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Abstract—We report on design, implementation and evaluation
of a resource management system that builds upon OpenStack,
an open-source cloud platform for private and public clouds that
is rapidly gaining acceptance in industry. Our implementation
supports an Infrastructure-as-a-Service (IaaS) cloud and cur-
rently provides allocation for computational resources in support
of interactive as well as computationally intensive applications.
The design supports an extensible set of management objectives
between which the system can switch at runtime. We demonstrate
through examples how management objectives related to load-
balancing, energy efficiency and service differentiation can be
mapped onto the controllers of the resource allocation subsystem,
which attempts to achieve an activated management objective
at all times. The design is extensible in the sense that addi-
tional objectives can be introduced by providing instantiations
for generic functions in the controllers. Our implementation
monitors the fulfillment of the relevant management metrics in
real time. Testbed evaluation demonstrates the effectiveness of
our approach in a dynamic environment. It further illustrates
the trade-off between closely meeting a specific management
objective and the associated cost of VM live-migration.

Index Terms—Cloud management, performance management,
management objective, dynamic resource management, Open-
Stack

I. INTRODUCTION

The paper reports on design, implementation and evalua-
tion of a resource management system that builds upon the
OpenStack cloud platform. The focus is on managing an
Infrastructure-as-a-Service (IaaS) cloud, which makes ICT
infrastructure available to customers in a virtualized way,
including computation in form of virtual machines (VMs),
storage in form of virtual disks, for instance, and networking
in form of virtual switches, for example. IaaS cloud services
are offered by an increasing number of providers, whereby
Amazon and RackSpace are probably the most well-known.
IaaS cloud environments have proved suitable for running
interactive applications, such as websites and social networks,
analytics frameworks like MapReduce or media streaming
services, such as audio or video on-demand services.

The IaaS service model has two principal stakeholders: the
laa$ provider who owns and operates the cloud infrastructure
and the customers who run their applications on the cloud.
(If an IaaS customer, runs a web site, for instance, it has its
own customer base that consumes cloud resources through
the site.) Customers typically have service level agreements

(SLAs) with the provider, which specify how their applications
are executed and which cloud resources are available to them.
The term private cloud is used for a cloud where the provider
and its customers belong to the same organization. Otherwise
the term public cloud is used.

The IaaS provider defines strategies according to which
resources for computation, storage and networking of the cloud
infrastructure are allocated to the customers’ applications.
Such strategies are expressed as management objectives, and
the goal of this paper is to devise capabilities that enforce
system-level management objectives on an IaaS cloud. There
exists a large variety of possible management objectives,
depending on the type of customers that are served, the kind of
applications that are run, the characteristics of the underlying
physical infrastructure, and the business strategy the provider
pursues. Our goal is to contribute towards a generic solution
to the cloud management problem. We believe that a cloud
management system must be flexible to support a wide range
of provider-defined objectives.

On a functional level, management objectives are achieved
through controlling the resource allocation process, which is
the task of performance management. As the external load
on a cloud changes over time, resource allocation must adapt
to continuously meet the activated management objective.
This means that the management system must continuously
monitor resource utilization and dynamically adjust resource
allocations.

In this paper, we present an architecture for IaaS perfor-
mance management and discuss an initial implementation,
which is built on OpenStack. The key building blocks are a
set of controllers that allocate resources to applications and
cooperate to achieve an activated management objective. The
controller designs contain generic components that must be
instantiated for a specific management objective. We evaluate
a prototype implementation regarding efficiency and cost for
three specific objectives. The work reported here focuses on
computational resources only, and the inclusion of storage and
networking resources is currently under investigation.

Compared to commercial cloud management software, our
implementation is flexible and open, as it is designed to
facilitate adding new management objectives. Our work is
complementary to many recent and current research activities
in cloud resource allocation, which center around formalizing



and solving a specific resource allocation problem and produce
a specific resource allocation solution for a specific controller
(like the VM placement controller). This paper, in contrast, is
system-oriented and focuses on how to design and implement a
system of collaborating controllers, in order to achieve system-
level management objectives in a dynamic environment.

The paper is organized as follows. Section II introduces
our architecture for performance management of an IaaS
cloud. Section III gives background information on OpenStack
and how it is used in our work. Section IV describes the
realization of our management architecture for an OpenStack
cloud, and we present its evaluation in Section V. Section VI
discusses related work, and Section VII concludes the paper
by summarizing our contributions and outlining future plans.

II. PERFORMANCE MANAGEMENT OF AN IAAS CLOUD

Performance management can be understood as the man-
agement of the resource allocation process [1]. The task
of performance management is to satisfy the customers by
conforming to SLAs and, at the same time, to satisfy the
provider by achieving management objectives when allocating
resources. Building a performance management capability
requires defining metrics that express to which extent specific
management objectives are achieved and instrumenting the
managed system such that SLA compliance and performance
metrics can be continuously monitored.

The managed system, i.e., the cloud environment (some-
times simply referred to as cloud), includes a potentially large
number of physical servers for computational tasks, com-
plemented with storage devices, and communication devices,
which enable communication within the cloud as well as with
the outside world.

Management objectives define the strategies according to
which resources are allocated to applications. Many cloud
management implementations support some form of balanced
load objective, whereby the computational resources of the
cloud are allocated in such a way that CPU and, sometimes,
memory utilization is balanced across servers. Operating the
cloud under such an objective often increases the chance to
cope with unforeseen spikes in application demand. Another
objective relates to minimizing power consumption of the
cloud while still conforming to the customer’ SLAs. This
is typically achieved through server consolidation, whereby
a minimal number of servers handles the load, while the
remaining servers are put on standby (consuming little or
no power). A well-studied class of management objectives
relates to fair resource allocation, an example of which is
allocating resources to applications proportional to an ap-
plication’s demand (e.g., [2]). A further, important class of
management objectives involves support for differentiation
among different classes of cloud service. In Section IV, we
discuss a specific example of service differentiation, whereby
a guaranteed service class and a best-effort class are supported
on the same cloud infrastructure. Clearly, a provider may want
to satisfy several management objectives at the same time, or
switch between objectives depending on the load pattern. For
example, a provider may operate the cloud infrastructure under
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Fig. 1. IaaS Performance Management: Components and Information Flow.
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the combined objective of enabling service differentiation and
minimal energy consumption, or a provider may switch from
balanced load to minimizing power consumption after office-
hours.

Formalizing the problem of performance management for
an JaaS cloud and finding a resource allocation that meets
one or more management objectives is an active and im-
portant research topic, but goes beyond the scope of this
paper. Generally, finding an allocation that meets a specific
management objective can be formulated as an optimization
problem. Some management objectives can appear as objective
functions in an optimization problem, while others can appear
as constraints. Examples of constraints include the condition
that communicating VMs must run on the same physical server
(colocation constraint)}—with the goal to increase application
performance—or the condition that specific VMs must run on
different physical servers (anti-colocation constraint)—-with
the goal to increase the robustness of the application, for
instance.

Fig. 1 shows our architecture for performance management
of an TaaS cloud environment. The lower part of the figure con-
tains the components of the resource allocation system which
is part of the IaaS cloud infrastructure. The upper part shows
a management station which sets the management objectives
controlling the resource allocation process and monitors the
performance metrics. The light-colored components in Fig. 1
contain functions related to state estimation and prediction,
while the dark-colored components contain controllers. The
light-colored components produce state estimations and de-
mand predictions, which are consumed by the controllers.

When a customer submits a request to a provider for running
an application in one or several VMs, the request is received
by the Admission Controller, which either accepts or rejects
it. In case the request is accepted, the Placement Scheduler
selects, for each involved VM, the server that executes it. The
Local Scheduler on that particular server then schedules the
VM for execution. Note that all three controllers make their
decisions based on the currently active management objective
and state of the system. Three components monitor and predict
the system state: the Request Flow Profiler characterizes VM
request statistics, the PM/VM Utilization Estimator monitors
the utilization of physical as well as virtual machines, and
the Demand Profiler characterizes the VM resource demand.
During operation of the cloud, the demand for a specific
application may vary or the resource capacity of the entire
cloud may change, due to failures or maintenance procedures,
for instance. For this reason, resource allocation must be
adaptive, which implies that the Placement Scheduler and



the Local Scheduler dynamically reallocate resources to the
VMs, in order to continue following a management objective.
Reallocation may include moving VMs between servers.

III. OPENSTACK—AN OPEN-SOURCE CLOUD PLATFORM

OpenStack [3] is an open-source cloud computing platform
for both private and public clouds. The OpenStack project was
announced in July of 2010 by Rackspace and NASA, who
made the initial code contributions. Since then, more than 150
companies have announced their support for the project, and
an active developer community is making OpenStack a de-
facto standard in cloud computing.

The OpenStack software consists of several independently-
developed components with well-defined APIs. The core com-
ponent that provides IaaS functionality (similar to Amazon
EC2) is OpenStack Compute (also called Nova). It handles
provisioning and life-cycle management of VMs and supports
most available hypervisors. Further components are Object
Storage, a scalable storage service similar to Amazon S3, Im-
age Service for image management, Identity for authentication,
Dashboard, a web-based GUI, primarily for starting/stopping
VMs and managing user/group configurations, and Network
for building virtual network topologies that live on top of
hardware from different vendors.

The implementation described in this paper is based on the
Diablo release of the OpenStack distribution. Our implemen-
tation currently uses the components Compute, which we have
extended for our purposes, and Image Service for managing
VM images.

IV. DESIGN AND IMPLEMENTATION OF THE
PERFORMANCE MANAGEMENT ARCHITECTURE IN
OPENSTACK

Fig. 2 shows the realization of our performance management
architecture (Fig. 1) in an OpenStack cloud. Fig. 2 includes
an OpenStack cloud controller, which is a physical server
that runs the OpenStack Scheduler and API components, and
a potentially large number of OpenStack compute servers,
each of which runs an OpenStack Compute component. The
components in Fig. 1 are realized as follows. The functionality
of the Admission Controller is realized in the OpenStack
API and the OpenStack Scheduler components (Fig. 2). The
Placement Scheduler is split into two controllers: the Initial
Placement Controller running in the OpenStack scheduler,
which performs the initial placement of a VM, and the
Dynamic Placement Controller in the compute servers, which
adapts the placement over time through live-migration of
VMs. The functionality of the Local Scheduler is performed
by the OpenStack Compute component in each compute
server. Regarding the components that perform estimation
and prediction, the Request Flow Profiler is placed in the
cloud controller while the Demand Profiler and the PM/VM
Utilization Estimator run on each compute server.

We now provide some details about specific components in
our implementation. The Request Flow Profiler is currently
not implemented.
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Fig. 2. Realization of the performance management architecture in Open-
Stack. Names in italic refer to OpenStack terms while gray enclosures
represent servers.

The PM/VM Utilization Estimator monitors the utilization
of computational resources of the server and each VM. The
server utilization is obtained through an operating system in-
terface (/proc) and the VM utilization through the 1ibvirt
library. The output of this component is consumed by Demand
Profiler as well as the Initial and Dynamic Placement Con-
trollers. The Demand Profiler component predicts the resource
utilization of the VMs. The current implementation uses a
moving-average forecaster that returns the utilization of the
VM over the last two minutes.

When a VM is launched on a compute server, as directed
by a placement controller, the Local Scheduler creates a disk
image for the VM and calls the hypervisor to boot the VM.
Parameters to this call may include the type of the (virtual)
CPU, the number of cores, the amount of memory, the hard
disk image to boot from, and the local CPU allocation policy.
The degree of control of allocating computational resources
to specific VMs depends on the hypervisor an implementation
uses. In the case of Xen and VMware ESX Server, for
example, a guaranteed resource level, together with a priority
level for shared resources, can be specified for each VM. In the
case of KVM, which our implementation currently uses, CPU
resources are multiplexed, and differentiation among VMs can
be achieved through setting different priorities to processes
that run VMs.

The Initial Placement Controller selects the compute server
on which a VM is to be launched. In our implementation, we
are using the OpenStack least-cost scheduler for this purpose.
This scheduler contains two generic functions (Fig. 3a), a filter
function that selects the set of compute servers capable of
running a given VM and a cost function that ranks the filtered
set of servers according to their suitability. These functions
need to be instantiated to support a specific management
objective.

The Dynamic Placement Controller (Fig. 3b) continuously
adapts the placement of VMs through live-migration. Such a
function is needed in a dynamic cloud environment, where the
load on a server can significantly change over time (e.g., due
to changes in demand of individual VMs, VMs starting and
terminating, etc.), and the system thus becomes less effective
in achieving the management objective. An adapted placement
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then results in the system state moving back to a desired
region. The controller is realized in a distributed way using a
gossip protocol called GRMP, which we developed in earlier
work [4]. GRMP implements a generic scheme for resource
allocation which can be instantiated for various management
objectives. The protocol, whose pseudocode is given in Al-
gorithm 1, runs on each compute server. During execution, a
server asynchronously and periodically initiates an interaction
with a peer server chosen (at random) through the peer sam-
pling service. During such an interaction, the servers exchange
their states (including the list of running VMs and their
predicted demands) and select the VMs to be migrated from
one server to the other. The functions initInstance (),
choosePeer () and updateState () in Algorithm 1 need
to be instantiated to support a specific management objective.
The peer sampling service is realized using a gossip protocol
called CYCLON [5].

Algorithm 1 Protocol GRMP runs on each server n [4]

initialization
1: initInstance ()
2: start passive and active threads;

active thread
: while true do
read current state A,
n' =choosePeer|()
send(n, A,); A, =receive(n’)
updateState(n’, A,/)
execute A,
: sleep until end of round
: end while

: while true do
read current state A,
A, =receive(n’); send(n’,A,)
updateState(n’, A,)
execute A,
: end while

1
2
3
4
5
6
7
8
passive thread
1
2
3
4
5
6

We use the Zabbix monitoring software [6] with custom
scripts to collect performance metrics from the compute
servers. The metrics are then displayed via a web browser on
the management station. Management objectives are specified
through a command line interface.

The Dynamic Placement Controller, the Demand Profiler
and the Utilization Estimator are implemented in a multi-
threaded python application of about 1000 lines of code. The
Dynamic Placement Controller uses KVM block migration to
move VMs between servers. (Block migration is a form of live-
migration where the disk image of the VM is migrated along

with its operational state. It does not require shared storage.)

We now give three specific examples of global manage-
ment objectives and how they can be mapped to the four
controllers of the management system. Note that there exist
many variations of these management objectives which will
require slightly different mappings. A summary is displayed
in Fig. 4.

Balanced load: The objective is to allocate the com-
putational resources of the cloud to VMs in such a way
that the CPU utilization is balanced across all servers. In
case of overload, i.e., if the aggregate CPU demand of VMs
exceeds the cloud capacity, CPU resources are allocated to
VMs proportional to their demand. The controllers of the
management system implement this objective as follows. (1)
The Admission Controller accepts a VM request if there exists
a server with sufficient available capacity to run the VM.
Otherwise, the request is rejected. (2) The Initial Placement
Controller places a VM on the server that minimizes the
maximum predicted CPU utilization of all cloud servers.
Predicted CPU utilization is computed from the CPU demand
predictions for each VMs that are obtained from the Demand
Profiler. (3) The Dynamic Placement Controller has the same
placement objective, but realizes it through the gossip protocol.
During a gossip interaction between two servers, a VM with
low memory demand whose migration reduces the maximum
(predicted) utilization of the two servers is migrated (this is
specified in updateState) [2]. (A VM with a low memory
demand is preferred for migration, since it can be migrated
faster.) (4) In case of underload, the Local Scheduler allocates
resources to VMs according to their predicted demand. In
overload, the resources of a server are allocated to VMs pro-
portional to their predicted demand. (In our implementation,
this policy is approximated by the default scheduler of the
Linux kernel.)

Energy efficiency: The objective is to minimize the power
consumption of the cloud while satisfying the demand of all
VMs, which is achieved through server consolidation whereby
servers that do not run VMs are put on standby. In case
of overload, resources are allocated to VMs proportional to
their respective demand. The controllers of the management
system implement this objective as follows. (1) The Admission
Controller accepts a VM request only if there exists a server
with sufficient available capacity to run the VM. (2) The
Initial Placement Controller places a VM on a server with
the smallest available, but sufficient capacity. (3) The gossip
protocol that implements the Dynamic Placement Controller
performs server interactions as follows [4]: (a) if both servers
are (predicted to be) in underload, a VM with low memory
demand that will not overload the higher loaded server is
migrated to the higher-loaded server; (b) if one server is
in overload and one in underload, a VM with low memory
demand that will not overload the lower loaded server is
migrated to the lower-loaded server; (c) if both servers are in
overload, they interact in the same way as for the balanced-
load objective. (4) The Local Scheduler allocates resources to
each VM according to predicted demand in case of underload,
and proportional to predicted demand in case of overload.



Service differentiation: The objective is to support two
classes of service: a guaranteed-service class where each VM
m receives the resources it requires up to a capacity limit
0., and a best-effort service class where the cloud resources
not currently used by the guaranteed-service class are shared
fairly among the VMs of this class. The controllers of the
management system implement this objective as follows. (1)
The Admission Controller accepts a VM request for best-effort
service only if there exists a server with sufficient available
capacity to run the VM. It accepts a VM request for guaranteed
service if there exists a server with sufficient guaranteed
capacity, i.e., for a VM with capacity limit 6,,, there exists a
server with CPU capacity ©; such that ©4 — ZZ ons0i = O
The request is rejected otherwise. (2) The Initial Placement
Controller balances the relative aggregate capacity limits (i.e.,
@15 Y i on s i) across servers as its first priority, and it bal-
ances the predicted server utilization as its second priority.
It achieves this by (a) placing a guaranteed-service VM on
the server that minimizes the maximum aggregate capacity
limit over all servers n (i.e., on arg min, max, y_, . . 6m)
and (b) placing a best-effort VM on the server that minimizes
the maximum predicted CPU utilization over all servers. (3)
The Dynamic Placement Controller attempts to balance the
predicted CPU utilization across all servers. This is realized
in the same way as for the balanced-load objective, except that
only best-effort VMs are migrated. (4) The Local Scheduler
allocates resources according to predicted demand in case
of underload. During periods of overload, it first allocates
all available resources to guaranteed-service VMs fairly (i.e.,
proportional to the predicted CPU demand of each VM); any
remaining server capacity is then shared fairly among best-
effort VMs. (In our implementation, this policy is approxi-
mated by the scheduling policy of the Linux kernel through
assigning a high scheduling priority to guaranteed-service
VMs and the lowest priority to best-effort VMs.)

V. EVALUATION OF THE EFFECTIVENESS AND EFFICIENCY
OF THE IMPLEMENTATION

The cloud platform in our laboratory that we use for the
evaluation comprises nine high-performance Dell PowerEdge
servers, interconnected by a Gigabit Ethernet switch. Each
server has two 12-core AMD Opteron processors and 64GB
RAM, which creates a system with 216 cores. All servers
run Ubuntu 10.04 with Linux kernel 3.0 and KVM hypervisor
kvm-kmod-3.2. We use the Diablo version of OpenStack,
whereby eight servers are configured as OpenStack compute
servers and one as an OpenStack cloud controller (Fig. 2).

For the evaluation, we run two types of applications on
the cloud platform: (1) an interactive web application called
Joomla, which is configured using an Apache web-server, a
MySQL database and the Joomla content management system
[7], and (2) a CPU-intensive application called Pi, which
runs on Debian Linux that executes a multi-process python
application. The application computes the sequence of digits
of m. We run Joomla and Pi on VMs whose configurations are
given in Fig. 5.

[ Tmage Type [ VM Configuration

1 core, 1IGB RAM

2 cores, 2GB RAM

4 cores, 4GB RAM

8 cores, 8GB RAM

1 core, 256MB RAM
Pi 2 cores, 256MB RAM
(CPU-intensive app) 4 cores, 256MB RAM
8 cores, 512MB RAM

VM images and VM configurations used in the evaluation.

Joomla
(Interactive web app)

Fig. 5.

Load generation: Due to the lack of suitable traces that
are publicly available, we use a synthetic model for generating
load. The model generates VM request arrivals at a specific
rate using a Poisson process, and the lifetime of a VM on the
platform is drawn from a truncated exponential distribution.
For each request, the type of application (Joomla or Pi)
is chosen with equal probability. The VM configuration is
selected with a probability that is inversely proportional to
the number of cores (see Fig. 5). The load generated by the
customers of a web application is changing over time and
consumes, on average, some 70% of the (virtual) CPU capacity
of the VM it runs on. The CPU load generated by Pi does not
exceed 70% of the (virtual) CPU capacity of the VM it runs
on. We evaluate the system under three load patterns: (1) low
(VM) churn, whereby the VM arrival rate is 6 per hour with
an average VM lifetime of 13.3 hours, (2) high (VM) churn,
whereby the rate is 2 per minute with an average VM lifetime
of 40 minutes and (3) no (VM) churn whereby the rate is 0
and the average lifetime is infinite. We set up the load patterns
in such a way that, at any time, an average of some 80 VMs
are executing on the platform.

Evaluation metrics: In each evaluation scenario, we
measure the effectiveness of the resource allocation system
in achieving the management objectives. Second, we measure
the cost of the resource allocation system as the number of
VM migrations in progress. Live-migration of VMs requires
significant resources in terms of memory, CPU and storage.
(Note that live-migration results in only a brief interruption
in the execution of an application, and that the process of
migrating a VM on our platform takes between half a minute
and 8 minutes, depending on the VM configuration.)

A. Balanced-load Scenario

We conduct four experiments in order to evaluate the
performance of the management system under the balanced
load objective. During the first three experiments, we expose
the system to the three load patterns described above. The
fourth experiment is conducted with the high churn load
pattern, and the Dynamic Placement Controller is disabled.
While the goal of the first three experiments is to study the
system under different load, the objective of the fourth is to
understand the costs and benefits of dynamic adaptation. The
controllers of the resource management system are instantiated
according to the balanced load objective, as described in the
second column of Fig. 4. We quantify the effectiveness of the
system by measuring the maximum utilization of all servers
and comparing that value to the average utilization. For each
measurement run, we wait until the system is in steady state



[ [ Balanced load

| Energy efficiency

| Differentiated services ]

(1) Admission

Controller accept VM if available ca-

pacity, reject otherwise otherwise

accept VM if available capacity, reject

guaranteed: accept VM if available
guaranteed capacity;

best-effort: accept VM only if available
capacity

(2) Initial
Placement
Controller

place VM on server that
minimizes the maximum
utilization among servers

place VM on server with smallest un-
used, but sufficient capacity

guaranteed: place VM on server that
minimizes maximum of aggregate ca-
pacity limits;

best-effort: place VM on server that
minimizes maximum utilization

(3) Dynamic move a VM from higher

move a VM from lower loaded to higher
loaded server without creating overload;

move a best-effort VM from higher

overload: proportional to

predicted demand mand

Placement loaded  to  lower lgaded if one server is overloaded move a VM | loaded to lower loaded server such that
Controller server, such that maximum . . e e L.
T from higher loaded to lower loaded | maximum utilization is minimized
utilization is minimized server
) Local underload: as per predicted underload: as per predicted demand; underloafi. as per predlctegl demand;
demand . . overload: guaranteed-service VMs are
Scheduler overload: proportional to predicted de-

prioritized, remaining capacity shared
fairly among best-effort VMs

Fig. 4. Mapping management objectives to controller functionality.

1.2 2
1.8
1.15 1.6
11 1 14
1.2
1.05 1
| 0.8
1 0.6
0.95 | 04
0.2 -
0.9 - 0
ho low high ho no low high ho
churn churn churn adapt. churn  churn churn adapt.
W Avg utilization ® Max utilization B # of migrations in progress

7 2
1.8
6.5 1.6
1.4
6 1.2
1
5.5 1 0.8
0.6
5 0.4

0.2 -

4.5 - 0 -

ho low high no no low high no
churn  churn churn adapt. churn  churn  churn adapt.
¥ Min # of servers M Actual # of servers B # of migrations in progress

Fig. 6. Measurements for the balanced load objective: efficiency metric (left)
and cost metric (right).

and then measure the relevant metrics every 30 seconds for a
duration of three hours.

The measurement results are presented in Fig. 6. All values
are averaged over a run. Each of the four experiments produces
two bars on the left, showing the average and the maximum
server utilization, and one bar on the right, showing the cost
of adaptation. A measure of effectiveness is the difference
between the two bars in the graph on left. The values on the left
graph are normalized with respect to the average utilization.

We draw three conclusions from the experiments. First,
the system effectively balances the load under low or no
churn. The effectiveness of the system is reduced under high
churn. We expect this behavior, since the Dynamic Placement
Controller runs at a specific rate, which is limited by the
fact that live-migration is a resource-intensive task. Second,
the migration costs are low under low churn and high under
high churn. This is also expected, since, after each new
placement or termination of a VM, there may be a need to
adapt the placement. Third, under low churn, an increase in
effectiveness through dynamic adaptation can be achieved at
a low cost. However, under high churn, the cost for achieving
effectiveness can become very high. This suggests that there
is a churn-rate limit above which dynamic adaptation becomes
too expensive. This issue warrants further investigation.

Fig. 7. Measurements for the objective of energy efficiency through server
consolidation: efficiency metric (left) cost metric (right).

B. Energy-efficiency Scenario

We conduct four experiments in the same way as in the
balanced-load scenario—three scenarios with different load
patterns and one with high churn and having the Dynamic
Placement Controller disabled. The controllers of the resource
management system are instantiated according to the energy
efficiency objective, as described in the third column of Fig.
4. During the experiments, we measure the effectiveness
of the system by counting the number of servers that run
VMs and comparing that number to a (theoretical) minimum
computed as the ceiling of the aggregate CPU demand (of
all VMs) divided by the capacity of a single server. For each
measurement run, we wait until the system reaches steady state
and then measure the relevant metrics every 30 seconds for a
duration of three hours.

The measurement results are presented in Fig. 7. All values
are averaged over a run. Each of the four experiments produces
two bars on the left, showing the minimum needed and the
actual number of servers running VMs, and one bar on the
right, showing the cost of adaptation. The effectiveness metric
is the difference between the bars in the graph on left.

The conclusions drawn from this experiment are similar to
those obtained from the balanced-load scenario, as the mea-
surement graphs display qualitatively similar properties. First,
the system is effective under low churn, and the effectiveness
decreases under high churn. This means that the number of
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servers that run VMs (relative to the CPU demand), is higher
under high churn than under low churn. Second, for increased
churn rate, the cost of achieving consolidation increases, while
the effectiveness of the system in achieving the objective
decreases, compared to the case where the Dynamic Placement
Controller is disabled. Also here, the measurements suggest
that dynamic adaptation seems cost effective only up to a
certain churn rate.

C. Service-differentiation Scenario

We conduct an experiment to evaluate the effectiveness
of resource allocation under a specific service differentiation
objective that supports two classes of service. The controllers
of the resource allocation system are instantiated according
to the last column of Fig. 4. The system gives guaranteed
service to the Joomla application and best-effort service to
Pi. During the experiment, the system is loaded with a VM-
request rate of 1.5 per minute and an average VM lifetime of
40 minutes, whereby requests for each type of application have
equal probability. The average load for all VMs (guaranteed
service and best effort) is about 70%. VM configurations have
either two or eight cores and are taken from Fig. 5. During
the experiment, the Dynamic Placement Controller is active.
After the warm up period in which the system reaches steady
state, the experiment is run in three consecutive phases of
two hours each. During Phase I, the average CPU utilization
is about 50%. At the beginning of Phase II, 14 (out of 24)
cores on each compute server are disabled, reducing the CPU
capacity of the cloud by some 60% and resulting in overload.
At the beginning of Phase III, all cores are enabled again, and
the cloud capacity becomes the same as during Phase 1.

During the experiment, we measure two metrics, separately
for both service classes, in order to quantify the effectiveness
of the management system: the average CPU utilization and
the VM request rejection rate. The measurement results are
presented in Fig. 8 in form of a time-series plot for the four
metrics. The utilization values are averaged over all VMs of
a class.

During Phase I, the system is in underload, and the demand
of each applications is satisfied. No guaranteed-service VMs
are rejected and the average rejection rate for best-effort VMs
is about 15%. An inspection of the measurement data from the
Admission Controller reveals that all rejected VMs have an 8-
core configuration. They have been rejected, because placing
them at their time of arrival on any server would have violated

an 80% utilization threshold of the server. We observe that
during Phase II, after the system has stabilized, the utilization
of the guaranteed-service VMs is on a similar level as in
Phase I, while the utilization of the best-effort VMs settles
at a lower level. We also see that some guaranteed-service
VMs are rejected, and best effort VMs are rejected at a higher
rate. During Phase III, the system is in underload again and
the difference in utilization between VMs from both classes
becomes smaller. The rejection rate for best-effort VMs is
smaller than during Phase I, which suggests that the system
is in transient state and requires additional time to display the
statistics we see in Phase I.

In summary, the experiment shows that the resource alloca-
tion system effectively differentiates between the two service
classes. During overload, the utilization of the guaranteed-
service VMs stays (approximately) the same as during un-
derload, while the utilization of best effort VMs decreases.
Further, only best-effort VMs are rejected during underload,
and, during overload, the rejection rate of best-effort VMs
is significantly higher than that of guaranteed-service VMs.
Therefore, the system gives, at all times, a better service to
the guaranteed-service class than to the best-effort class.

VI. RELATED WORK

There is little information available about the management
systems of major public clouds such as those underlying Ama-
zon EC2 or Microsoft Azure. However, there exist commercial
cloud management systems, for which technical descriptions
are available. The most advanced is probably VMWare’s
VSphere [8], which is used by many IaaS providers, in-
cluding CSC, Savvis, Bluelock and hosting.com [9]. The
core component of VSphere’s resource management system is
the Distributed Resource Scheduler (DRS), which is actually
centralized despite its name. DRS supports initial and dynamic
placement of VMs to achieve management objectives related to
load balancing and energy efficiency. Compared to our work,
DRS is closed and does not support user-defined management
objectives. Furthermore, it is limited to a cluster of 32 servers
due to its centralized design.

Similar in functionality to VSphere is the Virtual Machine
Manager (VMM) component Microsoft Systems Center [10].
The core functionality of VMM'’s resource allocation system
is implemented by two components: an‘intelligent placement’
component (equivalent to the Initial Placement Controller in
our work) and a ‘dynamic optimization’ component (equiva-
lent to the Dynamic Placement Controller). VMM supports
load balancing and energy efficiency objectives. Similar to
DRS, VMM does not allow users to define management
objectives. Furthermore, an installation supports a cluster of
up to 16 servers.

Like OpenStack, other open-source cloud management sys-
tems, such as OpenNebula [11] and Nimbus [12], support
user-defined policies for the initial placement of VMs. For
instance, the OpenNebula Match-making Scheduler allows
defining requirements and rank expressions that have a similar
purpose as the cost and filter functions in OpenStack (Fig. 3a).
However, all open-source cloud management systems we have
studied do not directly support dynamic VM placement.



Many recent works on resource allocation in clouds focus
on computing allocations for specific management objectives,
such as energy efficiency ([13], [14], [15]), fairness ([16],
[2]) and service differentiation [17]. However, there are also
approaches where generic solutions are developed for different
objectives ([4], [18], [19]). All of the above works however
deliver placement solutions. They do not consider the design of
controllers and the fact that achieving management objectives
generally requires the cooperation of several controllers of
different type with coordinated policies.

VII. DISCUSSION

With this paper we make the following contributions. First,
we present a management architecture for an laaS cloud,
which supports dynamic resource allocation with management
objectives. Three critical components of this architecture are
the VM Admission Controller, the VM Placement Scheduler
(implemented as two separate controllers) and the VM Lo-
cal Scheduler. Second, the implementation design includes
modular and extensible components that can be refined to
realize specific management objectives, which we illustrate
with three examples. Third, the implementation is realized
as an extension of the OpenStack cloud platform, so that all
OpenStack installations can take advantage of the management
capabilities our implementation provides. Finally, a prototype
evaluation shows the effectiveness of our implementation
in achieving objectives related to load balancing, energy
efficiency and service differentiation under changing load.
Dynamic placement of VMs can significantly increase the
effectiveness of achieving a management objective. However,
the cost of effectiveness increases with the level of VM churn
and can become prohibitive in a highly dynamic system.

While our current implementation only covers computa-
tional resources, there is a clear need to extend the work
towards including storage and networking resources, which we
plan to address in future work. While the currently available
commercial implementations are limited to a small number of
servers (32 in the case of VSphere), and available designs of
centralized controllers scale up to 103-10* servers, we believe
that future cloud management implementations should support
much larger configurations, perhaps in the order of 10°-106
servers. In fact, the Dynamic Placement Controller in our
implementation scales to such a size due to its distributed
design [2]. We plan to decentralize other components of our
architecture in a similar way. For an OpenStack implementa-
tion to scale, however, several issues inherent to OpenStack
must be addressed, for instance, the bottlenecks introduced by
a centralized database (shared among all OpenStack compo-
nents) and a centralized messaging queue.
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