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Abstract

The physics of dynamic resonant tunneling is investigated.

First, the resonant tunneling effect through an opaque barrier via a delta-function well is
illustrated. Then, it is shown that, even in the adiabatic regime, where the dynamics can
be governed by an analytic solution, the particle can be activated to higher energies. If the
well varies quickly enough that the particle cannot escape from the well during the
energetic elevation, the activation can be enhanced, as was anticipated by Azbel. However,
and this is the main result of this work, the quasi-bound state of the well can even “reduce”
the activation. In fact, because the resonant energy of the well matches twice the incoming
particle’s energy, and if the contribution to the wave function from both parts destruc‐
tively interferes, then the particle cannot dwell in the well and activation is suppressed.

This effect can be utilized in frequency-controlled transistors, and it is even speculated
that it may explain the reason that humans can distinguish between tens of thousands
of different odors with merely few hundreds of odor receptors.

Lastly, the short time dynamics of a very fast perturbative well is also discussed.

Keywords: Resonant Tunneling, Dynamic Tunneling, Vibrational Tunneling, Odor
detection, Olfactory, Forbidden activation, Selected Activation

1. Introduction

Resonant tunneling is a fascinating quantum phenomenon. It manifests the ability of quantum
particles to pass with high probability through an opaque barrier by traveling via a semibound
state [1–3].
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The high sensitivity of the current on the bound-state parameters suggested harnessing this
effect to heterostructure devices in general and transistors in particular [4–10].

Resonant tunneling is usually described as a one-dimensional (1D) phenomenon; however,
resonant tunneling in higher number of dimensions was also investigated (see, for example,
[11, 12]). Nevertheless, because the main features of resonant tunneling appear in 1D, most of
the research was concentrated on the simplest 1D systems.

Tunneling and resonant tunneling are rarely stationary processes. They are affected by thermal
noises, and clearly, the accumulation of particles in the bound state varies the potential. It is
well known that tunneling in the presence of an oscillating barrier can cause activation (higher
energy) and therefore can increase substantially the tunneling current.

This phenomenon was investigated in electronics [13], nanotechnology [14–16], the founda‐
tions of quantum mechanics [17–33], and even biology and biochemistry [34–39].

The resonant tunneling effect occurs when the incoming particle’s energy coincides with the
eigenenergy of the quasi-bound state. In case the barrier is very opaque, the particle remains
inside the well at the quasi-bound state for exponentially long time. Therefore, when the
particle is quasi-trapped inside the well, its state has to vary with the changes in the well, and
its energy varies with the eigenenergy of the quasi-bound state because it does not have the
time to escape from the well. Therefore, it was conjectured (see refs. [17, 20]) that a decrease
in the perturbation time-scale will enhance the activation. However, not in any energy the
particle can remain within the well. Destructive interference can prevent particle trapping and
therefore suppress particle activation [23, 33]. In the next several sections, we will elaborate
on the delicate structure of these effects.

2. Stationary tunneling

Let us begin with the propagation of a quantum particle through an opaque but stationary
barrier. The Schrödinger equation is then

(1)

Hereinafter for simplicity, we adopt the units, where the electron mass is half and the reduced
Planck constant is unity (i.e., m=1/2 and ℏ=1).

In the stationary case (i.e., when the potential is time independent), there is no change in the
incoming particle’s energy. For any incoming energy ω, the generic stationary solution looks
like

(2)
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where φω(x) are the solutions of the stationary Schrödinger equation:

(3)

Therefore, every solution can be written as a superposition of incoming [φω
+(x)] and outgoing

[φω
−(x)] solutions, where

(4)

Physically, φω
+(x) and φω

−(x) stand for beams of particles coming from the left and right
respectively. tω and rω are the transmission and reflection coefficients of the barrier for energy
ω, respectively. In the WKB approximation (see, for example, ref. [19]), the transmission
coefficient can be evaluated as

(5)

where xL and xR are the left and right boundaries of the barrier. For a rectangular barrier, an
exact expression can be derived [19]:

(6)

where k≡ ω and K≡ U −ω. Therefore, when the barrier is opaque [i.e., U −ωL >>1 (high and/
or wide)], the transmission is exponentially small.

3. Resonant tunneling via a delta-function well

Let us introduce a delta-function well in the barrier (at x = x0; in Figure 1, x0=0). Then, the
Schrödinger equation is

(7)
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It is convenient to use the outgoing Green function Gω
+(x,x0), which is a solution of the equation:

(8)

with the boundary conditions:

(9)

Therefore, the outgoing Green function reads

(10)

Using the Green function, we can easily construct a solution for the wave equation with the
combined potential (the barrier with the delta-function well). In which case, the solution reads

(11)

which for x>x0 is

In case of a rectangular barrier, i.e.,

(12)

then

(13)

where 2L is the width of the barrier, and tω is taken from (6), i.e.,
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Figure 1. In a stationary resonant tunneling process, only when the particle’s energy is equal to the quasi-eigenstate
energy can the particle penetrate the barrier with high probability.

(14)

At the resonance ω=Ω*=U−f02/4, T=|tω|2=1, (see Figure 2).

Figure 2. Transmission T=|tω|2 as a function of the particles energy ω for the parameters U=1, L=4 and f0=1.2.

4. Adiabatic transition

Now, let us take a varying potential well,

(15)
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In the adiabatic approximation, τ is longer than any other time-scale of the problem. The
relevant time-scale (i.e., the longest one) is the resonance time or the dwelling time of the
resonant state. Therefore, in the adiabatic approximation,

(16)

the potential can be regarded as stationary, and the wavefunction simply reads

(17)

The resonance energy of this system varies in time Ω*(t)=U−f2(t/τ)/4; therefore, large trans‐
mission occurs for ω=Ω*(t) and, in principle, can be as high as 1 when the well is located at the
center of the barrier, i.e.,

When the lowest eigenenergy of the well

(18)

is higher than the incoming energy ω, then the effect of the varying well is negligible; however,
if the lowest eigenenergy of the well is lower than the incoming energy ω, then the eigenstate

crosses the incoming energy twice. At the vicinity of the crossing time t≅ t0 = ± τ ln ( λ0

2Kτ ), the
solution has the Lorentzian shape:

(19)

5. The general scenario

In principle, in the adiabatic approximation, the outgoing energy is equal to the incoming
energy (i.e., ωout=ωin±τ−1), where τ−1 should be exponentially small
τ −1 < <U exp (−2 U −ω(L −|x0|)). However, in practice, the situation can be quite different due
to the exponential decay of low energies in the tunneling process.

In general, the generic Schrödinger equation (see refs. [17, 33])

(20)

can be solved by a superposition of solutions of the type (11), namely,
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(21)

where it is taken that the incoming energy is Ω.

By substituting solution (21) into Eq. (20) (and after spatial integration), the solution can be
reduced to the integral equation [17]:

(22)

where f (ω)= ∫
−∞

∞

dtf (t / τ) exp(− iωt) is the Fourier transform of the perturbation’s amplitude.

6. Adiabatic and slow variations

In general, due to the complex structure of the Green function, this is a complex integral
equation; nevertheless, as long as the spectrum of the function is mainly concentrated near the
incoming energy Ω, i.e., |a(|ω − Ω|τ > > 1)| < < |a(ω = Ω)|, the contribution to the integral of
the components |ω − Ω|τ > > 1 is negligible; therefore, we can replace Gω

+(0) with GΩ
+(0). In

this case, the integral equation reduces to

(23)

which is merely a convolution equation; therefore, the inverse Fourier transform of the solution

(24)

obeys [24, 33]

(25)

Clearly, resonance occurs when f (t / τ)ℜGΩ
+ (x0, x0)=1. We will see in the next sections that

nontrivial effects occur when f (0)ℜGΩ
+ (x0, x0)>1. In this regime, it is invalid to substitute GΩ

+
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(x0,x0) for Gω
+(x0,x0). However, in the f (0)ℜGΩ

+ (x0, x0)<1 (where it is taken that f(0) = max{f(t/
τ)}) regime, this approximation is still valid.

It is clear, for example, that, when f (0)ℜGΩ
+ (x0, x0)< <1, which is equivalent to the adiabatic

regime,that

(26)

and thus

which means that the spectrum broadening is exactly similar to the spectrum of the perturba‐
tion; in which case the solution is simply

(27)

7. Activation

From Eq. (27), it is evident that elevation to higher energies is still a possibility even in the
adiabatic and slowly varying cases, and because the Green function Gω

+(x,x0) increases with
the energy, there is still a possibility that the mean exit energy will be considerably higher than
the incoming one. The outcome depends only on the specific functional shape of the pertur‐
bation spectrum.

More importantly, when the perturbation becomes more energetic and τ decreases so that
f (0)ℜGΩ

+ (x0, x0) approaches 1 from below (i.e., there is still no intersection), the adiabatic Eq.
(25) is still approximately valid. In this case, however, one can take

(28)

Then, after substituting Eq. (28) in Eq. (25) and both of them in Eq. (24),

(29)
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where β≡(λ0 / τ)GΩ+ (x0, x0). Therefore,

(30)

Now, because the Green function can be written (beyond the barrier) approximately as

(31)

then the exponent in the integrand, which can be regarded as an approximate evaluation of
the spectrum of the outgoing wavefunction, consists of two main terms (two peaks):

(32)

The first peak occurs around the incoming energy Ω (suppressed activation) and the second
one occurs around the barrier’s height U (activation).

Each one of these peaks has a different height. The higher one will determine whether
activation will occur. Therefore, the probability to tunnel through the barrier and to exit with
energy ωout is approximately [33]

(33)

which means that the activation probability peak is proportional to

(34)

whereas the inactivation probability peak (i.e., the probability for suppressed activation) goes
like

(35)

In Figure 3, we demonstrate the fact that the spectrum is governed by two maxima (peaks)
and that Eq. (33) is a good approximation to the numerical solution at the vicinity of these
maxima. Therefore, activation occurs when
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(36)

This occurs approximately at the time scale

(37)

or, for a given τ, the transition occurs for the following incoming energy:

(38)

Figure 3. Comparison between the logarithm of the exact numerical solution (solid line) and the analytical approxima‐
tion (dashed line), i.e., Eq. (33), for 

λ0=100,L U =150, Ω/U =0.6=ΩT , τ=τT =280U
.

Clearly, this energy is lower than the minimum resonance energy

(39)

In Figure 4, the dependence of the spectrum on the transition time-scale τ is presented for three
different values: below τT where activation prevails, above τT when simple tunneling wins,
and when they are equal, and the outgoing particle’s spectrum has two equally probable
outgoing energies.
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It should be stressed that, because these peaks are exponentially narrow, the transition is
extremely abrupt (i.e., the process resembles a phase transition). The identification of the
process as a phase transition was first suggested by Azbel [17].

However, it was wrongly assumed that, if the particle’s incoming energy matches the quasi-
eigenstate energy, then an eigenstate-assisted activation (EAA) effect occurs (i.e., if Ω>Ωmin*,
then activation will definitely increase). In fact, it will be shown that this process is more
complicated, and at some energies (above Ωmin*), activation is “totally” suppressed.

Figure 4. The (logarithm of) the exit probability as a function of the activation energy ωact for the parameters

λ0 =100, L U =150, Ω / U=0.6, for three different perturbation time scales: τ = τT (solid line), τ = τT + 20 (dashed
line) and τT − 20 (dotted line).

8. Selected elevations and forbidden activations

For Ω>Ωmin*, the spectrum’s shape becomes more complicated. Instead of only two peaks, it
has a more complex structure. There is a clear difference between the ωact<Ω (i.e., the under‐
activated regime) and the ωact>Ω (i.e., the activated one). The former oscillates as a function of
ωact but almost independent of the incoming Ω, whereas the latter oscillates as a function of
the incoming Ω but has a mild dependence on the outgoing ωact. In Figure 5, there is an
illustration of this behavior, where a small change in the incoming particle’s energy has an
enormous effect on the activated regime. In Figure 6, a numerical example illustrates this
phenomenon where a ~6.7% change in the incoming energy made a dramatic change from full
activation to suppressed one.

As a consequence, it is clear that, for specific incoming particle’s energies, the entire activated
part of the spectrum is suppressed. To illustrate this point, we define the mean activated energy
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(40)

where P(ωactΩ) is the probability of an incoming particle with energy Ω to exit the barrier with
the energy ωact.

Figure 5. Schematic illustration of the suppressed activation. For most energies, activation occurs (i.e., ωact ≅ U); how‐
ever, for the specific energies (i.e., Ω=Ωm), activation is suppressed and ωact ≅ Ω = Ωm.

Figure 6. Absolute value of the transmission coefficient a(ω) as a function of the activation energy ωact. The dashed
curve corresponds to the case Ω/U = 0.6 and the solid line corresponds to Ω/U = 0.56. The other parameters are

λ0 =100, L U =10, τU =60.6.

In Figure 7 the mean activation energy <ωact> is plotted as a function of the perturbation time
scale τ, and in Figure 8, <ωact> is plotted as a function of the incoming particle’s energy Ω. It is
clearly seen that activation (<ωact> ≅ U) occurs mainly below τ<τT. However, even below this
time-scale, there are specific values of τ, for which activation is suppressed (i.e., <ωact> ≅ Ω).
Similarly, activation occurs <ωact> ≅ U mainly above Ω>ΩT; however, even in the activation
regime, there are specific energies for which <ωact> ≅ Ω (i.e., suppressed activation).
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Figure 7. Mean activation energy as a function of the time-scale τ for the parameters: Ω/U = 0.6, L U =6, λ0 =100.

When τ<τT, two important things occur: (1) At two specific times, the particle’s incoming
energy is equal to the eigenenergy of the quasi-bound state of the varying well. (2) The well
varies quickly enough so the particle has no time to escape from the well.

As a consequence of these two, the particle’s state changes with the well’s eigenstate; therefore,
it is easier to excite the particle energetically. That was the logic that led Azbel to predict the
EAA effect. Indeed, this effect does occur, and it is clearly seen (see Figure 4) that, when τ<τT,
then, for most values of τ, the spectrum’s energy is concentrated around the barrier’s height
U. However, this process cannot last if the particle cannot dwell inside the quasi-bound state.
This event occurs when there is destruction interference inside the well.

Had it been a stationary eigenstate with an eigenenergy Ω0 the eigenstate would accumulate
a linear phase [i.e., exp(−iΩ0t)].

Figure 8. Mean activation energy as a function of the incoming energy Ω/U for τU =79, L U =6, λ0 =100, ΩR is
the resonance energy
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However, because the quasi-bound state evolves in time, it gains the integral

(41)

When the incoming energy is above the minimum eigenenergy (i.e., Ω>Ωmin*=U−λ0
2/4τ2), there

are two times, in which Ω=Ω*(t1)=Ω*(t2) (see Figure 9), and due to the temporal symmetry of
the perturbation t1=−t2. Therefore, the particle has two options to be temporally bounded to

the quasi-eigenstate: it can either begin at t1 and gain the phase exp (− i ∫
t1

t

dt 'Ω *(t ')) or at t2 and

gain the phase exp (− iΩ(t2− t1)− i ∫
t2

t

dt 'Ω *(t ')). If the two components are out of phase and a

destructive interference occurs [33], i.e.,

(42)

the particle cannot survive within the well, and activation is frustrated.

Figure 9. When the minimum of the resonance energy of the perturbation is lower than the incoming energy Ω, then
the instantaneous resonance energy Ω*t crosses the incoming energy twice (at t1 and t2). For successful activation, the
cumulative phase between these two events must be constructive.

In our case, at the vicinity of the parabola peak,
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(43)

After substituting (43) into (42), the values of the forbidden energies Ωm, for which destructive
interference occurs and the activation is suppressed, are directly given

(44)

In each one of these energies, the activation is suppressed.

To determine these energies more accurately, we take advantage of the fact that, at the vicinity
of the minimum Ωmin*, the instantaneous resonance energy has a parabola shape; therefore,
any varying potential with the same parabola should have approximately the same suppressed
energies. Therefore, we replace the Gaussian with a parabolic function, that is, we choose Eq.
(28) for the perturbation, namely, f(t/τ) ≅ (λ0/τ)(1 − t2/τ2), then

(45)

Therefore, the integral equation

(46)

reduces to the differential equation

(47)

where we used the dimensionless parameters n=(ω−Ω)τ and .

After linearization of the Green function, Eq. (47) can be approximated to

(48)

where again K≡ U −Ω.

The solution that maintain the boundary conditions that s(n → ∞) → 0 is
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(49)

where ξ≡(n + K(λ0/τ − 2K)τ)/(2λ0K)1/3, ξ0≡(K(λ0/τ − 2K)τ)/(2λ0K)1/3 and Ai and Bi are the Airy
functions [40].

Therefore, it is clear that activation is suppressed when

(50)

which, in the slowly varying approximation (i.e., large τ), correspond to (see [40])

(51)

Therefore, the incoming energies for which Ωact ≅ Ω, and thus no activation occurs, are
approximately (see Figures 10 and 11)

(52)

Therefore, Eq. (42) should be rewritten more accurately as

(53)

like destructive interference condition in the WKB approximation (see, for example, ref. [19]).
Eq. (53) can be applied to any varying potential whose temporal shape has minima.
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Figure 10. Approximate analytical expression of the forbidden time-scales (dashed curves) with the exact numerical
solution of the probability density (the darker the spot the higher probability it represents). τm are the time scales for
suppressed activations (52). τR is the minimum time scale τR≡−λ0GΩ

+ (0), and τT is the transition time when activation

wins. With the parameters: Ω /U =0.6, λ0 =100, and L U =10.

Figure 11. Presentation of the analytical suppressed activation energies Ωm (dashed lines) on top of the numerical solu‐
tion of the probability to be activated to energy ωact (the darker the spot, the higher the probability it represents). ΩT is
the transition energy when activation wins, and ΩR is the minimum resonant energy. The other parameters are

τU =75, λ0 =100and L U =10.

Because (52) was derived for any potential, which can be approximated by a parabola [Eq. (28)],
then the same conclusions and the same suppression of activation are valid to periodic
potentials of the type
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(54)

See ref. [23] for a more extensive study on these potentials; nevertheless, the suppressed
activation energies (52) and (53) are still valid for these potentials.

9. Instantaneous changes

Lastly, we are going to investigate the scenario in which the perturbation appears instantane‐
ously. In this case, the Schrödinger equation reads

(55)

where u(t)= {1 t ≥0
0 t <0 is the Heaviside step function.

It was shown in ref. [41] that the effect of such a perturbation has a universal pattern in the
short time domain and in fact depends only on the product of the strength of the delta-function
(f0 in this case) and the local value of the initial wavefunction. The idea is [41] that an instan‐
taneous delta-function perturbation is equivalent to a discontinuity in the wavefunction, and
it was proven elsewhere [42, 43] that such a discontinuity has, in the short time, a universal
pattern even in the presence of potentials [44]. Therefore, if the initial state was

(56)

then, after the instantaneous perturbation, the short time dynamics is simply [41]

(57)

Because the first term is exponentially smaller than the second one, then very quickly the
second term becomes dominant. In fact, it becomes dominant as early as

(58)

If the delta-function well is turned on instantaneously but only for a period of 2τ, then the
Schrödinger equation can be written as
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(59)

and the solution is

(60)

which can be further simplified (provided τ<<t) to

(61)

where sinc(x)≡ sin(x)/x.

This result again suggests that, if the variation occurs quickly enough, there is no dependence
on the incoming particle’s energy Ω. In fact, the variation term vanishes for

(62)

Moreover, when 
τ(x − x0)2

4t 2 < <1, the second term has a totally universal pattern, which is even

independent of τ:

(63)

10. Applications

(A) The effect of controlled activation can be used in dynamic heterostructures, which can be
used as frequency effect transistors. A schematic presentation of the system is presented in
Figure 12. The barrier can be constructed by a semiconductor, and its potential shape can be
controlled by the gate’s voltage. In such a device, the current from source to drain will be
governed by the frequency of the gate and therefore can be much more sensitive than any other
transistor (because frequency, unlike voltage or currents, can be determined with great
accuracy).
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In Figure 13, the current j ∝ |iψ ' (x, t)ψ*(x, t) − c. c.| [where ψ(x,t) is the solution of Eq. (21)]
of such a device is plotted as a function of the incoming energy Ω and τ. The forbidden
activations values are clearly seen by the white stripes. They are exponentially narrow;
therefore, the device’s current can be controlled by small variations in τ.

Figure 12. Schematic illustration of a frequency effect transistor. The semiconductor functions as an effective barrier,
and the gate voltage oscillates with frequency ω to create the oscillating region. The insulating layer prevents current
leakage from the gate to the drain.

Figure 13. Plot of the current j ∝ |iψ ' (x, t)ψ*(x, t) − c. c.| as a function of the Ω and τ for λ0 =100and L U =10.
The darker the color, the higher is the current.

(B) As mentioned in the Section 1, there are evidences that odor detection is governed by
dynamic resonant tunneling. It is known that odor receptors are, in some sense, like resonant
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tunneling devices—only specific molecules, with the right chemical properties, “activate” the
receptor, which sends a signal to the brain. However, it was recently recognized that the
olfactory system could distinguish between two molecules, which have the same chemistry
but have different mechanical properties. That is, in cases where one of the atoms in a molecule
is replaced with one of its isotopes (e.g., deuterium instead of hydrogen), a different odor is
detected. It was therefore suggested that the receptor actually operates as a “dynamic”
resonant tunneling device [38], which is sensitive on the molecule vibrations. If this is indeed
the case, an enigma still remains: how humans can distinguish between approximately 10,000
different smells while they have only few hundred receptors. If every receptor is calibrated to
a specific molecule with a specific vibration, then only several hundred odors should have
been detected. The dynamics, which is presented by us in this chapter by the forbidden
activation energy, suggests that each molecule has a different fingerprint, and every molecule
can activate several receptors in a specific combination, which characterizes only the specific
molecule. From this specific combination (instead of a single specific receptor), the brain can
identify the specific detected molecule (see Figure 14).

Figure 14. A receptor as a resonant tunneling system distinguishes between molecules, which are identical chemically
but different mechanically. The heavier the molecule, the lower the vibrational frequencies and therefore have a differ‐
ent impact on each one of the receptors. Thus, every molecule would have a unique combination of activated recep‐
tors.

11. Summary

Resonant tunneling is a fascinating quantum phenomenon. In this chapter, we have focused
on the transmission of a quantum particle through an opaque (mostly rectangular) barrier via
a delta-function potential. We have discussed all dynamics regimes—stationary resonant
tunneling, adiabatic changes, activation, forbidden activation, and instantaneous changes. The
generic dynamic problem is highly complex. Each one of these regimes has its specific
characteristics.

The main results are related to the domain in which the incoming particle’s energy is higher
than the minimum eigenenergy of the changing well and the changes are fast enough to
prevent particle escape. Unlike previous predictions, the fact that the particle can be trapped
in the well does not mean by itself that it will necessarily be activated. In fact, in some cases,
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the particle’s wavefunction experiences “destructive interference” inside the well, and as a
consequence, activation is suppressed. We show that all the cases in which the potential’s
temporal minima has a parabola shape have the same forbidden energies, and for the first time,
we present a generic solution for this case.

Furthermore, the instantaneous case is also discussed for the first time. In this case, the
dependence on the specific incoming energy vanishes, and a generic universal pattern appears.

Finally, we suggest testing this effect as a frequency effect transistor, which have the potential
to be used as a highly accurate transistor.

Moreover, it is suggested that the effect of forbidden activation energies may explain the reason
that humans can distinguish between 10,000 different odors while they have only several
hundred odor receptors. According to this suggestion, every molecule can trigger different
receptors, and only the combination of the activated ones creates the perception of the right
smell. In any case, this research shows that dynamic resonant tunneling, in general (and
forbidden activation, in particular), has a major, and totally nontrivial, role in the olfactory
mechanism.
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