomen et al. have further shown [4] that:  

 

𝐵th,∥ = 𝐵p,∥(1 − 𝑖)  where  𝐵p,∥ = 𝜇0𝐽c0𝑡   (5) 

 
 Here 𝐵p,∥ is the slab penetration field, which is defined as the minimum applied field required for flux to 

reach the centre of a superconducting slab carrying zero transport current. Equation 5 has been shown to 

provide close agreement to experimental values obtained in parallel applied fields for Bi-2223/Ag wire [21]. 

There have also been some previous experimental studies of both Bi-2223/Ag wires [21, 22] and coated 

conductors [23, 24] in perpendicular magnetic field. However, attempts to adapt equation (5) to the 

perpendicular field data have not provided close agreement. In fact, a naïve rotation of axis such that the 

dimensions of width (a) and thickness (t) are interchanged in equation 5, leads to values of Bth,⊥ which 

disagree with experiment by more than 1000-fold. This then raises the question – how should we calculate 

the threshold field value in the strip geometry? 

 

 The threshold field, 𝐵th,⊥ 
is the maximum field at which it is energetically-favourable for the central 

region of the strip to be shielded from changes in the externally applied field.  In the limiting case i→0, this 

occurs at the maxima of the normalised hysteretic ac magnetisation loss. Figure 2c shows example plots of 

these curves for a slab and strip of equal width, calculated using the slab model [19], and the Brandt and 

Indenbom model[17, 25] respectively. This approach provides a well-defined unambiguous value for the 

effective penetration field of the strip, 𝐵p,⊥, which describes the point at which the shielding current capacity 

of the strip is effectively saturated [12, 26, 27]. The maxima of the gamma function is then obtained from: 
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0 =
𝑑

𝑑𝑥
(

𝑄𝐵𝐼

𝐻2
) =

𝑑

𝑑𝑥
(

2ln(cosh (𝑥))

𝑥2
−

tanh (𝑥)

𝑥
) =

3tanh (𝑥)

𝑥2
−

4 ln(cosh(𝑥))

𝑥3
−

1 − (tanh (𝑥))2

𝑥
 

    (6) 
 

where x = H/Hc =Ba/Bc and 𝐻c = 𝐵c 𝜇0⁄ = 2𝑡𝐽c0/𝜋. Equation 6 can be solved by simple numerical methods 

to yield the unique solution, x = 2.4642 (to 4 d.p) and hence we obtain 𝐵p,⊥ = 4.9284𝜇0𝐽c0𝑡/𝜋.  

 At values of i > 0, we must expect that 𝐵th,⊥ will be lower than 𝐵p,⊥. This is because the transport current 

will displace some shielding currents flowing within the strip. Furthermore, the width of the current-reversal 

zone 𝛿, in the saturated current state (ie figures 2a and 2b) should remain similar to the i = 0 case. As 𝛿 is 

small, this implies that we can employ the same linear superposition of transport and shielding currents invoked 

in equation 5. By direct analogy, we then obtain: 
 

𝐵th,⊥ =
4.9284𝜇0𝐽c0𝑡

𝜋
(1 − 𝑖)     (7) 

  

An alternative expression for 𝐵th,⊥, has been proposed by Ciszek et al [23] who have transformed the 

parallel field value in equation 5 by a geometric demagnetisation factor [28] to obtain: 

 

𝐵th,⊥ = 𝑎𝐵
th,∥ 𝑡𝜒0⁄ =  

4𝜇0𝐽c0𝑡

𝜋
(1 − 𝑖)                            (8) 

 

Equation 8 differs from equation 7 only in the magnitude of the pre-factor, 𝐵p,⊥. However the external 

demagnetisation factor employed in this case does not effectively describe changes arising from the highly 

non-linear field profile inside the strip, which is not a simple linear transformation of the slab case. 

 

 A third approach has been taken by Mikitik and Brandt who have suggested that, contrary to equation 4, 

the threshold field should actually follow a non-linear function of i of the form [29]: 

 

𝐵th,⊥ =
𝜇0𝐽c0𝑡

2𝜋
[

1

𝑖
ln (

1+𝑖

1−𝑖
) + ln (

1−𝑖2

4𝑖2 )]  

(9) 

 

Equation 9 has not previously been tested against valid experimental data. It’s derivation assumes that δ is 

exactly zero, and defines Bth as the point at which flux first passes the mid-point of the current reversal zone. 

It is possible that this approach may underestimate Bth if flux passes through the current reversal zone 

without subsequently traversing the DC transport current. This is because dynamic resistance will not occur 

if flux exits the conductor from the same side as it enters, as in that case the interactions between moving 

flux lines and transport current will cancel across a cycle. 

 

 In this work we have undertaken experimental measurements of the dynamic resistance in a coated 

conductor wire. We have then compared our results and those of previous authors, with calculated values 

obtained from equations 4, 7, 8 and 9. 

 

2. Experimental method 

 The apparatus used to make these experimental measurements is shown in figure 1b. All measurements 

were undertaken at 77 K. A 15.0 cm length of CC HTS wire was placed in the uniform field region between 

the poles of a custom-built AC magnet [30], which was capable of generating an alternating field of 100 mT 

peak at frequencies up to 112.5 Hz. A 300A DC current supply was employed, and voltage taps were 

attached with a spacing of 5.0 cm along the wire and arranged in an induction-cancelling geometry [16]. 

Time-averaged DC voltage measurements were made using a Keithley 2182 nano-voltage meter with 

appropriate filter settings. Experimental measurements were performed on two different coated conductor 
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HTS wires, each of which comprised a thin film of ReBCO material (2t ~ 12.3 µm) deposited upon a ~100 

µm Hastelloy substrate. Wire A was a 4 mm wide CC HTS wire manufactured by Superpower Inc with a 

measured critical current Ic0 = 105.3 A at the 1 µV/cm criterion. Wire A was coated with 20 m-thick copper 

stabilisation layer on both sides of the tape. Wire B was chosen as it possessed a significantly higher critical 

current per unit width than Wire A. Wire B was a 5 mm wide CC HTS wire manufactured by Fujikura Ltd. 

with a measured critical current Ic0 = 266.0 A at the 1 µV/cm criterion. Wire B was stabilised by a 100 µm-

thick copper layer on the ReBCO film side only. 

3. Experimental results 

 

 
 

Figure 3. Comparison of 𝑅d⊥ values measured from Wire A at 3 different frequencies and five different 

values of reduced current: (a) It/Ic0 = 0.1; (b) It/Ic0 = 0.3; (c) It/Ic0 = 0.5; (d) It/Ic0 = 0.7; and (e) It/Ic0 = 0.9. Red 

dot-dashed lines show calculated values using equations 4 and 7. Black dotted lines show linear fits to 

experimental data (for Rd > 0.1 µ m-1 Hz-1). In plot (d) the linear fit relates only to data for Ba < 80 mT, 

whilst in plot (e) the fit is carried out on data for Ba < 40 mT. Purple solid lines in figures (d) and (e) show 

sum of linear fit and 𝑅𝐹𝐹 calculated from equation 10. 

 

 Figure 3 shows experimental data obtained from Wire A at 3 different frequencies and 5 different values 

of reduced current, It/Ic0. In these plots 𝑅d⊥ , is normalized by f, making it clear that the loss per cycle is 

independent of the frequency of the alternating field. This is as expected for a hysteretic loss mechanism. 

Figure 3 also plots calculated values obtained using equations 4 and 7 (dot-dash red lines), which agree closely 

with all experimental data obtained at values of It /Ic0 ≤ 0.5. At higher transport currents and elevated field 
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amplitudes we observe that 𝑅d⊥ deviates from a strict linear correlation with Ba. We believe that this can be 

explained by the emergence of an additional flux-flow resistance term, RFF, which arises once the total driven 

transport current exceeds the field-dependent 𝐼c(𝐵⊥) of the wire [31]. For an applied B-field of the form 

𝐵(𝑡) = 𝐵a,⊥ sin(2𝜋𝑓𝑡), we can calculate the contribution of the time-averaged DC flux flow resistance, RFF, 

from: 

 

𝑅𝐹𝐹

𝐿
= 𝑓𝐼t

𝑛−1 ∫
𝐸0

𝐼c(𝐵)𝑛

1/𝑓

0

𝑑𝑡 

(10) 

 

where the n-value is obtained from power-law fits [32] of experimental measurements of the E-I curve for the 

wire, and E0 is defined as 1 µV cm-1. In order to evaluate the contribution of flux-flow resistance, we have 

made experimental transport measurements of the n-value and critical current of Wire A at 77 K (using the 1 

µV/cm criterion), for applied fields up to 200 mT (see supplementary material). The sum of the linear hysteretic 

resistance and RFF has then been calculated using equation 10, and this is plotted in figures 3d and 3e where it 

is shown as a solid purple line for values of applied field where 𝐼c(𝐵⊥) falls below the DC transport current. 

It is clear that including this additional flux-flow resistance now provides a good description of the observed 

deviation from linearity at high currents. 

 

 This does provoke the question as to why equation 4 provides such an effective description of experimental 

results at lower transport currents, given that the derivation of equation 4 does not consider the field-

dependence of 𝐽c(𝐵⊥). If the field-dependent contribution to 𝑅d⊥were not negligible, then we would expect 

to see deviation from linearity in the high field data obtained for It /Ic0 ≤ 0.5.We do not observe this. We suggest 

the success of the field-independent approach might be due to partial shielding of the central DC current-

carrying region of the wire, which means that the local 𝐽c(𝐵⊥) at the centre of the strip is actually larger than 

the average value across the entire wire [33]. It is important to note that when i <1 the situation at the centre 

of the wire differs significantly from a transport measurement of the wire critical current, as in the latter case 

i =1 at the point of measurement such that shielding currents are eliminated. Similarly, the shielding effect will 

be reduced during dynamic resistance measurements at values of i→1. However, in this case we have observed 

that the field-dependence of 𝐽𝑐(𝐵⊥) gives rise to a flux-flow resistance term which increases rapidly, thus 

dominating any underlying minor perturbations to the hysteretic 𝑅d⊥ term. 

 

 Experimental values for 𝐵th,⊥ 
were obtained from figure 3 by finding the x-axis intercept of linear fits 

(dotted straight lines in figure 3) to the composite dataset obtained at all frequencies for each value of 

reduced current, i. For values of It/Ic ≤ 0.5, the entire dataset for 𝑅d⊥ > 0.1 µ m-1 Hz-1 was fitted, whilst for 

values of It/Ic0 > 0.5, we have fitted only the linear section of data which occurs at lower applied field 

amplitudes. Our experimentally-derived values are shown in figure 4 for both of the coated conductor HTS 

wires measured in this work, alongside previously reported measurements from three other samples of 

ReBCO coated conductor wire [23, 24]. In this plot normalised values of 𝐵th,⊥/𝑡𝐽c0 are shown, which 

enables direct comparison between results obtained from wires with different dimensions and critical 

currents. Figure 4 also shows calculated normalised values obtained from each of equations 7, 8 and 9.   
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Figure 4. Plot showing normalised measured values of threshold magnetic field in perpendicular magnetic 

field, 𝐵
th,⊥/𝑡𝐽c0, versus reduced current, i=It/Ic0. Experimental values from this work are shown for Wire A 

(Superpower, Ic0 = 105.3 A, 2a = 4 mm, 2t = 1 m, Jc0 = 2.63 × 1010 A/m2) and Wire B (Fujikura, Ic0 = 266.0 

A, 2a = 5 mm, 2t = 2.3 m, Jc0 = 2.28 × 1010 A/m2). Values are also shown for a single wire reported in [23] 

(Ic0 = 36 A, 2a = 10 mm, 2t = 0.95 m, Jc0 = 3.79 × 109 A/m2) and two wires reported in [24] (YBCO1: Ic0 = 

123 A, 2a = 4 mm, 2t = 1 m, Jc0 = 3.08 × 1010 A/m2; YBCO2: Ic0 = 91 A, 2a = 4 mm, 2t = 1 m, Jc0 = 2.43 

× 1010 A/m2). Plotted lines show calculated values obtained from each of equations 7, 8 and 9. 

 

 

 Our scaled experimental data agrees well with both sets of previously reported values, despite significant 

differences in the dimensions and critical current densities of the wires studied. In all cases we observe an 

approximately linearly decreasing value of 𝐵
th,⊥  with increasing i. All of the predictive equations shown 

(equations 7, 8, and 9) provide order-of-magnitude agreement with the measured experimental values and yield 

values which decrease to zero at i = 1. However, equation 7 does appear to provide the best agreement with 

both our own data, and the composite set of all known available data. Equation 8 appears to underestimate 

experimental values, whilst Equation 9 does show very close agreement with data reported in [23], but this 

data is not entirely consistent with the measurements made in this work and [24]. A possible reason for this 

might be that [23] employed a very early-generation YBCO tape of unverified homogeneity and a rather low 

Jc0 (approximately a factor 10 lower than any other wire measured). In fact equations 7 and 9 yield very similar 

values across the experimental range plotted in figure 4, and only diverge substantially at very low reduced 

currents.  Measurements at i <0.1 would be required to discriminate between the two equations. An additional 

complication arises in that the approximation δ = 0 is unlikely to be valid for very small values of It/Ic0, in 

which case neither equation 7 nor equation 9 should hold. However, this operating regime is of limited practical 

relevance to the designers of HTS machines or coils, as design engineers generally seek to make maximum 

use of the wire’s current-carrying capacity. As such, we suggest that the simple linear expression provided by 

equation 7 is best suited to the estimation of dynamic resistance losses in practical systems. 
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4. Conclusion 

 Dynamic resistance in a superconductor occurs once the sum of magnetization and transport currents 

results in critical currents flowing throughout the entire available conductor volume. In both perpendicular 

and parallel field orientation, the onset of dynamic resistance in an HTS coated conductor is determined by a 

threshold field, Bth which is the minimum field amplitude at which applied flux starts to interact dissipatively 

with the transport current flowing in the central region of the wire.  

 

In the perpendicular field orientation we find that 𝐵th,⊥ decreases linearly with increasing transport current, 

across the full range of transport currents studied to date (0.1 ≤ i ≤ 0.9). As such, 𝐵th,⊥ can be simply 

expressed as the product of a penetration field, 𝐵p,⊥, and the transport current filling factor (1 – It/Ic0). The 

penetration field of a coated conductor in the perpendicular field case can be identified from the maxima of 

the normalised magnetisation loss described by Brandt and Indenbom (equation 7). We find that using this 

value provides calculated values of 𝐵th,⊥ 
which agree closely with experimental values (0.1 ≤ i ≤ 0.9). The 

composite set of all available experimental data does not present any clear evidence that the more complex 

non-linear expression given in [29] is required to describe 𝐵th,⊥. However, further measurements of 𝑅d⊥ for 

i < 0.1 will be required to determine whether this remains the case in the very low current regime. 

 

Calculated values for 𝐵th,⊥can be substituted into the equation derived for the dynamic resistance of a strip 

(equation 4), and we find very good agreement with experimental measurements of 𝑅d⊥ for all transport 

currents up to i ≤ 0.5. However, at higher values of i and elevated fields we find that the measured DC 

resistance becomes non-linear with respect to applied field amplitude. We have shown that this effect is 

effectively described by including an additional time-averaged flux flow term which accounts for the 

temporary reduction of the wire Ic below the DC transport current for a short duration in each cycle. 

Interestingly, this means that in the superconducting strip case, the hysteretic dynamic resistance can be 

described by a simple field independent model of Jc for all values of 𝐼𝑡 < 𝐼c(𝐵a,⊥).  

    

Supplementary material 

 See supplementary material for experimental transport data for the wire critical current of Wire A, 

𝐼c(𝐵⊥), as a function of applied field at 77K. 
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