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Abstract. Since web workloads are known to vary dynamically with time, in this
paper, we argue that dynamic resource allocation techniques are necessary to pro-
vide guarantees to web applications running on shared data centers. To address
this issue, we use a system architecture that combines online measurements with
prediction and resource allocation techniques. To capture the transient behavior
of the application workloads, we model a server resource using a time-domain
description of a generalized processor sharing (GPS) server. This model relates
application resource requirements to their dynamically changing workload char-
acteristics. The parameters of this model are continuously updated using an online
monitoring and prediction framework. This framework uses time series analysis
techniques to predict expected workload parameters from measured system met-
rics. We then employ a constrained non-linear optimization technique to dynam-
ically allocate the server resources based on the estimated application require-
ments. The main advantage of our techniques is that they capture the transient
behavior of applications while incorporating nonlinearity in the system model.
We evaluate our techniques using simulations with synthetic as well as real-world
web workloads. Our results show that these techniques can judiciously allocate
system resources, especially under transient overload conditions.

1 Introduction

1.1 Motivation

The growing popularity of the World Wide Web has led to the advent of Internet data
centers that host third-party web applications and services. A typical web application
consists of a front-end web server that services HTTP requests, a Java application server
that contains the application logic, and a backend database server. In many cases, such
applications are housed on managed data centers where the application owner pays
for (rents) server resources, and in return, the application is provided guarantees on
resource availability and performance. To provide such guarantees, the data center—
typically a cluster of servers—must provision sufficient resources to meet application
? This research was supported in part by NSF grants CCR-9984030 and EIA-0080119.



needs. Such provisioning can be based either on a dedicated or a shared model. In the
dedicated model, some number of cluster nodes are dedicated to each application and
the provisioning technique must determine how many nodes to allocate to the appli-
cation. In the shared model, which we consider in this paper, an application can share
node resources with other applications and the provisioning technique needs to deter-
mine how to partition resources on each node among competing applications.3

Since node resources are shared, providing guarantees to applications in the shared
data center model is more complex. Typically such guarantees are provided by reserv-
ing a certain fraction of node resources (CPU, network, disk) for each application. The
fraction of the resources allocated to each application depends on the expected work-
load and the QoS requirements of the application. The workload of web applications is
known to vary dynamically over multiple time scales [14] and it is challenging to es-
timate such workloads a priori (since the workload can be influenced by unanticipated
external events—such as a breaking news story—that can cause a surge in the number
of requests accessing a web site). Consequently, static allocation of resources to appli-
cations is problematic—while over-provisioning resources based on worst case work-
load estimates can result in potential underutilization of resources, under-provisioning
resources can result in violation of guarantees. An alternate approach is to allocate re-
sources to applications dynamically based on the variations in their workloads. In this
approach, each application is given a certain minimum share based on coarse-grain esti-
mates of its resource needs; the remaining server capacity is dynamically shared among
various applications based on their instantaneous needs. To illustrate, consider two ap-
plications that share a server and are allocated 30% of the server resources each; the
remaining 40% is then dynamically shared at run-time so as to meet the guarantees pro-
vided to each application. Such dynamic resource sharing can yield potential multiplex-
ing gains, while allowing the system to react to unanticipated increases in application
load and thereby meet QoS guarantees. Dynamic resource allocation techniques that
can handle changing application workloads in shared data centers is the focus of this
paper.

1.2 Research Contributions

In this paper, we present techniques for dynamic resource allocation in shared web
servers. We model various server resources using generalized processor sharing (GPS)
[29] and assume that each application is allocated a certain fraction of a resource. Us-
ing a combination of online measurement, prediction and adaptation, our techniques
can dynamically determine the resource share of each application based on (i) its QoS
(response time) needs and (ii) the observed workload. The main goal of our techniques
is to react to transient system overloads by incorporating online system measurements.

We make three specific contributions in this paper. First, in order to capture the
transient behavior of application workloads, we model the server resource using a time-
domain queuing model. This model dynamically relates the resource requirements of
each application to its workload characteristics. The advantage of this model is that it

3 This requirement is true even in a dedicated model where service differentiation between dif-
ferent customers for the same application may be desirable.



does not make steady-state assumptions about the system (unlike some previous ap-
proaches [10, 24]) and adapts to changing application behavior. To achieve a feasible
resource allocation even in the presence of transient overloads, we employ a non-linear
optimization technique that employs the proposed queuing model. An important fea-
ture of our optimization-based approach is that it can handle non-linearity in system
behavior unlike some approaches that assume linearity [1, 25].

Determining resource shares of applications using such an online approach is cru-
cially dependent on an accurate estimation of the application workload characteristics.
A second contribution of our work is a prediction algorithm that estimates the workload
parameters of applications in the near future using online measurements. Our prediction
algorithm uses time series analysis techniques for workload estimation.

Third, we use both synthetic workloads and real-world web traces to evaluate the
effectiveness of our online prediction and allocation techniques. Our evaluation shows
that our techniques adapt to changing workloads fairly effectively, especially under tran-
sient overload conditions.

The rest of the paper is structured as follows. We formulate the problem of dynamic
resource allocation in shared web servers in Section 2. In Section 3, we present a time-
domain description of a resource queuing model, and describe our online prediction
and optimization-based techniques for dynamic resource allocation. Results from our
experimental evaluation are presented in Section 4. We discuss related work in Section 5
and present our conclusions and future work in Section 6.

2 Problem Formulation and System Model

In this section, we first present an abstract GPS-based model for a server resource and
then formulate the problem of dynamic resource allocation in such a GPS-based system.

2.1 Resource Model

We model a server resource using a system of n queues, where each queue corresponds
to a particular application (or a class of applications) running on the server. Requests
within each queue are assumed to be served in FIFO order and the resource capacity C
is shared among the queues using GPS. To do so, each queue is assigned a weight and is
allocated a resource share in proportion to its weight. Specifically, a queue with a weight
wi is allocated a share φi = wi

∑

j
wj

(i.e., allocated (φi ·C) units of the resource capacity

when all queues are backlogged). Several practical instantiations of GPS exist—such
as weighted fair queuing (WFQ) [15], self-clocked fair queuing [18], and start-time fair
queuing [19]—and any such scheduling algorithm suffices for our purpose. We note
that these GPS schedulers are work-conserving—in the event a queue does not utilize
its allocated share, the unused capacity is allocated fairly among backlogged queues.
Our abstract model is applicable to many hardware and software resources found on a
server; hardware resources include the network interface bandwidth, the CPU and in
some cases, the disk bandwidth, while software resource include socket accept queues
in a web server servicing multiple virtual domains [25, 30].



2.2 Problem Definition

Consider a shared server that runs multiple third-party applications. Each such appli-
cation is assumed to specify a desired quality of service (QoS) requirement; here we
assume that the QoS requirements are specified in terms of a target response time. The
goal of the system is to ensure that the mean response time (or some percentile of the re-
sponse time) seen by application requests is no greater than the desired target response.
In general, each incoming request is serviced by multiple hardware and software re-
sources on the server, such as the CPU, NIC, disk, etc. We assume that the specified
target response time is split up into multiple resource-specific response times, one for
each such resource. Thus, if each request spends no more than the allocated target on
each resource, then the overall target response time for the server will be met.4

Since each resource is assumed to be scheduled using GPS, the target response time
of each application can be met by allocating a certain share to each application. The
resource share of an application will depend not only on the target response time but also
on the load in each application. As the workload of an application varies dynamically,
so will its resource share. In particular, we assume that each application is allocated
a certain minimum share φmin

i of the resource capacity; the remaining capacity (1 −
∑

j φmin
j ) is dynamically allocated to various applications depending on their current

workloads (such that their target response time will be met). Formally, if di denotes the
target response time of application i and T̄i is its observed mean response time, then the
application should be allocated a share φi, φi ≥ φmin

i , such that T̄i ≤ di.
Since each resource has a finite capacity and the application workloads can exceed

capacity during periods of heavy transient overloads, the above goal can not always
be met. To achieve feasible allocation during overload scenarios, we use the notion
of utility functions to represent the satisfaction of an application based on its current
allocation. While different kinds of utility functions can be employed, we define utility
in the following manner.5 We assume that an application remains satisfied so long as its
allocation φi yields a mean response time T̄i no greater than the target di (i.e., T̄i ≤ di).
But the discontent of an application grows as its response time deviates from the target
di. This discontent function can be represented as follows:

Di(T̄i) = (T̄i − di)
+, (1)

where x+ represents max(0, x). In this scenario, the discontent grows linearly when the
observed response time exceeds the specified target di. The overall system goal then is
to assign a share φi to each application, φi ≥ φmin

i , such that the total system-wide
discontent, i.e., the quantity D =

∑n

i=1
Di(T̄i) is minimized.

We use this problem definition to derive our dynamic resource allocation mecha-
nism, which is described next.

4 The problem of how to split the specified server response time into resource-specific response
times is beyond the scope of this paper. In this paper, we assume that such resource-specific
target response times are given to us.

5 Different kinds of utility functions can be employed to achieve different goals during overload,
such as fairness, isolation, etc.
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Fig. 1. Dynamic Resource Allocation

To perform dynamic resource allocation based on the above formulation, each GPS-
scheduled resource on the shared server will need to employ three components: (i) a
monitoring module that measures the workload and the performance metrics of each
application (such as its request arrival rate, average response time T̄i, etc.), (ii) a pre-
diction module that uses the measurements from the monitoring module to estimate
the workload characteristics in the near future, and (iii) an allocation module that uses
these workload estimates to determine resource shares such that the overall system-wide
discontent is minimized. Figure 1 depicts these three components.

In what follows, we first present an overview of the monitoring module that is re-
sponsible for performing online measurements. We follow this with a time-domain de-
scription of the resource queuing model, and formulation of a non-linear optimization
problem to perform resource allocation using this model. Finally, we present the pre-
diction techniques used to estimate the parameters for this model dynamically.

3.1 Online Monitoring and Measurement

The online monitoring module is responsible for measuring various system and ap-
plication metrics. These metrics are used to estimate the system model parameters and
workload characteristics. These measurements are based on the following time intervals
(see Figure 2):

– Measurement interval (I): I is the interval over which various parameters of interest
are sampled. For instance, the monitoring module tracks the number of request
arrivals (ni) in each interval I and records this value.
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Fig. 2. Time intervals used for monitoring, prediction and allocation

The choice of a particular measurement interval depends on the desired responsive-
ness from the system. If the system needs to react to workload changes on a fine
time-scale, then a small value of I (e.g., I = 1 second) should be chosen. On the
other hand, if the system needs to adapt to long term variations in the workload over
time scales of hours or days, then a coarse-grain measurement interval of minutes
or tens of minutes may be chosen.

– History (H): The history represents a sequence of recorded values for each param-
eter of interest. Our monitoring module maintains a finite history consisting of the
most recent H values for each such parameter; these measurements form the basis
for predicting the future values of these parameters.

– Adaptation Window (W): The adaptation window is the time interval between two
successive invocations of the adaptation algorithm. Thus the past measurements are
used to predict the workload for the next W time units, and the system adapts over
this time interval. As we would see in the next section, our time-domain queuing
model description considers a time period equal to the adaptation window to es-
timate the average response time T̄i of an application, and this model is updated
every W time units.

The history and the adaptation window are implemented as sliding windows.

3.2 Allocating Resource Shares to Applications

The allocation module is invoked periodically (every adaptation window) to dynam-
ically partition the resource capacity among the various applications running on the
shared server. To capture the transient behavior of application workloads, we first present
a time-domain description of a resource queuing model. This model is used to deter-
mine the resource requirements of an application based on its expected workload and
response time goal.

Time-domain Queuing Model As described above, the adaptation algorithm is in-
voked every W time units. Let q0

i denote the queue length at the beginning of an adap-
tation window. Let λ̂i denote the estimated request arrival rate and µ̂i denote the es-
timated service rate in the next adaptation window (i.e., over the next W time units).
We would show later how these values are estimated. Then, assuming the values of λ̂i

and µ̂i are constant, the length of the queue at any instant t within the next adaptation



window is given by

qi(t) =
[

q0
i +

(

λ̂i − µ̂i

)

· t
]+

, (2)

Intuitively, the amount of work queued up at instant t is the sum of the initial queue
length and the amount of work arriving in this interval minus the amount of work ser-
viced in this duration. Further, the queue length cannot be negative.

Since the resource is modeled as a GPS server, the service rate of an application
is effectively (φi · C), where φi is the resource share of the application and C is the
resource capacity, and this rate is continuously available to a backlogged application in
any GPS system. Hence, the request service rate is

µ̂i =
φi · C

ŝi

, (3)

where ŝi is the estimated mean service demand per request (such as number of bytes
per packet, or CPU cycles per CPU request, etc.).

Note that, due to the work conserving nature of GPS, if some applications do not
utilize their allocated shares, then the utilized capacity is fairly redistributed among
backlogged applications. Consequently, the queue length computed in Equation 2 as-
sumes a worst-case scenario where all applications are backlogged and each application
receives no more than its allocated share (the queue would be smaller if the application
received additional unutilized share from other applications).

Given Equation 2, the average queue length over the adaptation window is given by:

q̄i =
1

W

∫ W

0

qi(t)dt (4)

Depending on the particular values of q0
i , the arrival rate λ̂i and the service rate

µ̂i, the queue may become empty one or more times during an adaptation window. To
include only the non-empty periods of the queue when computing q̄i, we consider the
following scenarios, based on the assumption of constant µ̂i and λ̂i:

1. Queue growth: If µ̂i < λ̂i, then the application queue will grow during the adapta-
tion window and the queue will remain non-empty throughout the adaptation win-
dow.

2. Queue depletion: If µ̂i > λ̂i, then the queue starts depleting during the adaptation

window. The instant t0 at which the queue becomes empty is given by t0 =
q0

i

µ̂i−λ̂i

.

If t0 < W , then the queue becomes empty within the adaptation window, otherwise
the queue continues to deplete but remains non-empty throughout the window (and
is projected to become empty in a subsequent window).

3. Constant queue length: If µ̂i = λ̂i, then the queue length remains fixed (= q0
i )

throughout the adaptation window. Hence, the non-empty queue period is either 0
or W depending on the value of q0

i .

Let us denote the duration within the adaptation window for which the queue is
non-empty by Wi (Wi equals either W or t0 depending on the various scenarios). Then,



Equation 4 can be rewritten as

q̄i =
1

W

∫ Wi

0

qi(t)dt (5)

=

(

Wi

W

) [

q0
i +

Wi

2

(

λ̂i − µ̂i

)

]

(6)

Having determined the average queue length over the next adaptation interval, we
derive the average response time T̄i over the same interval. Here, we are interested in
the average response time in the near future. Other metrics such as a long term average
response time could also be considered. T̄i is estimated as the sum of the mean queuing
delay and the request service time over the next adaptation interval. We use Little’s law
to derive the queuing delay from the mean queue length.6 Thus,

T̄i =
(q̄i + 1)

µ̂i

(7)

Substituting Equation 3 in this expression, we get

T̄i =

(

ŝi

φi · C

)

· (q̄i + 1), (8)

where q̄i is given by equation 6. The values of q0
i , µ̂i, λ̂i and ŝi are obtained using

measurement and prediction techniques discussed in the next section.
This time-domain model description has the following salient features:

– The parameters of the model depend on its current workload characteristics (λ̂i,
ŝi) and the current system state (q0

i ). Consequently, this model is applicable in an
online setting for reacting to dynamic changes in the workload, and does not make
any steady state assumptions.

– As shown in Equation 8, the model assumes a non-linear relationship between the
response time T̄i and the resource share φi. This assumption is more general than
linear system assumption made in some scenarios.

Next we describe how this model is used in dynamic resource allocation.

Optimization-based Resource Allocation As explained earlier, the share allocated to
an application depends on its specified target response time and the estimated workload.
We now present an online optimization-based approach to determine resource shares
dynamically.

As described in section 2, the allocation module needs to determine the resource
share φi for each application such that the total discontent D =

∑n

i=1
Di(T̄i) is mini-

mized. This problem translates to the following constrained optimization problem:

min
{φi}

n
∑

i=1

Di(T̄i)

6 Note that the application of Little’s Law in this scenario is an approximation, that is more
accurate when the size of the adaptation window is large compared to the average request
service time.



subject to the constraints

n
∑

i=1

φi ≤ 1,

φmin
i ≤ φi ≤ 1, 1 ≤ i ≤ n.

Here, Di is a function that represents the discontent of a class based on its current
response time T̄i. The two constraints specify that (i) the total allocation across all ap-
plications should not exceed the resource capacity, and (ii) the share of each application
can be no smaller than its minimum allocation φmin

i and no greater than the resource
capacity.

In general, the nature of the discontent function Di has an impact on the allocations
φi for each application. As shown in Equation 1, a simple discontent function is one
where the discontent grows linearly as the response time T̄i exceeds the target di. Such
a Di, shown in Figure 3, however, is non-differentiable. To make our constrained opti-
mization problem mathematically tractable, we approximate this piece-wise linear Di

by a continuously differentiable function:

Di(T̄i) =
1

2
[(T̄i − di) +

√

(T̄i − di)2 + k],

where k > 0 is a constant. Essentially, the above function is a hyperbola with the two
piece-wise linear portions as its asymptotes and the constant k governs how closely this
hyperbola approximates the piece-wise linear function. Figure 3 depicts the nature of
the above function.

We note that the optimization is with respect to the resource shares {φi}, while
the discontent function is represented in terms of the response times {T̄i}. We use the
relation between T̄i and φi from Equation 8 to obtain the discontent function in terms
of the resource shares {φi}.
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The resulting optimization problem can be solved using the Lagrange multiplier
method [9]. In this technique, the constrained optimization problem is transformed into
an unconstrained optimization problem where the original discontent function is re-
placed by the objective function:

L({φi}, β) =

n
∑

i=1

Di(T̄i) − β · (

n
∑

i=1

φi − 1). (9)

The objective function L is then minimized subject to the bound constraints on φi. Here
β is called the Lagrange multiplier and it denotes the shadow price for the resource.
Intuitively, each application is charged a price of β per unit resource it uses. Thus,
each application attempts to minimize the price it pays for its resource share, while
maximizing the utility it derives from that share. This leads to the minimization of the
original discontent function subject to the satisfaction of the resource constraint.

Minimization of the objective function L in the Lagrange multiplier method leads
to solving the following system of algebraic equations.

∂Di

∂φi

= β, ∀i = 1, . . . , n (10)

and

∂L

∂β
= 0 (11)

Equation 10 determines the optimal solution, as it corresponds to the equilibrium
point where all applications have the same value of diminishing returns (or β). Equa-
tion 11 satisfies the resource constraint.

The solution to this system of equations, derived either using analytical or numerical
methods, yields the shares φi that should be allocated to each application to minimize
the system-wide discontent. We use a numerical method for solving these equations
to account for the non-differentiable factor present in the time-domain queuing model
(Equation 2).

Having described the monitoring and allocation modules, we now describe the pre-
diction module that uses the measured system metrics to estimate the workload param-
eters that are used by the optimization-based allocation technique.

3.3 Workload Prediction Techniques

The online optimization-based allocation technique described in the previous section is
crucially dependent on an accurate estimation of the workload likely to appear in each
application class. In this section, we present techniques that use past observations to
estimate the future workload for an application.

The workload seen by an application can be characterized by two complementary
distributions: the request arrival process and the service demand distribution. Together
these distributions enable us to capture the workload intensity and its variability. Our
technique measures the various parameters governing these distributions over a certain
time period and uses these measurements to predict the workload for the next adaptation
window.



Estimating the Arrival Rate The request arrival process corresponds to the work-
load intensity for an application. The crucial parameter of interest that characterizes the
arrival process is the request arrival rate λi. An accurate estimate of λi allows the time-
domain queuing model to estimate the average queue length for the next adaptation
window.

To estimate λi, the monitoring module measures the number of request arrivals ai

in each measurement interval I . The sequence of these values {am
i } forms a time se-

ries. Using this time series to represent a stochastic process Ai, our prediction module
attempts to predict the number of arrivals n̂i for the next adaptation window. The ar-

rival rate for the window, λ̂i is then approximated as

(

n̂i

W

)

where W is the window

length. We represent Ai at any time by the sequence {a1
i , . . . , aH

i } of values from the
measurement history.

To predict n̂i, we model the process as an AR(1) process [7] (autoregressive of order
1). This is a simple linear regression model in which a sample value is predicted based
on the previous sample value

Using the AR(1) model, a sample value of Ai is estimated as

âj+1

i = āi + ρi(1) · (a
j
i − āi) + ej

i , (12)

where, ρi and āi are the autocorrelation function and mean of Ai respectively, and ej
i is

a white noise component. We assume ej
i to be 0, and aj

i to be estimated values âj
i for

j ≥ H + 1. The autocorrelation function ρi is defined as

ρi(l) =
E[(aj

i − āi) · (a
j+l
i − āi)]

σ2
ai

, 0 ≤ l ≤ H − 1,

where, σai
is the standard deviation of Ai and l is the lag between sample values for

which the autocorrelation is computed.
Thus, if the adaptation window size is M intervals (i.e., M = W/I), then, we first

estimate âH+1
i , . . . , âH+M

i using equation 12. Then, the estimated number of arrivals
in the adaptation window is given by n̂i =

∑H+M

j=H+1
âj

i and finally, the estimated arrival

rate, λ̂i =
n̂i

W
.

Estimating the Service Demand The service demand of each incoming request rep-
resents the load imposed by that request on the resource. Two applications with similar
arrival rates but different service demands (e.g., different packet sizes, different per-
request CPU demand, etc.) will need to be allocated different resource shares.

To estimate the service demand for an application, the prediction module computes
the probability distribution of the per-request service demands. This distribution is rep-
resented by a histogram of the per-request service demands. Upon the completion of
each request, this histogram is updated with the service demand of that request. The
distribution is used to determine the expected request service demand ŝi for requests in
the next adaptation window. ŝi could be computed as the mean, the median, or a per-
centile of the distribution obtained from the histogram. For our experiments, we use the
mean of the distribution to represent the service demand of application requests.



Measuring the Queue Length A final parameter required by the allocation model
is the queue length of each application at the beginning of each adaptation window.
Since we are only interested in the instantaneous queue length q0

i and not mean values,
measuring this parameter is trivial—the monitoring module simply records the number
of outstanding requests in each application queue at the beginning of each adaptation
window.

4 Experimental Evaluation

We demonstrate the efficacy of our dynamic resource allocation techniques using a
simulation study. In what follows, we first present our simulation setup and then our
experimental results.

4.1 Simulation Setup and Workload Characteristics
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Fig. 4. 24-hour portion of the World Cup 98 trace

Our simulator models a server resource with multiple application-specific queues;
the experiments reported in this paper specifically model the network interface on a
shared server. Requests across various queues are scheduled using weighted fair queu-
ing [15]—a practical instantiation of GPS. Our simulator is based on the NetSim li-
brary [22] and DASSF simulation package [23]; together these components support
network elements such as queues, traffic sources, etc., and provide us the necessary ab-
stractions for implementing our simulator. The adaptation and the prediction algorithms
are implemented using the Matlab package [28] (which provides various statistical rou-
tines and numerical non-linear optimization algorithms); the Matlab code is invoked
directly from the simulator for prediction and adaptation.

We use two types of workloads in our study—synthetic and trace-driven. Our syn-
thetic workloads use Poisson request arrivals and deterministic request sizes. Our trace-
driven workload is based on the World Cup Soccer ’98 server logs [4]—a publicly



available web server trace. Here, we present results based on a 24-hour long portion of
the trace that contains a total of 755,705 requests at a mean request arrival rate of 8.7
requests/sec, and a mean request size of 8.47 KB. Figures 4 (a) and (b) show the request
arrival rate and the average request size respectively for this portion of the trace. We use
this trace workload to evaluate the efficacy of our prediction and allocation techniques.
Due to space constraints, we omit results related to our prediction technique and those
based on longer portions of the trace. More detailed results can be found in a technical
report [11].

4.2 Dynamic Resource Allocation

In this section, we evaluate our dynamic resource allocation techniques. We conduct
two experiments, one with a synthetic web workload and the other with the trace work-
load and examine the effectiveness of dynamic resource allocation. For purposes of
comparison, we repeat each experiment using a static resource allocation scheme and
compare the behavior of the two systems.
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Fig. 5. Comparison of static and dynamic resource allocations for a synthetic web workload.

Synthetic Web Workload To demonstrate the behavior of our system, we consider two
web applications that share a server. The benefits of dynamic resource allocation accrue
when the workload temporarily exceeds the allocation of an application (resulting in a
transient overload). In such a scenario, the dynamic resource allocation technique is able
to allocate unused capacity to the overloaded application, and thereby meet its QoS re-
quirements. To demonstrate this property, we conducted a controlled experiment using
synthetic web workloads. The workload for each application was generated using Pois-
son arrivals. The mean request rate for the two applications were set to 100 requests/s
and 200 requests/s. Between time t=100 and 110 sec, we introduced a transient overload
for the first application as shown in Figure 5(a). The two applications were initially al-
located resources in the proportion 1:2, which corresponds to the average request rates



of the two applications. φmin was set to 20% of the capacity for both applications and
the target delays were set to 2 and 10s, respectively. Figure 5(b) depicts the total discon-
tent of the two applications in the presence of dynamic and static resource allocations.
As can be seen from the figure, the dynamic resource allocation technique provides bet-
ter utility to the two applications when compared to static resource allocation and also
recovers faster from the transient overload.
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Fig. 6. The workload and the resulting allocations in the presence of varying arrival rates and
varying request sizes.
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Fig. 7. Comparison of static and dynamic resource allocations in the presence of heavy-tailed
request sizes and varying arrival rates.

Trace-driven Web Workloads Our second experiment considered two web applica-
tions. In this case, we use the World Cup trace to generate requests for the first web
application. The second application represents a background load for the experiment;



its workload was generated using Poisson arrivals and deterministic request sizes. For
this experiment, φmin was chosen to be 30% for both applications and the initial allo-
cations are set to 30% and 70% for the two applications (the allocations remain fixed
for the static case and tend to vary for the dynamic case). We present results from only
that part of the experiment where transient overloads occur in the system and result in
behavior of interest.

Figure 6(a) shows the workload arrival rate (as a percentage of the resource ser-
vice rate) for the two applications, and also the total load on the system. As can be
seen from the figure, there are brief periods of overload in the system. Figure 6(b) plots
the resource shares allocated to the two applications by our allocation technique, while
Figures 7(a) and (b) show the system discontent values for the dynamic and the static
resource allocation scenarios. As can be seen from the figures, transient overloads result
in temporary deviations from the desired response times in both cases. However, the dy-
namic resource allocation technique yields a smaller system-wide discontent, indicating
that it is able to use the system capacity more judiciously among the two applications.

Together these experiments demonstrate the effectiveness of our dynamic resource
allocation technique in meeting the QoS requirements of applications in the presence
of varying workloads.

5 Related Work

Several research efforts have focused on the design of adaptive systems that can re-
act to workload changes in the context of storage systems [3, 26], general operating
systems [32], network services [8], web servers [6, 10, 13, 21, 25, 30] and Internet data
centers [2, 31]. In this paper, we focused on an abstract model of a server resource with
multiple class-specific queues and presented techniques for dynamic resource alloca-
tion; our model and allocation techniques are applicable to many scenarios where the
underlying system or resource can be abstracted using a GPS server.

Some adaptive systems employ a control-theoretic adaptation technique [1, 25, 27,
34]. Most of these systems (with the exception of [27]) use a pre-identified system
model. In contrast, our technique is based on online workload characterization and pre-
diction. Further, these techniques use a linear relationship between the QoS parameter
(like target delay) and the control parameter (such as resource share) that does not
change with time. This is in contrast to our technique that employs a non-linear model
derived using the queuing dynamics of the system, and further, we update the model
parameters with changing workload.

Other approaches for resource sharing in web servers [10] and e-business environ-
ments [24] have used a queuing model with non-linear optimization. The primary dif-
ference between these approaches and our work is that they use steady-state queue
behavior to drive the optimization, whereas we use transient queue dynamics to control
the resource shares of applications. Thus, our goal is to devise a system that can react to
transient changes in workload, while the queuing theoretic approach attempts to sched-
ule requests based on the steady-state workload. A model-based resource provisioning
scheme has been proposed recently [16] that performs resource allocation based on the



performance modeling of the server. This effort is similar to our approach of modeling
the resource to relate the QoS metrics and resource shares.

Other techniques for dynamic resource allocation have also been proposed in [5,
12]. Our work differs from these techniques in some significant ways. First of all, we
define an explicit model to derive the relation between the QoS metric and resource
requirements, while a linear relation has been assumed in these approaches. The ap-
proach in [5] uses a modified scheduling scheme to achieve dynamic resource alloca-
tion, while our scheme achieves the same goal with existing schedulers using high-level
parameterization. The approach described in [12] uses an economic model similar to
our utility-based approach. This approach employs a greedy algorithm coupled with a
linear system model for resource allocation, while we employ a non-linear optimization
approach coupled with a non-linear queuing model for resource allocation.

Prediction techniques have been proposed that incorporate time-of-day effects along
with time-series analysis models into their prediction [20, 33]. While these techniques
work well for online prediction at coarse time-granularities of several minutes to hours,
the goal of our prediction techniques is to predict workloads at short time granularities
of upto a few minutes and to respond quickly to transient overloads.

Two recent efforts have focused on workload-driven allocation in dedicated data
centers [17, 31]. In these efforts, each application is assumed to run on some number of
dedicated servers and the goal is to dynamically allocate and deallocate (entire) servers
to applications to handle workload fluctuations. These efforts focus on issues such as
how many servers to allocate to an application, and how to migrate applications and
data, and thus are complementary to our present work on shared data centers.

6 Conclusions

In this paper, we argued that dynamic resource allocation techniques are necessary in
the presence of dynamically varying workloads to provide guarantees to web appli-
cations running on shared data centers. To address this issue, we used a system ar-
chitecture that combines online measurements with prediction and resource allocation
techniques. To capture the transient behavior of the application workloads, we modeled
a server resource using a time-domain description of a generalized processor sharing
(GPS) server. The parameters of this model were continuously updated using an online
monitoring and prediction framework. This framework used time series analysis tech-
niques to predict expected workload parameters from measured system metrics. We
then employed a constrained non-linear optimization technique to dynamically allocate
the server resources based on the estimated application requirements. The main advan-
tage of our techniques is that they capture the transient behavior of applications while
incorporating nonlinearity in the system model. We evaluated our techniques using sim-
ulations with synthetic as well as real-world web workloads. Our results showed that
these techniques can judiciously allocate system resources, especially under transient
overload conditions.

In future, we plan to evaluate the accuracy-efficiency tradeoff of using more sophis-
ticated time series analysis models for prediction. In addition, we plan to investigate
the utility of our adaptation techniques for systems employing other types of schedulers



(e.g., non-GPS schedulers such as reservation-based). We would also like to explore
optimization techniques using different utility functions and QoS goals. We also plan
to evaluate these techniques with different kinds of workloads and traces. Finally, we
intend to compare our allocation techniques with other dynamic allocation techniques
to evaluate their relative effectiveness.
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