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Stroke survivors are at substantial risk of recurrent cerebrovascular event or cardiovascular disease. Exercise training offers
nonpharmacological treatment for these subjects; however, the execution of the traditional exercise protocols and adherence is
constantly pointed out as obstacles. Based on these premises, the present study investigated the impact of an 8-week dynamic
resistance training protocol with elastic bands on functional, hemodynamic, and cardiac autonomic modulation, oxidative stress
markers, and plasma nitrite concentration in stroke survivors. Twenty-two patients with stroke were randomized into control
group (CG, n = 11) or training group (TG, n = 11). Cardiac autonomic modulation, oxidative stress markers, plasma nitrite
concentration, physical function and hemodynamic parameters were evaluated before and after 8 weeks. Results indicated that
functional parameters (standing up from the sitting position (P = 0:011) and timed up and go (P = 0:042)) were significantly
improved in TG. Although not statistically different, both systolic blood pressure (Δ = −10:41mmHg) and diastolic blood
pressure (Δ = −8:16mmHg) were reduced in TG when compared to CG. Additionally, cardiac autonomic modulation
(sympathovagal balance–LF/HF ratio) and superoxide dismutase were improved, while thiobarbituric acid reactive substances
and carbonyl levels were reduced in TG when compared to the CG subjects. In conclusion, our findings support the hypothesis
that dynamic resistance training with elastic bands may improve physical function, hemodynamic parameters, autonomic
modulation, and oxidative stress markers in stroke survivors. These positive changes would be associated with a reduced risk of
a recurrent stroke or cardiac event in these subjects.

1. Introduction

Stroke, a neurological disease commonly caused in response
to abnormal blood perfusion of the brain tissue, is the leading
cause of permanent disability worldwide [1]. Neuromuscular
impairments, such as muscle loss, dynapenia, and reduced

muscle power are commonly observed in patients with stroke
and represent a crucial risk factor for the development of lim-
ited physical function, disability, and poor prognosis [2–4].

In addition to the neuromuscular alterations, marked
oxidative stress, impairment in blood pressure control mech-
anisms (e.g., baroreflex sensitivity), and severe autonomic
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dysfunction, characterized by an elevated sympathetic activ-
ity, combined with a reduced or unchanged parasympa-
thetic activity [5–7] might also been observed in stroke
survivors and collaborated to genesis of cardiovascular com-
plications (e.g., hypertension and myocardial infarction) in
this population [8].

On the other hand, the practice of physical exercise
has been considered an effective nonpharmacological strat-
egy for poststroke individuals, since it mitigates physical,
neurological, and cardiovascular sequelae. Indeed, prior
studies have found improved cardiovascular health and
physical function in stroke survivors after exercise training
protocols [9, 10].

Nevertheless, researchers have argued that resistance
training (RT), a type of physical exercise in which muscle
contractions occur against a predetermined load [11], should
receive priority attention in rehabilitation protocols for
stroke survivors to maximize gains in mobility and indepen-
dence [12]. A recent review of our group [12] indicated that
the benefits of RT in stroke survivors go beyond the neuro-
muscular system and may include improvements in anxiety
levels and quality of life.

However, most studies investigated RT protocols and
stroke were based on exercise and isokinetic machines, limit-
ing their external validity [12, 13]. Besides that, evidence for
the effects of RT on cardiac autonomic modulation and
oxidative stress markers in stroke survivors are still scarce.

Based on these premises, the present study investigated
the impact of an 8-week dynamic RT protocol with elastic
bands on the physical function, hemodynamic parameters,
cardiac autonomic modulation, oxidative stress markers,
and plasma nitrite concentration in stroke survivors. We
hypothesized that all these parameters may be improved in
response to our protocol of dynamic RT.

2. Materials and Methods

2.1. Experimental Design. This is an interventional, con-
trolled, randomized study conducted upon approval by the
São Judas Tadeu University Ethical Committee (São Paulo,
SP, Brazil) (CAAE: 64859916.0.0000.0089). The study was
conducted according to the Declaration of Helsinki and reg-
istered in the Brazilian database of clinical trials (Register ID:
U1111-1202-8242; 26/09/2017).

2.2. Participants. Participants were recruited by convenience
from the rehabilitation center of the Albert Sabin Municipal
Physiotherapy Center located in Poá, Brazil. Prior to recruit-
ment, volunteers of the present study were participating of a
physical activity program, which aimed to restore social life
and increase individual’s levels of physical movement. The
program was offered to those patients who have finished
the neurological poststroke rehabilitation program but stayed
at home for a long time and were not able to reestablish the
same performance of activities of daily living (ADL) and
social life that they had prior stroke. Motivational and reli-
gious dialogues were proposed at the beginning and end of
each session. Physical movements aimed to stimulate body
movement were performed with the individual’s sitting in a

chair for 25-30 minutes without external load. Movements
included put arms and legs up, down, forward, and back-
ward, rotate the trunk to the right and left sides, and move
the trunk forward and backward. Individuals who did not
want or could not perform the exercises were not discour-
aged from attending the sessions and were common to
observe that some of them went to the sessions to talk to
other people. Most individuals were from low-income fami-
lies and were taken to the rehabilitation center by a minibus
offered by the city hall. Sessions occurred twice a week for
40-50 minutes under the supervision of a physical educator.
A washout period of 4 weeks separated was concluded prior
to baseline evaluations.

Subjects were eligible to take part of the present study if
they: (a) aged 45-75 years; (b) were able to walk with or with-
out a walking aid; (c) were independent to perform basic
activities of daily living, according to Barthel index [14]; (d)
had a clinical diagnosis of stroke confirmed by computed
tomography or magnetic resonance imaging at least 6
months prior to enrollment; (e) lived in the community;
and (f) completed a standard neurological poststroke reha-
bilitation program. Candidate participants were excluded if
they were not able to sign the informed consent form, had
history of smoking or alcohol abuse in the last 6 months,
had history of uncontrolled hypertension and/or diabetes
mellitus according to medical records, used beta blockers,
showed disabling pain during exercise, were incapable to
perform exercise sessions and/or any of the evaluations
(self-reported), and not attended at least 90% of training ses-
sions. Participants had not been engaged in regular exercise
training programs during the previous 6 months, according
to the Baecke Habitual Physical Activity Questionnaire
[15], and no changes in dose and drug classes were registered
during the protocol.

Twenty-seven stroke patients were enrolled in this study
and five subjects were excluded. Twenty-two consenting
patients were randomized 1 : 1 into the control group
(CG, n = 11) and trained group (TG, n = 11) (Figure 1).

2.3. Resistance Training (RT) Intervention. The dynamic RT
protocol was performed two times per week over an 8-week
period with a 48 h rest interval provided between each exer-
cise session. Resistance exercises were performed using elas-
tic bands [16] (Thera Band®, Ohio, USA) and ankle wrist
weights. The physical exercises were performed in the follow-
ing order: (1st) seated row, (2nd) squat on the chair, (3rd) ver-
tical chest press, and (4th) knee extension (Figure 2). Physical
exercises were adapted due to the limitations caused by the
paretic limb in the range of motion (ROM). To seated row,
the paretic hand was anchored in the wrist of the nonparetic
hand, while the elastic band was positioned between the palm
of the paretic hand, the palm of the nonparetic hand, and the
wrist. To chest press, the elastic band was anchored in the
paretic side, and the abduction of the shoulder was per-
formed according to ROM limitations. No specific changes
were performed in squat on the chair exercise. The nonpare-
tic limb executed the exercises across the full ROM.

The dynamic resistance training protocol consisted of
a sequence of 3 combinations of 2 consecutive exercises
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(i.e., seated row and squat on the chair, vertical chest press
and squat on the chair, knee extension and squat on the
chair) in a dynamic manner, without intervals of absolute
rest throughout the session. The concentric contractions
were performed as fast as possible, while the eccentric con-
tractions were performed within 3 s. The exercise volume
was increased over the 8-week protocol, so that 3 sets of 6-8
repetitions at moderate intensity (3 to 5 points on adapted
Borg Scale of 1-10 [17]) were performed in the first 4 weeks
and 3 sets of 10-12 repetitions at moderate intensity were
performed in subsequent weeks.

The exercise intensity was controlled according to the
tension of elastic bands based on the rate of perceived exer-
tion (RPE) method [17]. According to a study by Colado
and Triplett [18], the combination of target repetitions with
a subjective effort scale may be considered a valid strategy
to control the intensity when RT is performed with elastic
bands. The RPE was reported after the end of each set of
exercise and, if the participant reported an RPE below the

expectations (low intensity), the tension of the elastic band
was increased (moderate intensity).

All patients were performed neurological physical ther-
apy treatment two times per week in addition to the 8-week
RT program.

2.4. Control Group (CG). Patients in the CG remained per-
formed two sessions per week over 8 weeks of a neurological
physical therapy program, which consisted of physical move-
ments that mimic basic and instrumental ADL, postural
changes, and gait exercises on parallel bars.

2.5. Evaluations

2.5.1. Functional Parameters. A researcher detailed the oper-
ational procedures, demonstrated the test, and evaluated the
motor pattern of participants during each physical perfor-
mance test. All participants performed a familiarization trial
to ensure that they had understood the test. All tests were

CONSORT 2010 flow diagram

Assessed for eligibility (n = 27)

Lost to follow-up (give reasons) (n = 0)

Discontinued intervention (give reasons) (n = 0)

(i)

(ii)

(iii)

Lost to follow-up (give reasons) (n = 0)

Discontinued intervention (give reasons) (n = 0)

Allocation

Analysis

Follow-up

Randomized (n = 22)

Enrollment

Excluded (n = 5)

Not meeting inclusion criteria (n = 0)

Declined to participate (n = 03)

Other reasons (n = 02)

(i)

Analysed (n = 11)

Excluded from analysis (give reasons) (n = 0)(i)

(ii)

(iii)

Allocated to intervention TG (n = 11)

Received allocated intervention (n = 11)

Did not receive allocated intervention (give
reasons) (n = 0) 

(i)

(ii)

Allocated to intervention CG (n = 11)

Received allocated intervention (n = 11)

Did not receive allocated intervention (give
reasons) (n = 0) 

(i)

(ii)

Excluded from analysis (give reasons) (n = 0)

Analysed (n = 11)

(i)

Figure 1: CONSORT flow diagram.
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performed in triplicate, and the mean result was used in the
final analysis. A 1min rest was allowed between consecutive
trials. Four physical tests were administered in the following
order: (a) isometric handgrip of paretic and nonparetic limbs
(IHGPL and IHGNPL), (b) 10m walking test (10MWT), (c)
five-repetition sit-to-stand (5XSTS), and (d) timed “up and
go” (TUG).

2.5.2. Isometric Handgrip of Paretic and Nonparetic Limbs.
Isometric handgrip strength was measured using a Jamar®
handheld hydraulic dynamometer (Sammons Preston,
Bolingbrook, IL, USA). The measure was obtained with the
participant seated in a chair with the shoulders abducted,

elbows near the trunk and flexed at 90°, and wrists in a
neutral position (thumbs up). The contralateral arm
remained relaxed under the thigh. To determine handgrip
strength, participants performed a maximal contraction dur-
ing 3-5 s with the paretic (IHGPL) and nonparetic (IHGNPL)
limbs [19]. The maximum grip strength (kgf) was taken from
the digital display. The test reliability in the present study
was ≥0.8 (κ = 0:99).

2.5.3. 10m Walking Speed (10MWT). Walking speed was
measured over 10m. Participants were required to walk
12m at their fastest possible pace without running. Before
the evaluation, both feet of each participant remained on
the starting line. The time measurement started when a foot
reached the 1m line and was stopped when a foot reached
the 11m line. The 1m intervals at the beginning and the
end of the course were used to avoid early acceleration and/or
deceleration [20]. The following formula was used to calcu-
late walking speed:

10MWT =
10

time to complete the test
: ð1Þ

The test reliability in the present studywas≥0.8 (κ = 0:98).

2.5.4. 5-Repetition Sit-To-Stand (5XSTS). Participants were
requested to rise from a standard armless chair five times as
quick as possible with arms folded across the chest. The stop-
watch was started when participants raised their buttocks off
the chair and was stopped when participants seated back at
the end of the fifth stand [21]. The test reliability in the
present study was ≥0.8 (κ = 0:95).

2.5.5. Timed “Up and Go.” The TUG involved getting up
from a chair (total height: 87 cm; seat height: 45 cm; width:
33 cm), walking three meters around a cone placed on the
floor, coming back to the same position, and sitting back on
the chair. The volunteer wore regular footwear, with the back
against the chair, arms resting on the chair’s arms, and the
feet in contact with the ground. A researcher instructed the
volunteer to, on the word “go,” get up, walk as fast as possible
without compromising safety through the demarcation of
three meters on the ground, turn, return to the chair, and
sit down again. The timing was started when participants
got up from the chair and was stopped when the participants
back touched the backrest of the chair [22, 23]. The test
reliability in the present study was ≥0.8 (κ = 0:95).

2.5.6. Hemodynamic Parameters

(1) Blood Pressure Measurement. Blood pressure (BP) was
measured between 08 : 00 and 10 : 00 am according to the
procedures detailed in the 7th Brazilian Arterial Hyperten-
sion Guidelines [24]. Participants were instructed to refrain
from exercising during the previous 48 h and from drinking
caffeinated beverages and/or alcohol 24 h before the evalu-
ation. After remained seated on a comfortable recliner
chair for 15min in a quiet room, an appropriate cuff
was placed at approximately the midpoint of the participant’s
upper left arm. An automatic, noninvasive, calibrated, and

Seated row

Squat on the chair

Vertical chest press

Knee extension

Figure 2: Representation of resistance training protocol execution.
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validated arterial BP monitor (Microlife-BP 3BT0A, Micro-
life, Widnau, Switzerland) [24] was used to measure systolic
BP (SBP), diastolic BP (DBP), and heart rate (beats per min,
bpm). The double product (DP) was calculated as follows:

DP = SBP × heart rate: ð2Þ

(2) Assessment of Heart Rate Variability (Cardiac Autonomic
Modulation). A Polar V800 heart rate monitor (Polar Electro
Oy, Kempele, Finland) was used to continuously record
beat-to-beat intervals (R-R interval) with the patients in
the supine position [25]. The spectrum resulting from the
fast Fourier transforms modeling was derived from the
highest value in one of the for 5-minute window recorded;
it includes the entire signal variance, regardless of whether
its frequency components appear as specific spectral peaks
or as nonpeak broadband powers. The R-R interval vari-
ability was evaluated in the time and frequency domains.
Spectral power for low (LF: 0.03–0.15Hz) and high (HF:
0.15–0.4Hz) frequency bands was calculated using power
spectrum density integration within each frequency band-
width, using a customized routine (MATLAB 6.0, Natick,
MA, USA). The LF/HF ratio was calculated based on nor-
malized LF and HF. The time domain measurements
included standard deviation of the of normal sinus beats
(SDNN, ms) and root mean square of successive R-R inter-
val differences (RMSSD, ms).

The nonlinear geometric measures have been derived
from the 5-minute Poincaré plot representing a diagram in
which each R-R interval of tachogram is plotted against the
previous R-R interval. The length of the longitudinal line is

defined as the SD2 of the plot data. The length of the
transverse line is defined as the SD1 of the plot data in a
perpendicular direction.

2.5.7. Oxidative Stress Markers. Blood samples were col-
lected by venipuncture in heparinized vacutainers after
12 h fasting and immediately centrifuged at 4000 rpm for
5min to separate plasma. Participants were advised to
avoid foods rich in nitrates (e.g., beet, cabbage, spinach,
lettuce) the day before blood collection. Protein concen-
tration was determined according to the method described
by Lowry et al. [26], using bovine albumin solution at a
concentration of 1mg/mL as the standard and 10 μL
samples.

Thiobarbituric acid reactive substances (TBARS), car-
bonyls, NADPH oxidase, hydrogen peroxide (H2O2), super-
oxide dismutase (SOD), and plasma nitrite analyses were
conducted in accordance with Jacomini et al. [27].

2.6. Statistical Analysis. Data distribution and equality of
variance were tested by the Shapiro-Wilk and Levene tests,
respectively. Repeated measures ANOVA (followed by the
Sidak post hoc test) was used to detect differences between
different times of evaluations and treatments. 10MWT (s),
SBP (mmHg), and HF band (ms2) showed irregular distribu-
tion and within- and between-group differences were
analyzed using the Wilcoxon and Mann–Whitney tests,
respectively. Chi-square (χ2) statistics were used to compare
categorical variables. Cohen’s ES d was calculated to assess
the magnitude of the results. Delta (∆) values were calculated
as follows:

∆ =Mean post −Mean baseline: ð3Þ

Table 1: Baseline clinical characteristics of participants.

CG (n = 11) TG (n = 11) P value

Age (years) 60:5 ± 13:2 66:4 ± 10:1 0.334

Body mass index (kg/cm2) 26:0 ± 3:2 25:4 ± 2:9 0.089

Women (%) 63:6 54:5 0.120

Poststroke duration (years) 4:9 ± 4:2 6:6 ± 5:0 0.120

Paretic side (left) (%) 90:9 54:5 0.987

Basic functional independence (Barthel Index) 90:0 ± 6:3 87:3 ± 11:9 0.350

Baecke Habitual Physical Activity Questionnaire 3:8 ± 0:6 3:2 ± 0:4 0.884

Associated comorbidities (%)

Hypertension 90.9 90.9 1.000

T2DM 54.5 56.4 0.916

Medications (%)

ACE inhibitors 70.3 74.5 0.842

HMG-CoA reductase inhibitor 88.2 85.3 0.859

Diuretics 77.8 75.9 0.898

Acetylsalicylic acid 45.3 47.8 0.973

Antidiabetics 55.7 58.2 0.948

Data are shown as mean ± SD. CG: control group; TG: training group; T2DM: diabetes mellitus type II; ACE: angiotensin-converting enzyme; HMG-CoA:
3-hydroxy-3-methylglutaryl coenzyme A reductase.
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The level of significance was set at alpha = 5% (P < 0:05),
and all analyses were performed using the GraphPad Prism
7.00 (San Diego, CA).

3. Results

Twenty-seven volunteers were recruited and accepted to be
evaluated for eligibility. Three candidates declined to par-
ticipate, while two decided to engage in another exercise
program, leaving a total of 22 stroke survivors who were
randomized into two groups (i.e., CG [N = 11] or TG
[N = 11]). There were no withdrawals from either group
(Figure 1).

The baseline characteristics of the study participants are
shown in Table 1. The mean time since stroke was 5 years.
The mean age of the whole sample was 62:2 ± 10:8 years
and the mean body mass index (BMI) value was 24:8 ± 3:0
(kg/m2). The most common pharmacological therapy was
diuretics, followed by statins, angiotensin-converting enzyme
inhibitor (ACEi), and antidiabetic agents, which can be

explained by the high prevalence of hypertension and type
2 diabetes mellitus observed in our sample. No significant
differences were observed among the groups.

3.1. Physical Function. Physical function is shown in Table 2.
No significant differences were observed among the groups
at baseline. After 8 weeks, TG improved 10MWT
(P = 0:0001, Δ = −38:3%, d = −0:8), sit-to-stand (P = 0:0001,
Δ = −30:6%, d = −1:9), and TUG tests (P = 0:0001, Δ = −

23:0%, d = −0:7). In contrast, a significant reduction in
IHGPL (P = 0:017, Δ = −24:0%, d = −0:3) and IHGNPL
(P = 0:016, Δ = −16:8%, d = −0:4) was observed in the
CG. Between-group comparisons indicated better TUG
(P = 0:042, Δ = −28:2%; d = −1:2) and sit-to-stand
(P = 0:011, Δ = −29:1%, d = −1:5) performances in TG
when compared to CG. A larger ES classification was
attributed to changes on 10MWT in TG in comparison
to CG (d = −0:9).

3.2. Hemodynamic Parameters. Hemodynamic parameters
are shown in Table 3. No significant differences were

Table 2: Physical function at baseline and after 10 weeks.

Variables
CG (n = 11)

∆ (ES)
TG (n = 11)

∆ (ES)
Baseline Post Baseline Post

IHGPL (kgf) 10:4 ± 8:9 7:9 ± 7:7 ∗ -2.5 (0.3) 13:8 ± 10:7 13:9 ± 10:0 0.1 (-0.0)

IHGNPL (kgf) 28:5 ± 13:9 23:7 ± 10:8 ∗ -4.8 (0.4) 28:5 ± 7:3 28:1 ± 8:0 -0.4 (0.1)

10MWT (s) 14.5 (10.4–31.5) 13.5 (10.0–32.0) 0.7 (-0.1) 13.8 (10.0–42.4) 10.2 (7.9–22.2)∗† -6.4 (0.8)

Sit-to-stand (s) 15:1 ± 2:9 14:4 ± 2:4 -0.7 (0.3) 15:7 ± 3:0 11:3 ± 1:7∗† -4.4 (1.9)

TUG (s) 22:2 ± 9:3 22:0 ± 7:1 -0.2 (0.0) 19:2 ± 8:3 14:1 ± 5:6∗† -5.1 (0.7)

SD: standard deviation of the mean; ES: effect size; CG: control group; TG: training group; IHGPL: isometric handgrip of the paretic limb; IHGNPL: isometric
handgrip of the nonparetic limb; 10MWT: 10-meter walking speed; TUG: timed up and go. Data are shown as mean ± SD or median; ∗P < 0:05 vs. baseline;
†
P < 0:05 vs. CG.

Table 3: Hemodynamic and autonomic parameters at baseline and after 10 weeks.

Variables
CG (n = 11)

∆ (ES)
TG (n = 11)

∆ (ES)
Baseline Post Baseline Post

Hemodynamics

SBP (mmHg) 133 (94-139) 129 (99-140) 0.3 (-0.0) 130 (94–139) 121 (95–137) -5.6 (0.4)

DBP (mmHg) 79:2 ± 11:9 79:8 ± 10:9 0.6 (-0.1) 72:5 ± 14:4 71:6 ± 12:4 -0.9 (0.1)

HR (bpm) 74:8 ± 14:4 76:5 ± 11:2 1.7 (-0.1) 71:5 ± 11:9 65:1 ± 9:5† -6.4 (0.6)

DP (mmHg × bpm) 9938:1 ± 2226:8 9949:5 ± 1852:6 10.9 (0) 8890:6 ± 1607:1 7722:0 ± 1375:2† -1168.0 (0.8)

Autonomics

Time domain indexes

SDNN (ms) 20:4 ± 8:2 19:4 ± 6:8 -1.0 (0.1) 23:9 ± 7:5 33:3 ± 10:8∗† 9.4 (-1.0)

rMSSD (ms) 17:2 ± 9:9 12:7 ± 5:2 -4.5 (0.6) 16:6 ± 8:3 23:7 ± 11:6∗† 7.1 (-0.7)

Nonlinear indexes

SD1 (ms) 12:2 ± 7:0 9:0 ± 3:7 -3.2 (0.6) 11:7 ± 5:8 16:8 ± 8:2∗† 5.1 (-0.7)

SD2 (ms) 25:7 ± 10:5 25:7 ± 9:6 0 (0) 31:3 ± 10:5 43:1 ± 15:9∗† 11.8 (-0.9)

SD: standard deviation of the mean; ES: effect size; CG: control group; TG: training group; SBP: systolic blood pressure; DBP: diastolic blood pressure; DP:
double product; SDNN: selected standard deviation of normal R-R intervals; rMSSD: square root of the mean squared differences between adjacent normal
R-R intervals, expressed in ms; SD1: short variation of R-R interval; SD2: represents HRV in long-term records. Data are shown as mean ± SD or median;
∗P < 0:05 vs. baseline; †P < 0:05 vs. CG.
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observed among the groups at baseline. SBP and DBP
remained unchanged in both TG and CG over the experi-
mental period. In contrast, heart rate (P = 0:047, Δ = −11:5,
d = −0:6) and DP (P = 0:011, Δ = −13:1%, d = −1:4) were
significantly reduced in TG in comparison with CG after 8
weeks (P = 0:047, Δ = −11:5, d = −0:6).

3.3. Cardiac Autonomic Modulation. Cardiac autonomic
modulation parameters are shown in Table 3 and Figure 3.
No significant differences were observed among the groups

at baseline. SDNN (P = 0:0001, Δ = 39:3%, d = 1:0), rMSSD
(P = 0:014, Δ = 30%, d = 0:70), SD1 (P = 0:014, Δ = 30:4%,
d = 0:71), SD2 (P = 0:002, Δ = 27:3%, d = 0:87), LF band
in ms2 (Figure 3(a), no difference was observed), LF band
in nu (Figure 3(b)) (P = 0:004, Δ = −29:9%, d = −1:5), HF
band in ms2 (Figure 3(c), no difference was observed), HF
in nu (Figure 3(d)) (P = 0:003, Δ = 57:0%, d = 1:5), and
LF/HF ratio (Figure 3(e)) (P = 0:004, Δ = −1:56%, d = −1:5)
were improved in response to exercise when compared to
baseline values and CG. On the other hand, elevated LF
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Figure 3: Cardiac autonomic modulation. (a) Low-frequency band (LF, ms2). (b) Low-frequency band (LF, nu). (c) High-frequency band
(HF, ms2). (d) High-frequency band (HF, nu). (e) Autonomic balance (LF/HF). Data are shown as mean ± SD or median. CG: control
group; TG: training group; LF: low-frequency band; HF: high-frequency band; ∗P < 0:05 in comparison to baseline; †

P < 0:05 in
comparison to CG at the same moment.
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(nu) (P = 0:006, Δ = 36:7%, d = 1:5) and reduced HF (nu)
(P = 0:006, Δ = −42:6%, d = −1:5) were observed in CG in
comparison to baseline.

3.4. Oxidative Stress Markers. Oxidative stress markers are
shown in Figures 4 and 5. No significant differences were
observed among the groups at baseline. TG improved
TBARS (Figure 4(a); P = 0:0428), carbonyls (Figure 4(b);
P < 0:0001), and SOD (Figure 5(a); P = 0:0001) levels in com-
parison to baseline and CG. CAT (Figure 5(b); P = 0:3219)
and nitrite (Figure 5(c); P = 0:5662) levels were unchanged
over the experimental period.

4. Discussion

The main findings of the present study indicate that 8-week
dynamic resistance training protocol with elastic bands
improved physical function, hemodynamic parameters,
autonomic modulation, and oxidative markers in stroke
patients. In contrast, a significant reduction in upper-limb
muscle strength (i.e., IHGPL and IHGNPL) was observed
in CG.

Although many studies [28–30] have investigated the
effects of RT on the physical of stroke survivors, results are
still not conclusive. Supporting our findings, Hill et al. [30]
observed significative improvements in the gait ability and

TUG performance of stroke patients after a lower-limb
high-intensity RT protocol. On the other hand, no RT effects
in gait velocity were reported in other protocols [28, 29, 31].

A possible explanation for the differences among the
studies may that concentric contractions in the present study
were performed as fast as possible, given that many aspects of
the physical function seem to be more closely associated with
muscle power than muscle strength [32] and greater gains in
physical performance have been observed after power train-
ing in comparison to traditional RT [32–34].

These findings have important clinical and public health
implications since better physical performance in patients
with stroke is associated with a higher likelihood of social
integration, independence to perform ADL, and better
quality of life [35–37]. Besides that, stroke survivors with
poor physical function are more likely to experience a
recurrent stroke and die in a short-term interval after the
first event in comparison with those with proper physical
function [38, 39].

Another significant finding of the present study is
regarding the importance of upper-limb resistance exercises
to stroke survivors since IHGPL and IHGNPL were signif-
icantly reduced in CG, while it remained unchanged in
TG. IHG has been used as an essential measurement of
muscle strength, and it is well-accepted as part of the
assessment of sarcopenia [40, 41]. Nevertheless, IHG is
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Figure 4: Oxidant markers. (a) Thiobarbituric acid reactive substances. (b) Carbonyls. (c) NADPH oxidase. (d) Nitrite peroxide (H2O2). Data
are shown as mean ± SD. CG: control group; TG: training group. ∗P < 0:05 in comparison to baseline; †P < 0:05 in comparison to CG at the
same moment.
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strongly associated with upper-limb muscle strength in
stroke, and it has a critical role in the physical performance
of this population [3, 38].

No significant differences in SBP (Δ = −10:41mmHg)
and DBP (Δ = −8:16mmHg) were observed between TG
and CG after 8 weeks. These findings are supported by prior
studies that observed reduced blood pressures in hyperten-
sive people after exercise training [42–44] and indicate that
our exercise protocol may be associated with a significant
reduction in cardiovascular and restroke risk [42, 45].

A recent meta-analysis of 12 studies evaluated the
effects of aerobic exercises on blood pressure values of
stroke survivors and found reductions of 4.3mmHg and
2.5mmHg in SBP and DBP, respectively, after the interven-
tion [43]. Similarly, most randomized clinical trials investi-
gating pharmacological therapy showed blood reductions of
approximately 5mmHg for SBP and 4mmHg for DBP
[39, 45]. Therefore, RT effects on blood pressure of stroke
survivors are favorably similar or even more substantial
than the impact of aerobic exercise and pharmacological
therapy, suggesting that RT may be an essential tool in
the management of blood pressure and cardiovascular risk
in patients with stroke [42–44].

Cardiac autonomic modulation and oxidative stress
markers were investigated as two possible mechanisms
associated with blood pressure lowering in response to

RT. Our findings suggest that RT improved vagal modulation
(i.e., rMSSD, SD1, SD2, HF) and sympathovagal balance
(i.e., LF/HF ratio).

Notably, changes in cardiac autonomic modulation
are not commonly observed in response to RT protocol
[44, 46, 47], while substantial evidence have reported this
phenomenon after aerobic training [47, 48]. A hypothesis
that may account for our findings lies in the dynamic charac-
teristic of our RT protocol, in which absolute rest intervals
between sets and exercises were not provided, so that the car-
diovascular and neuromuscular systems were stimulated
simultaneously throughout each session [49]. In this context,
our RT protocol had an aerobic component able to improve
cardiac autonomic modulation, as usually occurs with the
practice of aerobic training [47, 48].

Although exercise may acutely increase reactive oxygen
species, a compensatory mechanism seems to occur after
chronic exercise training, in which exercise training upregula-
testhe amount and efficiency of antioxidant enzymes [48].
Findings of the present study support this hypothesis by
observing increased SOD levels and reduced TBARS and
carbonyls levels after RT.

There are some limitations in the present study which
should be addressed by future investigations to confirm and
expand our findings, as the short period of intervention and
the absence of muscle strength assessments of all trained
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Figure 5: Antioxidant markers and plasma nitrite concentration. (a) Superoxide dismutase (SOD). (b) Catalase (CAT). (c) Nitrite. Data are
shown as mean ± SD. CG: control group; TG: training group. ∗P < 0:05 in comparison to baseline; †P < 0:05 in comparison to CG at the
same moment.
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muscle groups. Our sample size is also a limitation of our
study since a post hoc sample size calculation estimated that
about 14 participants in each group would be needed to
detect improvements in physical function, hemodynamic
parameters, and oxidative markers considering within- and
between-group comparisons, with 80% power at the 5% sig-
nificance level. Finally, unexpected changes on upper-limb
muscle strength (i.e., IHGPL and IHGNPL) and autonomic
modulation (i.e., RMSSD and SD1) were observed in CG.
Although pain (Terwee et al., 2006), white matter lesions
(Zerna et al., 2018), or even the presence of other comorbid-
ities may explain the substantial declines in IHGPL and
IHGNPL, as well as psychosocial stress may impact cardiac
modulation (Lucini et al., 2005), future studies are still
needed to confirm our findings.

5. Conclusions

Our findings indicate that an 8-week dynamic resistance
training protocol with elastic bands improved physical func-
tion, hemodynamic parameters, autonomic modulation, and
oxidative stress markers in chronic ischemic stroke survivors.
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