
EURASIP Journal on Wireless Communications and Networking 2005:5, 712–730
c© 2005 Tullio Facchinetti et al.

Dynamic Resource Reservation and Connectivity
Tracking to Support Real-Time Communication
amongMobile Units

Tullio Facchinetti
Dipartimento di Informatica e Sistemistica (DIS), Università di Pavia, 27100 Pavia, Italy
Email: tullio.facchinetti@unipv.it

Giorgio Buttazzo
Dipartimento di Informatica e Sistemistica (DIS), Università di Pavia, 27100 Pavia, Italy
Email: buttazzo@unipv.it

Luis Almeida
Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA), and Departamento de
Electrónica e Telecomunicações (DET), Universidade de Aveiro, 3810-193 Aveiro, Portugal
Email: lda@det.ua.pt

Received 29 June 2004; Revised 25 April 2005

Wireless communication technology is spreading quickly in almost all the information technology areas as a consequence of a
gradual enhancement in quality and security of the communication, together with a decrease in the related costs. This facili-
tates the development of relatively low-cost teams of autonomous (robotic) mobile units that cooperate to achieve a common
goal. Providing real-time communication among the team units is highly desirable for guaranteeing a predictable behavior in
those applications in which the robots have to operate autonomously in unstructured environments. This paper proposes a MAC
protocol for wireless communication that supports dynamic resource reservation and topology management for relatively small
networks of cooperative units (10–20 units). The protocol uses a slotted time-triggered medium access transmission control that
is collision-free, even in the presence of hidden nodes. The transmissions are scheduled according to the earliest deadline first
scheduling policy. An adequate admission control guarantees the timing constraints of the team communication requirements,
including when new nodes dynamically join or leave the team. The paper describes the protocol focusing on the consensus proce-
dure that supports coherent changes in the global system. We also introduce a distributed connectivity tracking mechanism that
is used to detect network partition and absent or crashed nodes. Finally, a set of simulation results are shown that illustrate the
effectiveness of the proposed approaches.

Keywords and phrases: topology, wireless, mobile, real time, distributed network.

1. INTRODUCTION

The relevance of ah hoc networking is clearly stated by several
authors (e.g., [1, 2]) that present specific applications suit-
able for mobile ad hoc networks (MANETs). One class of ap-
plications is the interconnection of multiple robotic mobile
units. Groups of such units represent an attractive solution in
those situations in which the environment’s conditions are
not suitable for direct human intervention. This can occur

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

in space missions, in the exploration of hazardous environ-
ment, in demining, surveillance, and civil protection [3]. In
these cases, relatively small teams of robots are required to
operate autonomously in open environments, for monitor-
ing and exploration purposes. In addition, they have to co-
operate for achieving a common goal. Communication sys-
tems based on wired backbones are not usually suitable for
this kind of applications because it is often impossible to de-
ploy a wired infrastructure in open or remote spaces. As a
consequence, a full autonomy of the robotic team can only
be achieved through a wireless ad hoc network [4].

Moreover, robots must exchange information concern-
ing both the environment and their own state, which is

mailto:tullio.facchinetti@unipv.it
mailto:buttazzo@unipv.it
mailto:lda@det.ua.pt

Dynamic Bandwidth Reservation for Mobile Robots 713

inherently time constrained. This calls for a real-time
communication protocol capable of meeting the global
communication requirements, namely, in terms of band-
width and communication delays. However, achieving real-
time communication over wireless networks has long been
a challenge [5, 6] mainly due to the higher attenuation and
higher bit error rates typical of that medium as well as
its open character. The challenge is, however, substantially
larger when the nodes move and establish ad hoc links as in
wireless mobile ad hoc networks (MANETs) [7]. It is inter-
esting to notice that these networks differ from sensor net-
works [5] in at least two ways: they are not always large scale,
which means scalability might not be an issue, and physical
constraints are not as stringent, whichmeans that more pow-
erful processors, radio transceivers, and batteries can gener-
ally be used. This latter aspect does not mean, however, that
resource consciousness is not an issue. It still is, but gen-
erally at a lower importance than in sensor networks. On
the other hand, MANETs differ from industrial wireless net-
works [6] because these are frequently structured, that is,
based on fixed access points.

A further challenge in MANETs is supporting dynamic
resource reservation as required by nodes that join or leave
the team at run time, or by changes in the communication re-
quirements. This is necessary for an efficient use of the com-
munication bandwidth and for flexibility with respect to the
operational environment.

This paper proposes a communication protocol for
MANETs targeted to small teams of mobile autonomous
robots that move in the vicinity of each other and period-
ically broadcast state or environment information (e.g., a
value of temperature, the concentration of a polutant, the
position of a target, a video/audio stream, the robot’s posi-
tion, its energy level and integrity status). The underlying co-
operation model follows the producer/consumer paradigm
in which several producers transmit periodically information
that is made available to consumers who may retrieve it from
the network if required. This model is particularly adapted
to applications such as teams of surveillance robots, rescue
robots, or even soccer robots as those used in the RoboCup
Middle Size League.

The protocol supports dynamic resource management
with adequate admission control, thus respecting the com-
munication timing constraints, even in the presence of com-
munication errors and hidden nodes. To support dynamic
resource management the protocol uses a consensus proce-
dure that allows all nodes to be aware of changes in resource
allocation, enforcing globally coherent decisions. Moreover,
to maintain updated information on the network topology
even when nodes move, a similar mechanism based on a con-
nectivity matrix is used to track the current topology. Both
mechanisms, for consensus as well as for connectivity track-
ing, are the focus of this work.

The paper is organized as follows. Section 2 presents a
brief survey of related work and Section 3 introduces the
system model. Then, Section 4 introduces our approach to
track the network topology. Section 5 describes the con-
sensus procedure while Section 6 presents and validates an

upper bound on the time taken by the consensus procedure
and includes simulation results that show the effectiveness
of the protocol even with errors and mobility. Section 7
illustrates the simulation results concerning the resource
reservation method and the proposed topology-tracking
algorithm. Some implementation issues are presented in
Section 8, including an evaluation of the protocol overhead.
Finally, Section 9 states our conclusions and future work.

2. RELATEDWORK

Wireless communication technology has recently become
pervasive in many application domains, enabled by a gradual
enhancement in quality and security of the communication,
together with a substantial decrease in the related costs. The
resulting wireless networks are normally classified in two cat-
egories: structured, that is, based on fixed access points; and
ad hoc. A further classification divides the latter category into
mobile ad hoc networks (MANETs) [4] and sensor networks
[5].

All categories have been extensively addressed by the re-
search community but only a relatively small subset of the
vast amount of the available literature addresses aspects re-
lated to real-time communication. Two fundamental aspects
that constrain the real-time behavior are the medium ac-
cess control (MAC) protocol and the mechanisms to han-
dle dynamic communication requirements. This paper deals
with these two aspects in the scope of MANETs, particularly
for small teams of autonomous mobile robots, that is, with
around 10 to 20 units, which move in the vicinity of each
other and broadcast periodic information.

One of the main challenges in MANETs is dealing with
mobility. In fact, as nodes move, the links between nodes
may break and new links may be established, leading to a dy-
namic connectivity. To deal with mobility, MANETs typically
use specific techniques. For example, in [8], the link duration
for different mobility scenarios is analyzed in order to deduce
adaptive metrics to identify more stable links. Another possi-
ble approach is to manage the network topology by control-
ling the positioning of certain or all nodes. This is proposed
in [9], where a set of specific nodes (PILOT nodes) is oriented
toward specific places to support the connectivity of the re-
maining nodes (general sensor nodes) in order to sustain
real-time communication. Combining real-time communi-
cation and mobility is analyzed in [7], where mobility aware-
ness and prediction are proposed to perform proactive rout-
ing and resource reservation to allow meeting real-time con-
straints. However, they do not propose a specific algorithm
or method to achieve this. Soft real-time communication
among a dynamic set of nodes, on top of IEEE 802.11 net-
works, is achieved in [10] by means of a dynamic bandwidth
manager that adapts on line the transmission rates of current
streams to accommodate new ones. However, 1-hop commu-
nication is considered, that is, a fully linked network, and
the bandwidth manager is centralized in one node, collect-
ing global information from the streams being transmitted.
Conversely, [11] presents a scheme based on a modification
of the IEEE 802.11 MAC, namely, distributed weighted fair

714 EURASIP Journal on Wireless Communications and Networking

scheduling in which several streams are scheduled according
to their weights by adequately adapting the backoff interval
at the MAC level. The possibility for dynamic weights is also
analyzed, allowing the use of such protocol in dynamic envi-
ronments. Nevertheless, in these two solutions, the real-time
properties of the protocols are relatively poor, with collisions
still occurring, thus their soft real-time nature. Johansson et
al. [12] address Bluetooth and, particularly, the impact of us-
ing several traffic scheduling policies by the piconet master
to deliver real-time communication services. This protocol
uses global information at the piconet level, which is kept
centrally by the master to poll the remaining nodes for their
transmissions.

This paper proposes the use of implicit EDF [13] to pro-
vide real-time guarantees to the network traffic while using
nearly all the communication medium bandwidth. The price
to pay is an extra overhead required for system synchroniza-
tion. Implicit EDF is a time-triggered medium access control
discipline in which all nodes implement in parallel an EDF
queue of all communication requests. Collisions are avoided
by replicating and executing the EDF scheduler in parallel
in all nodes, in a tightly synchronized way. This means that
all local EDF schedulers generate precisely the same sched-
ule which corresponds to implementing a single global EDF
queue of ready messages. In this model, every node knows
when to transmit and receive, even in the presence of hid-
den nodes. The protocol uses a slotted framework in which
messages are allocated an integer number of fixed duration
slots.

Implicit EDF is further combined with a consensus pro-
cedure to support dynamic communication requirements
and, generally, dynamic resource reservation. This is neces-
sary to enforce simultaneous updating of all local EDF sched-
ules. Moreover, a connectivity tracking mechanism is used
that supports the detection of absent or crashed nodes.

The problem of reaching a consensus has been widely
considered in the literature on distributed systems since it
was firstly introduced in [14]. Dolev et al. [15] proved that
in a system with clock synchronization and time-bounded
communications, such as ours, it is possible to reach a con-
sensus. An equivalent problem is the one of fault-tolerant
broadcasts [16]. Many of the previously proposed algorithms
[17, 18] are in principle applicable to a wireless distributed
system, which can be seen as one using an unreliable commu-
nication medium. Consensus is thus achieved by exchang-
ing specific messages, the number of which depends on the
type and number of faults that are to be tolerated. In a wire-
less medium the number of faults can be substantial, for ex-
ample, caused by transmission errors, interferences, and dy-
namic network topology. This makes achieving consensus in
a wireless network typically bandwidth expensive.

Therefore, this paper proposes a consensus procedure
that keeps the respective overhead under deterministic
bounds and isolates it from the remaining traffic to prevent
mutual temporal interference. This is achieved piggyback-
ing the consensus-related information on top of a periodic
system message used for synchronization purposes whose
bandwidth is guaranteed.

The consensus procedure is optimistic in the sense that,
upon a change request, a future time instant is defined at
which the procedure is concluded. At that instant, nodes
check an aggregated positive acknowledgement, which was
disseminated through the network after the request, and de-
termine whether there was an agreement among all nodes.
The change request is executed only in case of consensus. In
this paper, we will use the expressions consensus and agree-
ment interchangeably.

A preliminary combination of implicit EDF and the pro-
posed consensus procedure was first presented in [19] but
with the restrictive assumption of absence of hidden nodes,
a restriction that is now lifted.

3. SYSTEMMODEL

System architecture

The global system architecture considered in this paper
consists of a set Π of nπ mobile units or nodes, Π =
{p1, . . . , pnπ}, which can communicate over a radio-based
wireless medium. Every unit is unambiguously identified by
a statically assigned identifier Id(pi) = Idi. All the nodes
use a single shared radio channel to exchange messages. The
nodes are not location-aware and the topology is not man-
aged meaning that there is no topology-oriented control of
the nodes movement.

We say that node pi is linked to node pj if pi is able to
listen to a transmission from pj . In such a case, we say there
is a link Li j from node pi to node pj , represented by the edge
pi → pj in the connectivity graph. A set of links connecting
two nodes pi and pj establishes a path between them. A path
from pi to pj will be denoted as pi ≡ pm1 → ·· · → pms−1 →
pms ≡ pj . Then, a team (or network) π(t) ⊆ Π is defined as a
dynamic subset of n(t) nodes from Π, π(t) = {p1, . . . , pn(t)}.
If not explicitly declared, in the following sections we will
refer unambiguously to n(t) as n and to π(t) as π. A team is
fully connected if for any pair of nodes pi, pj ∈ π(t) there
exists at least a path between them. More restrictively, a team
is fully linked if for any pair of nodes pi, pj ∈ π(t) there exists
at least a link between them.

In order to maintain topological information of the net-
work at each instant, each node pk uses a connectivity matrix
Mk, with n×n elements, which can be considered as the adja-
cency matrix for an oriented graph. The generic elementMk

ij

placed in the ith row and jth column is a flag indicating what
node pk knows about the link Li j . We set Mk

ij = 1 (i �= j) if

there exists such a link andMk
ij = 0 (i �= j) otherwise; we set

Mk
ii = 0 for each i by default. TheMk matrix is dynamic since

the units are moving, thus it changes over time as new links
are established or broken. Therefore, we will useMk(t) to re-
fer to the connectivity matrix owned by node pk at instant t.

Communicationmodel

Communication among nodes is organized in consecutive
slots, referred to as system ticks, which have a constant du-
ration Ttick. The model is periodic, which means that all
message streams served by the communication system are

Dynamic Bandwidth Reservation for Mobile Robots 715

0 2 4 6 8 10 12 14 16 18 20 22 24

Schedule 1 1 2 3 1 2 2 1 3 3 1 2 1 1 3 2 1 2

p3

0 8 16 24

p2

0 6 12 18 24

p1

0 4 8 12 16 20 24

msync

0 5 10 15 20

Sent by p1 Sent by p2 Sent by p3 Sent by p1 Sent by p2

Tsync

Bandwidth
requirements

i T C

Sync 5 1

1 4 1

2 6 1

3 8 1

Figure 1: Example showing themsync message broadcast.

periodic, that is, made of a potentially infinite sequence of
message instances submitted periodically for transmission.
For the sake of simplicity, the expression message will also
be used to refer to amessage stream, unless otherwise stated.

Message addressing is content-based, making use of
an identifier. Furthermore, the communication follows a
producer-consumer model, according to which producers
broadcast their messages autonomously, with a given fre-
quency, while consumers retrieve from the network the mes-
sages that are relevant to them.

The generic message ml generated by node pi is charac-
terized by its identifier Il, a transmission period Tl, a rela-
tive deadline Dl, an offset Ol, and a transmission duration
Cl, all (except the identifier) expressed in ticks. The commu-
nication requirements table (CRT) holds the properties of all
the messages to be scheduled by the communication system,
so CRT = {ml(Il,Cl,Tl,Dl,Ol), l = 1, . . . ,N}, where N is the
number of message streams produced by all nodes. The total
bandwidth requirement is given by UCRT =

∑N
l=1 Cl/Tl.

We say that the traffic model is dynamic since exist-
ing network nodes may request changes in their message
streams, or nodes not in the network may request to join,
or even nodes in the team may request to leave or just crash.
In all these circumstances, the CRT must be updated. Since
the CRT is replicated in all the nodes together with the EDF
scheduler, a consensus process is required to reach an agree-
ment among all nodes in the team concerning the CRT up-
date, including hidden nodes. Whenever it is necessary to re-
fer to each CRT replica separately, we will use CRTk(t) mean-
ing the replica within node pk at instant t.

To support topology self-checking, synchronization,
and admission control, each node pk periodically broad-
casts a message with its own CRTk(t), Mk(t), local clock
value clkk(t), and other information related to the con-
sensus procedure triggered upon CRT change requests.
This is called the system synchronization message msync

and it is broadcast by all nodes in a round-robin fashion

(pk, . . . , p1, pn, pn−1, . . . , pk+1). We will call the transmission
of a synchronization message a step. The ensemble of all
these messages constitutes a periodic message stream with
period Tsync, called the synchronization step period, and du-
ration Csync. However, each instance of this message stream
is transmitted by a different node according to the round-
robin sequence based on the node identifier. Figure 1 shows
an example of a schedule of the communication activity, with
3 nodes sending one message each, plus the synchronization
message. In that case, each message uses a single slot only,
that is, C1,...,3 = Csync = 1, and the step period is 5, that is,
Tsync = 5.

From a traffic scheduling point of view, msync is like an-
other periodic message, scheduled together with the remain-
ing messages by the implicit EDF scheduler, with period
Tsync, deadline Dsync = Tsync, offset Osync = 0, and dura-
tion Csync. Each node knows when to transmit its own msync

by checking the round-robin list and sends the msync mes-
sage once every synchronization round, with period Tround =
nTsync.

The total bandwidth consumed by our communication
system is given by

Utot =
N∑
i=1

Ci

Ti
+
Csync

Tsync
. (1)

Notice thatUtot includes all overheads, such as all the control
information sent each slot, as well as any unused space within
the slots.

Finally, the clock sent within the synchronization mes-
sage (clki(t)) includes both a representation of continuous
time (i.e., withmicroseconds resolution) and an absolute tick
counter (slot counter). The former is used for clock synchro-
nization purposes while the latter is used for scheduling and
consensus purposes. For clarity of presentation, we will use
clki(t) to refer to the tick counter only, unless explicitly stated
otherwise.

716 EURASIP Journal on Wireless Communications and Networking

Real-time guarantees

As referred before, messages are scheduled using the implicit
EDF approach [13]. Each message is transmitted as a se-
quence of fixed size packets, each of which is transmitted in
a single slot. Implicit EDF considers that message preemp-
tion is possible at the slot boundaries, that is, between pack-
ets. Since all messages also become ready for transmission
synchronously with the slot boundary, then, this scheduling
model is equivalent to preemptive EDF [20]. Therefore, the
following condition is sufficient and necessary to guarantee
that the traffic is schedulable, that is, that all messages will be
transmitted once within their periods:

Utot ≤ 1. (2)

This condition assumes deadlines equal to periods and has
the advantage of being extremely simple to evaluate. Other
conditions exist, however, for the general case of arbitrary
deadlines [21], that can be directly applied.

The above condition is evaluated on line, as part of an
admission control, prior to accepting any change in the cur-
rent communication requirements, for example, updating a
period or adding a new stream. Changes are accepted if the
condition is met, thus assuring a continued real-time behav-
ior.

During topology changes the timeliness of transmissions
is assured by means of the synchronization mechanisms of
the EDF schedulers. However, the set of nodes that receive a
given message might change. If a node needs a given stream
that is no longer receiving, it must issue a request for the ad-
dition of one or more streams to relay the information of the
former one. If n streams are added with period T , the end-
to-end delay is upper bounded by (n + 1) ∗ T − 1. Tighter
estimations can be achieved with a judicious use of offsets.

4. CONNECTIVITY TRACKING

This section presents the network connection trackingmech-
anism. Generally, due to mobility, crashes, or other phenom-
ena, the connectivity matrices of different nodes will differ as
soon as a change in the network topology occurs, since they
do not all perceive that change directly. The proposed algo-
rithm is based on the exchange of the connectivity matrix
held by each node, supporting a convergence of all the ma-
trices to the unique and correct view of the whole network
links. The algorithm makes the simple assumption that all
nodes are able to detect omissions of expected transmissions
according to the current schedule. This assumption is easy
to achieve in the proposed communication model, but does
not limit the usage of our approach to such a communication
model.

To spread the knowledge on the connections through the
network and to achieve the covergence of the matrices owned
by all the nodes to the right view of the network connectiv-
ity, each node pw must broadcast its own connectivity ma-
trix Mw(t). When node pk receives a broadcast or does not
receive an expected transmission, it locally updates its own

update matrix (k, w,Mw , δk)

(1) if (pk receives the expectedMw) {
(2) d = φ(w,Mw)

(3) for each i �= k {
(4) if (d[i] + 1 ≤ δk[i] · dist) {
(5) set columnMk

i =Mw
i

(6) set δk[i] = (w, d[i]+1)

(7) }
(8) else {
(9) if (δk[i] · node = w) {
(10) set δk[i] = (NULL,∞)

(11) }
(12) }
(13) }
(14) setMk

wk = 1

(15) }
(16) else {
(17) if (Mk

wk = 1) {
(18) set δk[w] = (NULL,∞)

(19) for each i such that δk[i] · node = w {
(20) set δk[i] = (NULL,∞)

(21) }
(22) }
(23) setMk

wk = 0

(24) }
(25) for each i such that δk[i] · dist = ∞
(26) set columnMk

i = 0

Algorithm 1: The updating algorithm for the connectivity matrix.

Mk(t) matrix and a local state variable δk(t) according to
Algorithm 1.

4.1. Data structures

Two data structures are used by each node pk to track the
exact topology of the team:

(i) the connectivity matrixMk(t) as described in the pre-
vious section;

(ii) the minimum distance vector δk(t).

The δk(t) is a vector of n elements where the ith vector
element, that is, δk[i], contains the identifier of node pw from
which node pk got the information about the links of node
pi; it also contains the distance (in terms of hops) of node
pw from node pk. We will indicate the content of the δk[i]
as δ[i]k · node for the node identifier and δk[i] · dist for the
value of the distance.We will also write δk[i] = (n,d) if δk[i]·
node = n and δ[i]k · dist = d.

While the matrix Mk must be broadcast, the δk vector is
stored and used locally to the nodes only. This is very conve-
nient as Mk is a binary matrix and can be encoded in just a
small number of bytes.

Dynamic Bandwidth Reservation for Mobile Robots 717

4.2. Updating algorithm

The following terminology is used to describe the algorithm:

(i) pk is the node that updates its matrixMk;
(ii) pw is the node that broadcast its matrixMw;
(iii) δk is the minimum distance vector owned by node pk;
(iv) the function φ(w,Mw) returns the minimum distances

of all the nodes reachable from node w, as a result of
the inspection of matrixMw.

Note that a matrix broadcasting may not be heard by
node pk depending on several factors: high distance, presence
of obstacle between the nodes, limited transmission power,
interferences, and so forth.

The algorithm for updating the connectivity matrix is il-
lustrated in Algorithm 1.

The basic idea behind the algorithm is that when node pk
receives a matrix Mw, it extracts the information about the
distances of the broadcasting node pw to all the other nodes.
Then, pk updates the ith column of its own matrix Mk (that
refers to the ingoing links of node pi) only if pw is closer to
pi than the previous node from which the information was
taken. The distance of the previous node is retrieved by in-
specting the δk[i] · dist value. When pk does not receive an
expected broadcast from pw, it resets all the columns in Mk

that were taken from a previous reception ofMw (if any) and
resets the entries stored in δk that refer to pw as well.

4.3. Description of the algorithm

Firstly, we assume that δk[k] = (k, 0), meaning that node pk
is 0 hops distant from itself. We also make the nonrestrictive
assumption thatMk

ii = 0 for all i.
Wemust distinguish between two situations: line (1) tests

if an expected communication was received. If matrix Mw

was received, then its content can be used to updateMk, else
the local variables have to be updated in a different manner.
From line (1) to line (16) we consider the case of matrix re-
ception.

Line (2) calls the function φ(w,Mw) in order to analyze
the received matrix and to calculate the minimum distances
from pw to all the nodes connected to it. It returns the vector
d containing the minimum distances of node pw from all the
other nodes on the basis of the paths detected by inspecting
Mw. By writing d[i] = x we mean that node pi is x hops far
from pw. In Section 4.4 we report a more detailed description
of this function.

Line (3) starts the cycle for updating every column of pk
excluding the kth one, in which each flag is updated only on
the basis of the matrix reception. Line (4) tests if, for each
node pi, node pw is closer to pi than the node from which
the current data in the ith column was copied. If it is closer,
the ith column is copied from Mw to Mk (line (5)) and the
identifier of pw, together with its distance from pi, is stored
in δk[i] (line (6)). In line (6) we add 1 to the value of d[i] to
take into account the distance between pk and pw (1 hop).

If the distance between pw and pi is greater than the one
stored in the δk[i] · dist and the sending node is equal to

δk[i] · node (line (9)), then we reset the δk[i] entries (line
(10)). This is done in order to reset the knowledge of pk
in this particular case and to accept an update from a node
closer to pk; this is fundamental for the convergence of the
algorithm when the node mobility causes the formation of
separated subnetworks.

In line (14) the flagMk
wk is set to keep track of the correct

reception by pk of the matrix sent by pw.
From line (16) the algorithm deals with a missing re-

ception of an expected matrix. The instruction at line (17)
checks if the node that missed the transmission was regis-
tered as a 1-hop distant node (flag Mk

wk = 1). If so, the al-
gorithm first resets the δk[w] entry (line (18)) together with
all the entries of δk directly related to pw (line (20)). Finally,
it stores the information about the missed reception by un-
marking the cellMk

wk (line (23)).
Since during the execution of the algorithm so far some

entries may have been set to (NULL,∞), we have to clear the
related rows. In line (26) we reset the ith column of Mk if
δk[i] = ∞.

4.4. Evaluation of theminimumdistance

The function d = φ(i,M) is used to inspect the connectiv-
ity matrix M in order to get the minimum distances among
node pi and all the other nodes of the network on the basis of
the paths defined byM. It returns a vector d where d[j] rep-
resents the distance between pi and pj in number of hops.
The distance from pw to itself is 0. If there are any paths con-
necting pi with another node pj , then d[j] = ∞.

For the evaluation of the distances, φ(i,M) uses the
breadth-first search (BFS) [22]. The function φ(i,M) is the
most expensive computation performed by the connectivity
tracking algorithm. While all the loops used to update the
matrix have a complexity that isO(n), if L is the total number
of links among the nodes—bidirectional links are counted
twice—the complexity of φ(i,M) is O(nL).

4.5. Properties and usefulness of thematrix

The main benefit associated to the connectivity matrix is the
simple determination of which nodes receive the transmis-
sions of any other nodes. However, this requires a careful in-
spection of the matrix, mainly due to the possible existence
of asymmetric links. The rows of a generic matrix Mw give
information on the nodes that are received by node pw; on
the other hand, the columns of the matrix give information
on the nodes that listen to a broadcast of node pw. This prop-
erty is evident in the examples reported (Figures 2, 3, and 4).
Among other possible uses, this information can also be use-
ful for routing to determine a good path (e.g., the shortest
one) from source to destination. This can be achieved using
a simple BFS search (Section 4.4).

In Figure 2 there is an example of a network connected
with both unidirectional and bidirectional links. By examin-
ing the network topology, it is easy to check that from all the
nodes there exists a path connecting all the other nodes in
the two ways (ingoing and outgoing). This corresponds to a
connectivity matrix without empty rows or columns.

718 EURASIP Journal on Wireless Communications and Networking

p1

p8
p3

p2

p9

p6

p7

p5

p4

Topology matrix

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

p1 · · · p9

Figure 2: Example of unidirectional links between the nodes.

p1

p8

p3p2

p6
p7 p5

p4

Topology matrices

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

p1

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p2 · · · p8

Figure 3: Example of isolated node: node p1 broadcast does not reach any other nodes.

Another use of the connectivity matrix is to identify iso-
lated nodes, for example, due to insufficient transmission
range, or also network partitions. If node pw cannot be
heard by the other nodes in the network, then its matrixMw

presents an emptywth column. In the sameway, all the nodes
will present an empty wth row. The situation is well depicted
in Figure 3. While most of the nodes in the network are con-
nected with bidirectional links, node p1, due to its position
or transmission range, can only receive messages from the
other nodes: the column 1 of M1 is empty. The matrix of all
the other nodes, Mi with i = 2, . . . ,8, have the row 1 empty,
since they did not receive any transmission from node p1.

Finally, another very interesting property of the proposed
connectivity tracking algorithm is the speed of detecting ab-
sent nodes. The indentifier of the nodes that deliver the in-
formation is stored inside the MDV vector, as well as the dis-
tance from the node that is currently consuming such in-
formation. This implies a very useful property: a node pi
that was directly connected (through a 1-hop link) to a node
pj is able to detect the absence of node pj , due to crash
or insufficient transmission range, as soon as it detects the
omission of the respective broadcast. This happens because
MDVk[i] = 1, meaning that the distance value referring to
pj and stored into MDV is 1, which is the minimum possible
value for any j �= i. As a corollary of the previous property, a
node can check if it is isolated from the remaining nodes in
only one synchronization round (n steps), that is, when it de-
tects the omission of the broadcasts from all the other nodes
in the network.

5. REACHING A CONSENSUS

Whenever a global decision must be taken by the team, for
example, concerning a change in the communication sched-
ule triggered by a joining request from a new robot or a re-
quest for changes in the bandwidth requirements, it is im-
portant to guarantee that such decision is consistent for all
the members and that it is taken at the same time because
the schedule is computed independently and locally to each
node. This is achieved by keeping track of the knowledge
the other team units have about the decision to take. Such
a knowledge is stored in a data structure, called the agree-
ment vector A, which is broadcast by all nodes within the
synchronization message. The agreement vector is an array
of n elements, owned by each member of the team, where
Ak denotes the vector owned by node pk. The ith element Ak

i

of the vector is a binary flag indicating whether node pi has
been notified of the global decision. When marked (Ak

i = 1),
it means that node pk knows that node pi is aware of the
decision. Therefore, A represents an aggregated acknowledg-
ment of the global awareness of the decision to be taken at a
defined time in the future.

5.1. The consensus process

In the field of distributed systems, there is a substantial
amount of work in consensus processes, which must gener-
ally enforce the following three properties [17]: termination,
validity, and agreement. Below, we state these properties in

Dynamic Bandwidth Reservation for Mobile Robots 719

p1

p2 p3

p4

(a)

p8

p7 p5

p6

(b)

Topology matrices

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

p1 · · · p4

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p5 · · · p8

(c)

Figure 4: Example of matrix configuration for partitioned networks.

the scope of our consensus model, which presents some spe-
cific features that are different from traditional ones.

(1) Termination. The consensus process stops anyway at a
given time t, whether or not the agreement has been
reached. This is explicitly enforced by our protocol by
setting a termination time a priori, when a consensus
process is triggered.

(2) Validity. Any consensus process is meaningful in the
sense that it is triggered by the system for the sake of
the system correct operation. This property is enforced
by our fault model because it does not consider mali-
cious faults such as those in which an erroneous pro-
cess could be triggered or a node could purposely jeop-
ardize an on-going process.

(3) Agreement. At the process termination time t, two or
more nodes can have different information concern-
ing the consensus process status and thus decide dif-
ferently. However, such inconsistency does not jeopar-
dize the consistent operation of the system. This is en-
forced by a positive aggregated acknowledgment of the
consensus process in all nodes that allows differentia-
tion of those that reached consensus, which will follow
on, from those that did not, which will stop and resyn-
chronize with the former ones. Such an aggregated ac-
knowledgment is based on the agreement vector A.

5.2. Triggering a new process

When a node pk needs to trigger a consensus process, it must
fulfill the following.

(1) It must assign a unique identifier prock to the process.
Notice that the round-robin circulation of the syn-
chronization message transmission ensures that only
one node can trigger an agreement process at any given
time. Therefore, each process can be uniquely identi-
fied by the clock value at the time it will be triggered,
that is, prock = clkk(t). Recall that clkk(t) is the tick
counter value of the slot in whichmsync is sent.

(2) It must wait for its turn to broadcast the synchroniza-
tion messagemsync.

(3) If there is another process already running in the sys-
tem, the vector Ak owned by pk is not empty. In this

case, pk cannot start a new process, which must be re-
triggered later.

(4) Otherwise, or after the termination of the previous
process, it must mark the cell Ak

k in an empty (new)
vector.

(5) It must associate to the consensus process the identifier
Idi of the node that issued the request (possibly, i = k).
This is necessary to differentiate between several re-
quests that can arrive to the same node pk, before it
can trigger the respective processes (e.g., p6 in Figure 5
can receive requests from pnew2 and pnew3).

(6) It must set the agreement time ta equal to the trig-
gering time clkk(t) plus an upper bound on the du-
ration of the consensus process, as derived further on
(S(n)Tsync). The agreement time ta is the time at which
all nodes will simultaneously update the communica-
tion system data, including the CRT, matrixM, vector
A, and the round-robin circulation list.

(7) It must send the synchronous message msync with the
updated agreement information, that is, prock, Idi,
A, ta, together with the communication requirements
update, that is, the properties of the message to be
adapted, added, or removed.

To enforce data consistency during a consensus process,
it is crucial that n does not change in the middle of the pro-
cess (otherwise, it could, e.g., invalidate the update instant).
This is achieved by preventing a node from triggering a new
consensus process when there is an on-going one, as stated
in the rules above. However, since the processes take time to
propagate, it is possible that one node triggers a process with-
out knowing that another process is already in progress. For
example, in Figure 5, node p6 could trigger one consensus
process to admit pnew2, while p1 could trigger another one in
the following cycle to admit pnew1. As both processes propa-
gate, there must be at least one node in their paths that re-
ceives both consensus processes. When this happens, one of
the processes is allowed to progress until completion while
the other is dropped and must be reissued later.

5.3. Updating the agreement vector

When node pk receives an agreement vector from another
node, pw, several situations can occur.

720 EURASIP Journal on Wireless Communications and Networking

pnew1

pnew2

pnew3

p1

p3

p2

p4

p5

p6

Figure 5: Example of simultaneous starts of multiple consensus processes.

Node p3 knows that nodes

p1 and p3 were noticed

about the joining process

Only the node p1 listens

to the joining request
made by the new node

Transmitting
node

Join request
by new node

Time

Topology
matrix

New
p3

p1 p2 p3 p4

p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3
p1
p2
p3
p4

1 2 3 4
1
2
3
4

4 2 3 1

Figure 6: Example of the agreement vector update.

(1) If node pk is not currently engaged in any consensus
process, that is, Ak is empty, it performs the following
operations:
(a) Ak

k = 1,
(b) Ak = Ak | Aw.

(2) Otherwise, node pk is currently engaged in one on-
going agreement process, that is, Ak is not empty, then
it must check whether the received vector corresponds
to the same process or a different one.
(a) If prock = procw, then it is the same process and

thus pk updates its vector with the received one:
Ak = Ak|Aw.

(b) Else if prock < procw, the process corresponding to
Ak is older than the one inAw, thusAw is discarded
while Ak is kept unchanged.

(c) Else if prock > procw, the process corresponding
to Ak is newer than the one in Aw, thus Ak is re-
placed by Aw while its previous contents are dis-
carded. Moreover, the self-flag is marked, that is,
Ak
k = 1.

The | operator in rules (1b) and (2a) means a bitwise
or and captures the knowledge that node pw has about the
nodes that were already notified of the consensus process,
and passes that knowledge to pk.

Rules (1a) and (2b) refer to situations in which pk is no-
tified of the consensus process, marking its own flag in the
vector.

In rules (2b) and (2c) an on-going process is discarded.
The requester of this process will be indirectly informed of
this situation since it will eventually receive anmsync message
containing a different consensus process. The requester must
then reissue the request at a time after the agreement time
of the on-going consensus process. An example of vector up-
dates during an agreement process is depicted in Figure 6.

5.4. Termination of a consensus process
As mentioned in Section 5.2, the termination instant of any
consensus process ta is set at the time the process is triggered
and it is disseminated through all the network. In the ab-
sence of errors, broken links and crashes or absent nodes, it
is possible to prove (presented in Section 6) that at time ta,
whichever the current network topology is, the process will
be complete.

Definition 1. Given a node pi ∈ π(t) and its corresponding
agreement vectorAi, the consensus process is said to be com-
plete when for all i, j = 1, . . . ,n, Ai

j = 1.

The definition above means that all nodes know that a
consensus has successfully been reached by all. Therefore, the
agreement property is respected and the request relative to
the consensus process is executed. However, in reality, both
errors, broken links and even crashes, can occur. Therefore,
it is possible that at instant ta the consensus process is not
complete and two situations can happen.

Firstly, consider the case in which the consensus process
reached all nodes but some of them have not been notified
of that. This means that some nodes have the A vector fully
marked while others still have a few unmarked flags. In this
case we say the consensus process is partially complete.

Definition 2. Given a node pi ∈ π(t) and its corresponding
agreement vector Ai, the consensus process is said to be par-
tially complete if there exists i such that for all j = 1, . . . ,n,
Ai

j = 1.

Notice that this is still a coherent situation, despite some
nodes not knowing it. Therefore, those that reached the con-
sensus, that is, have a fully marked A vector, execute the re-
quest relative to the consensus process. On the other hand,

Dynamic Bandwidth Reservation for Mobile Robots 721

1 2 3 4 5

p1

1 2 3 4 5

p2
· · ·

1 2 3 4 5

p5

(a)

1 2 3 4 5

p1

1 2 3 4 5

p2
· · ·

1 2 3 4 5

p5

(b)

Figure 7: Example of errors in the vector broadcasting.

those that did not reach consensus refrain from transmitting
until they receive an msync message. At that time they update
their own CRT with the one received inmsync, which is prop-
erly updated with the previous consensus process, and restart
transmitting. This is illustrated in Figure 7a where node p2
reach consensus and starts the new schedule, while nodes p1
and p5 stop transmitting to avoid collisions and restart later,
after receiving the right CRT from node p2.

Figure 7b illustrates an impossible situation because if
node p5 holds an empty A vector, then the 5th column of
A1 and A2 must be unmarked and thus no nodes reach the
consensus. This leads to another situation in which the con-
sensus process is incomplete.

Definition 3. Given a node pi ∈ π(t) and its corresponding
agreement vector Ai, the consensus process is said to be in-
complete if for all i, there exists j = 1, . . . ,n, Ai

j = 0.

This situation may occur when a node crashes or departs
from the team without being notified of the consensus pro-
cess, or even in the presence of too many errors. This causes
all the nodes in the team to stop transmitting leading to a
major communication disruption. To recover from this situ-
ation there is a timeout that limits the maximum time that
a node waits for an msync message, after which the node ini-
tiates a startup procedure (see Section 8 on implementation
issues) using the previous state of the CRT, that is, without
executing the request.

After restart, however, it will not be possible to reach any
other agreement until the crashed or absent node is removed
from the team. This can be carried out by using the con-
nectivity matrix M referred in Section 3. In fact, a crashed
or absent node is reflected in the connectivity matrix by an
empty column in the respective index. Any node detecting
such empty column within M, for a given predefined time,
triggers the removal process.

Notice that a consensus process to remove such node(s)
is still possible because it will not require their agreement and
the respective consensus process does not take into account
the respective flags in vector A.

5.5. Adding new nodes

The purpose of the consensus process is to support a global
agreement on actions that have implications on global re-

sources such as bandwidth. Namely, it was designed to sup-
port team formation, allowing new nodes to join, removal
of nodes from the team, and changes in the global com-
munication requirements. The latter two actions are trig-
gered by nodes within the team. Therefore, they are al-
ready included in the msync round-robin circulation and
they can submit their request when appropriate. On the
other hand, the former action is triggered by the new node,
that is, a node outside the team, which is not included
in the current communication schedule. Thus, a special
mechanism is required in this case, which is explained be-
low.

An external node that wants to join the team must first
listen to the system, scanning for synchronization messages.
Upon reception of such a message, sent by node pk, the first
task to be accomplished is to synchronize its clock using clkk
and the second is to examine CRTk. By inspecting this ta-
ble, the joining node executes an admission control to ver-
ify whether its communication requirements can be met by
the system, given the actual communication load. Upon a
positive admission control, the joining node builds the same
schedule, as all the team nodes, and indicates its presence by
issuing a communication request in a free scheduling slot,
submitting its bandwidth requirements to the teammembers
that are within its range of transmission. Any team member
that receives the request, when it comes to its time to trans-
mit the msync message, initiates an agreement process as de-
scribed in Section 5.2.

Following the request, the joining node remains listen-
ing, waiting for the synchronization message that carries its
request, which is used as an acknowledgment that the respec-
tive consensus process has started. If the followingmsync does
not refer to the issued request, the joining node waits until ta
indicated in that msync. Then, it further waits for a random
number of synchronization cycles to reduce collisions with
other possible joining nodes, and reissues the request. Possi-
ble duplicates of the request received by neighbor team nodes
may generate parallel consensus processes, but only the old-
est is kept, as discussed in Section 5.3.

6. VALIDATION OF THEMODEL

In this section we present several results concerning the time
taken by the consensus process in the absence of errors,
message losses and crashes or absent nodes. Moreover, we
will consider that the topology remains fixed for the dura-
tion of the consensus process. Then, at the end of this section
we present simulation results that show the performance of
the protocol when those assumptions do not hold. First, we
introduce the following definition.

Definition 4. The consensus process is said to have converged
if it is completed in a finite number of steps.

Lemma 5. Given two nodes pk, pw ∈ π, if there exists at least
a path from pk to pw, then the information contained in Ak

sent by node pk will be received by pw after a finite number of
steps.

722 EURASIP Journal on Wireless Communications and Networking

Proof. When a node receives a nonempty agreement vector
from another node, it updates its own agreement vector by
marking the flags that are marked in the received vector (up-
dating rule (1b)). In this way, the vector forwarded by that
node will contain at least the marked flags that were already
marked in the received vector. Since every node transmits
once in each synchronization round, then there will be a
node that forwards the contents of Ak in each round. Since
there exists a path from pk to pw, such data will be received
by pw and, since the number of nodes in π is finite, then the
information is forwarded from pk to pw in a finite number of
steps.

Theorem 6. If for each pk ∈ π there exists at least one path
that starts from pk and crosses all the nodes in π, then the con-
sensus process converges.

Proof. From the existence of a path from pk to all the other
nodes, we know that any marked flag in the agreement vector
Ak, broadcast by pk, will be received by every generic node
pi ∈ π. Moreover, from Lemma 5, we know that it will be re-
ceived by pi in a finite number of steps.When pi receives such
flags of Ak, it marks them within its own vector Ai (updat-
ing rule (1b)) and marks its self-flag Ai

i (updating rule (1a)).
Similarly, all marked flags of Ai will be received by all the
other nodes and also in a finite number of steps. Since this
holds for all k or i, the process can be completed (in the sense
of Definition 1) in a finite number of steps, which proves the
theorem.

6.1. Upper bound on the number of steps
To respect the termination requirement of our consensus
model, an estimation of the number of steps needed to com-
plete a consensus process must be supplied. Theorem 12
gives an upper bound of such number of steps for a given
topology. It can be used only when the network topology is
known. Later in this section we introduce an upper bound
that holds for the most unfavorable topology, referred to as
worst-case topology, and thus it holds equally for any possi-
ble linked topology. We firstly introduce the following defi-
nition.

Definition 7. Given two nodes pk, pw ∈ π, the step distance
∆s(pk, pw) between pk and pw is defined as

∆s
(
pk, pw

) =
{
w − k if k ≤ w,
n +w − k if k > w.

(3)

The step distance introduced in Definition 7 gives the
number of steps (i.e., synchronization periods, Tsync) re-
quired to have pw transmitting the msync message after the
time at which pk transmitted it.

Lemma 8. For all i, j(1 ≤ i, j ≤ n ∧ i �= j), ∆s(pi, pj) +
∆s(pj , pi) = n.

Proof. The proof follows directly from Definition 7.

Lemma 9. For all k,w = 1, . . . ,n, ∆s(pk, pw) ≤ n− 1.

Proof. If k = w, then ∆s(pk, pw) = 0 ≤ n. If k �= w, then
∆s(pw, pk) ≥ 1 and ∆s(pk, pw) ≤ n− 1, from Lemma 8.

Definition 10. Let pk ≡ pm1 → ·· · → pms−1 → pms ≡ pw be a
path from pk to pw. The following distances are defined:

∆hop
(
pk, pw

) = s− 1,

∆t
(
pk, pw

) = s−1∑
i=1

∆s
(
pmi , pmi+1

)
,

∆r
(
pk, pw

) = s−2∑
i=1

∆s
(
pmi , pmi+1

)
.

(4)

The distance ∆hop(pk, pw) denotes the number of hops
required to transmit a piece of information from pk to pw.
The distance ∆t(pk, pw) specifies the number of steps re-
quired to have pw transmitting after it received an informa-
tion that was initially sent by pk. The distance ∆r(pk, pw)
specifies the number of steps required for pw to receive an
information that was initially sent by pk. Note that such in-
formation is sent to pw ≡ pps from node pps−1 .

Definition 11. Let π be a network with a connectivity matrix
M. We say that µhop(π,M) is the maximal distance (or diam-
eter) in the network between two nodes if and only if for all
i, j = 1, . . . ,n, ∆hop(pi, pj) ≤ µhop(π,M).

Theorem 12. Let π be a network with a fixed connectivity ma-
trix M. If the communication between the nodes is bidirec-
tional, then the number of steps required to complete a con-
sensus process is σ(π,M) ≤ 2(n− 1)µhop(π,M).

Proof. Let pk be the node that triggers the consensus pro-
cess and let pw be the last node that receives that informa-
tion from pk. Under this assumption, Aw is the last vector
to be updated to a non-null value. It takes no more than
(n − 1)µhop for pw to transmit its Aw vector after receiving
a vector with the kth flag marked. This is true because the
worst case is when pk and pw are at the extremal sides of the
longest path in the network, for which ∆hop(pk, pw) = µhop
from Definition 11 holds. Moreover, the maximum amount
of steps needed to have a generic node transmitting after the
transmission of a node directly linked to it is n − 1 from
Lemma 9. Note that if pk is not placed at the extremal side
of the longest path, because it is in the middle of such a
path or even at the extremal side of a shorter path, then
∆hop(pk, pw) ≤ µhop. When pw receives a vector with the kth
flag marked, it updates its vector and later transmits it, in the
right synchronization cycle. After that cycle, no more than
(n − 1)µhop steps are required to propagate its information
to all the other nodes. In particular, let pz be the last node
that completes its own vector, then ∆hop(pw, pz) ≤ µhop for
the same reasons as above. Summing the contributions of the
two-way broadcasts, that is, (n− 1)µhop + (n− 1)µhop, yields
the following bound σ(π,M) ≤ 2(n− 1)µhop(π,M).

Since pw is the last node receiving the flags information
from pk, when pw starts to broadcast its updated vector all
the other nodes have already received those flags from pk and

Dynamic Bandwidth Reservation for Mobile Robots 723

p1 p2 p3 pn−2 pn−1 pn

Figure 8: Worst-case network topology.

they have already started to broadcast their updated vectors
too. This assures that the flags broadcast by a generic node
pi ∈ π are received by all the other nodes in the network
before the flags from pw are received by pz. This results from
the assumption that pw is placed at the extremal side of the
longest path, yielding, for all pi ∈ π,∆hop(pi, pz)

Definition 13. The worst-case network topology for a given
number of nodes n is the one in which a consensus process
takes the highest number of steps to complete.

Theorem 14. If the communication among the nodes is bidi-
rectional, then the worst-case network topology is the one in
which there is a single path pk ≡ pm1 ↔ ·· · ↔ pms−1 ↔ pms ≡
pw where s = n, for all mi,mj(1 ≤ mi,mj ≤ n ∧ mi �= mj),
ms = ms−1 + 1, and the consensus process is triggered by node
pms ≡ pw. In this case, the number of steps required to complete
a consensus process can be as high as

S(n) = n2 − n− 1. (5)

Proof. The topology depicted in Theorem 14 is a linear
topology including all the nodes of the network (Figure 8).
This is the worst-case topology because it implies the longest
possible path with a given number of nodes (µhop = n − 1).
Any other topology would imply the existence of forking
nodes, that is, nodes connected to more than two nodes. In
such circumstances, the time to propagate any information
from one extreme to the other can only be shorter. This is
because, on the one hand µhop < n − 1, necessarily, and on
the other hand, after the forking node, the information flows
in parallel over more than one link and thus, faster.

If the node that starts the process is node pms ≡ pw,
which lies at one extremal side of the path, to complete the
process the information must first reach pk ≡ pm1 , which
completes vector Ak, and then return back to pw to allow it
to also complete its vector Aw. This is the longest path that
the information must cross. In this situation, from Lemma 8
we know that n steps are needed to cross a one-hop path in
both directions, so n(n− 1) are needed to cross all the paths
forward and backward from pw to pk. The last steps in the
process, from ms−1 to ms, can be avoided, since the process
completes as soon as ms−1 transmits and ms receives, that
is, no need to wait for ms to transmit. The lowest number
of steps that can be saved is 1, and it can only be achieved
if ms = ms−1 + 1. Summing all the contributions, we have
n(n− 1)− 1 = S(n).

Notice that the bound given by Theorem 14 depends only
on n and it establishes the absolute maximum number of
steps that a consensus process may take with any topology

2(n− 1)µpos
n2 − n− 1

1 2 3 4 5 6 7 8 9 10 11 12

µhop

0

20

40

60

80

100

120

140

160

180

N
u
m
be
r
of

st
ep
s

11
19

29

41

55

71

89

109

131

155

n = 4
n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

n = 11

n = 12

n = 13

Figure 9: The bound as a function of the number of nodes and of
the longest path in the network.

and it is thus very practical. However, when µhop � n, that
bound is also very pessimistic. Is such circumstances, the
bound given by Theorem 12 is substantially tighter. Never-
theless, using this bound requires knowing µhop for the cur-
rent topology, which can be determined inspecting the M
matrix.

Therefore, a better solution can be achieved by defining
a new bound that corresponds to the lowest one, for each
n, between the two ones previously referred to. Such an im-
proved bound is illustrated in Figure 9 where, for each n, the
maximum number of steps is presented as a function of µhop.

As an application example, consider the situation de-
picted in Figure 5. In that case, n = 6 and thus, apply-
ing Theorem 14, we know that any consensus process for 6
robots will terminate at most after S(6) = 29 synchroniza-
tion steps. However, for that topology we know that µhop = 2.
Thus, applying Theorem 12, we deduce a tighter bound given
by 2(n− 1)µhop(π,M) = 20 steps.

7. SIMULATION RESULTS

This section shows separate results for the agreement process
and the topology management approach.

7.1. Agreement process

In order to assess the performance of the protocol, includ-
ing when the nodes move and there are omissions of syn-
chronization messages, we carried out several extensive sim-
ulations. The results concerning the number of steps actu-
ally taken to reach consensus are shown in Figure 10, us-
ing the maximum of at least 100.000 random topologies for
each point. The topologies were generated considering two
major cases, 6 nodes and 12 nodes, and always being fully

724 EURASIP Journal on Wireless Communications and Networking

No move, error = 0%
Move = 2/6, error = 0%
Move = 4/6, error = 0%

No move, error = 10%
No move, error = 20%

0 0.2 0.4 0.6 0.8 1

R

0

5

10

15

20

25

29
30

St
ep

(a)

No move, error = 0%
Move = 4/14, error = 0%
Move = 8/14, error = 0%

No move, error = 10%
No move, error = 20%

0 0.2 0.4 0.6 0.8 1

R

0

20

40

60

80

100

120

131
140

St
ep

(b)

Figure 10: Simulation results with different combinations of mobility and errors: (a) n = 6, (b) n = 12.

connected. In order to classify the generated topologies we
used R, the redundancy level of the network. This is defined
as the ratio between the actual number of links of a given
topology over the maximum number of links for the same
set of nodes. Both terms of the ratio only count the links be-
yond the minimum required to keep the network fully con-
nected. R varies between 0 and 1 and gives an indication of
the number of redundant paths that a given topology con-
tains. R is similar to the inverse of µhop, that is, the larger R is,
the shorter the maximal distance in the network is, and we
used it for the sake of convenience in the generation of the
topologies.

The lower curves show the number of steps in a favor-
able scenario, with absence of errors and steady topology
during the consensus process. In both major cases (n = 6
and n = 12), the number of steps actually reaches the up-
per bound for the case of R = 0, as expected, confirming the
bound accuracy. As R increases, the number of required steps
to reach a consensus rapidly decreases.

Then, we assessed the protocol under nodes mobility.
The velocity of changes was roughly characterized bymove =
X/Y . This means that X links were either broken or cre-
ated in the connectivity matrix every Y steps during a con-
sensus process. For n = 6, the results with R = 0 and
0.2 show that there were incompleted or partially completed
processes (marked with a circle in the graph). For n = 12,
such situation happened for R = 0 only. For higher values
of R, all processes reached consensus within the S(n) upper
bound.

Table 1 presents, in the last two columns, the actual
percentage of processes that did not complete within the
bound (partially completed plus incompleted), and those
that terminated incompleted, respectively, only for the cases

in which those values were nonzero. The values show that
such percentage is already low for R = 0, becoming extremely
low for R = 0.2 and zero for higher values. The column on
“max no. of vectors not completed” shows for every process
the maximum number of vectors that did not reach consen-
sus (this equals n when there were incompleted processes).

We also assessed the protocol behavior under omis-
sions of the synchronization messages, according to the fault
model in Section 3. Therefore, for each n under test, we gen-
erated two cases: one case with 10% of random omissions
with respect to the total number of synchronizationmessages
in the process, and another case with 20% omissions. The re-
sults in terms of number of steps also show that for smaller R
there are some incompleted or partially completed processes,
as expected. Table 1 shows the actual numbers of not com-
pleted and incompleted processes.

The experiments show the robustness of the proposed
protocol since, even in presence of relatively high mobility
and errors, the consensus process completes within the S(n)
bound with a very high probability for R > 0. When it does
not, the probability of terminating incompleted, which is the
situation that generates greater disturbance, is very low, since
most of such processes actually complete, but partially, only.
This is expected because of the flooding nature of the proto-
col that makes use of all parallel paths in the topology. Thus,
as long as there are some redundant paths, the resilience of
the protocol increases substantially.

Finally, the results also show that increasing the number
of nodes in the network increases its resilience to errors and
mobility. This can be explained by the fact that for higher
number of nodes, the unfavorable topologies corresponding
to R = 0 become less and less probable. Also, for the same R,
there will be more redundant links if n is larger.

Dynamic Bandwidth Reservation for Mobile Robots 725

Table 1: Simulations results.

n R Changes
Errors Max Max no. of vectors Average partially Average

(%) steps not completed completed (%) incompleted (%)

6 0 2/6 0 29∗ 6 0.0739 0.0006

6 0 4/6 0 29∗ 6 0.1169 0.0028

6 0.2 2/6 0 29∗ 1 0.0001 0

6 0.2 4/6 0 29∗ 1 0.0001 0

6 0 0 10 29∗ 6 21.2620 18.2583

6 0 0 20 29∗ 6 68.8619 35.6228

6 0.2 0 10 29∗ 4 0.0769 0

6 0.2 0 20 29∗ 6 1.5485 0.0003

6 0.4 0 10 29∗ 1 0.0026 0

6 0.4 0 20 29∗ 2 0.0034 0

12 0 4/14 0 131∗ 12 0.0618 0.0020

12 0 8/14 0 131∗ 12 0.0048 0.0040

12 0 0 10 131∗ 8 0.3849 0

12 0 0 20 131∗ 12 1.9560 0.0150

7.2. Connectivity tracking

In what concerns the topology management, we carried out
a set of experiments to characterize the performance of the
connectivity tracking system, trying to assess how fast the
system can converge to the correct topology upon a change,
and for how long, given a mobility model, the node connec-
tivity matrix matches the correct one.

In a first set of experiments we addressed the speed of
convergence to the correct topology, after a change in the net-
work links. A set of nodes (n is equal to 6 and 12 in Figures 11
and 12, resp.) is randomly deployed in the environment. The
position of the nodes is fixed, the network is fully connected
and characterized by a given redundancy level R that varies
from 0 to 1 in steps of 0.2 units.

In order to also test the speed of convergence in an ini-
tial state with an empty connectivity matrix, all nodes in this
experiment start with their matrices cleared. Then, we firstly
measure the number of steps needed to make all nodes ma-
trices converge to the real network topology. These results are
displayed in the graphs of Figures 11a and 12a. After that, a
randomly chosen node is forced a crash, meaning that it stops
transmitting until the end of the simulation. In this case we
measure the number of steps needed to converge to the new
topology. These measurements are displayed in Figures 11b
and 12b. All the graphs are “box-and-whisker” plots for mul-
tiple redundancy level settings with a given number of nodes.
They include the median values, which appear inside a rect-
angle that represents the number of measures between the
first and third quartiles, as well as a pair of bars connecting
the extreme values.

The first observation is that the number of steps needed
to reach the right matrix is always lower than the worst-case
bound obtained for an agreement process. This means that
the topology management approach can be effectively used
to monitor absent or crashed nodes during an agreement
process, eliminating the problem of the communication dis-

ruption described in Section 5.4: if a node can not complete
the agreement vector (i.e., due to crashes), it can consider the
agreement as reached if it detects the absence of the nodes
that did not participate in the process.

As we expected, the maximum and the median number
of steps needed to converge decreases quadratically with the
redundancy level of the network for the first part of the ex-
periment (graphs on the left side). In the same graphs, the
minimum values present an interesting anomaly: for redun-
dancy levels of 40%, 60%, and 80%, they are lower than the
value for the best connectivity scenario (R = 100%). This
can be easily understood realizing that, for R = 100%, a fixed
number of steps is needed tomake all the nodes converge (ex-
actly 2n − 1 steps), and that the cells in the correct connec-
tivity matrix are all marked. For lower but sufficiently high
redundancy levels, the distance between the farthest nodes in
the network is still low and many cells in the correct connec-
tivity matrix are not marked. Since each node starts from an
empty connectivity matrix, it can happen that all the right
cells become marked in a number of steps lower than that
required to mark all the cells.

Notice that, once the connectivity matrix converged, the
number of steps needed to reconstruct the topology after a
node crash is less, in the average, than that needed for build-
ing the connectivity information from scratch. This phe-
nomenon is illustrated in Figures 11b and 12b, which show
the number of steps required for convergence after a node
crash. Notice that the speed of convergence after a crash de-
pends on several factors, such as the position of the crashed
node (which could cause the network to split into two or
more subnetworks) and the interval between the time of
crash and the next slot allocated to the crashed node.

7.3. Mobility test for the connectivity trackingmethod
While in the previous section we addressed the speed of
convergence of our topology management system upon an

726 EURASIP Journal on Wireless Communications and Networking

Max
Quartile 3
Median

Quartile 1
Min

0 20 40 60 80 100

R (%)

6

8

10

12

14

16

18

20

22

24

26

28
N
u
m
be
r
of

st
ep
s

(a)

Max
Quartile 3
Median

Quartile 1
Min

0 20 40 60 80 100

R (%)

6

8

10

12

14

16

18

20

22

24

26

28

N
u
m
be
r
of

st
ep
s

(b)

Figure 11: Box-and-whisker plots for the random crash test with multiple redundancy configuration settings with n = 6.

Max
Quartile 3
Median

Quartile 1
Min

0 20 40 60 80 100

R (%)

10

20

30

40

50

60

70

80

90

100

110

120

N
u
m
be
r
of

st
ep
s

(a)

Max
Quartile 3
Median

Quartile 1
Min

0 20 40 60 80 100

R (%)

10

20

30

40

50

60

70

80

90

100

110

120

N
u
m
be
r
of

st
ep
s

(b)

Figure 12: Box-and-whisker plots for the random crash test with multiple redundancy configuration settings with n = 12.

instantaneous change in the network, which remained sta-
ble after that change, in this section we address the behav-
ior of the system with a dynamic topology as it is the case
with moving nodes. We assumed that the nodes are moving
as specified by the Gauss-Markovmobility model, which was
firstly introduced in [23]. We also tested the protocol with
other mobility models available in the literature, like random
way point proposed in [24] and its variations in [25], but
we show results for the Gauss-Markov model only, because
it generates more adequate velocity patterns, with smooth
variations in the speed and direction of the nodes. We as-

sumed a variable number of nodes moving in a squared
area of 50 × 50m. Two values were considered for the speed
of the nodes, 1m/s and 2m/s, which are reasonable values
for robot’s motion scenarios. For the radius of transmission
ranges, we considered three different values, 10m, 25m, and
45m. The standard deviation for the speed and the angle in
the Gauss-Markov model were 0.1m/s and π/8, respectively.
Finally, the synchronization message is assumed to be broad-
cast every 50milliseconds, which is a good compromise be-
tween bandwidth utilization and management information
refreshing rate. Notice that decreasing such a value (down

Dynamic Bandwidth Reservation for Mobile Robots 727

Max
Quartile 3
Median

Quartile 1
Min

4 5 6 7 8 9 10 11 12

n

1

10

100

1000

10 000
St
ep

20

121

333
24
75

17

76

197
22
66

12

55

135

18
49

10

42

105

12
10

9

35

89

13
55

8

31

77

11
37

8

27

66

81
7

7

25

61

76
9

7

23

55

59
4

(a)

Max
Quartile 3
Median

Quartile 1
Min

4 5 6 7 8 9 10 11 12

n

0

20

40

60

80

100

120

St
ep

2
3

13

3
4

22

4
6

32

5
7

43

5
8

52

6
9

10
8

7
10

93

7
11

98

8
12

96

(b)

Figure 13: “Box-and-whisker” plots for the mobility test with speed of 1m/s, transmission radius of 25m, and different values of n.

to 10milliseconds is practical) involves a faster updating fre-
quency, thus leading to better results in all the tests that were
performed.

To evaluate the performance of the connectivity track-
ing algorithm we let the system run for a time of 5–7 hours,
which is rather long if compared with the timing character-
istics involved. At every updating step we compared the con-
nectivity matrices owned by all the nodes and the instanta-
neous real topology of the network. For every node, we ob-
tained a temporal sequence (with granularity equal to the
synchronization period) of similarity values. By convention,
we consider a value of 0 meaning that a connectivity matrix
represents exactly the real network topology, and 1 elsewhere.
So, notice that even if only one link does not match the real
topology, the matrix is considered to be wrong. Notice also
that such a link may often be irrelevant for the packet rout-
ing or the support to the agreement process, especially with a
high number of nodes in the network. At this point, we mea-
sured the length of the chains made by sequences of iden-
tical values. A sequence of 0 values indicates a time period
of stability for the connectivity matrix, and the length mea-
sures the time that the connectivity matrix remains stable. A
sequence of 1 values indicates a period of instability for the
matrix.

The distribution of the lengths of the sampled sequences
is reported in Figure 13. In particular, the two graphs show
the distributions for the chains of matching sequences
(Figure 13a) and nonmatching sequences (Figure 13b). We
first describe the graph in Figure 13a. The fact that there ex-
ist stability sequences with very different length (the mini-
mum length is 1) is an undesirable property of the distribu-
tion, because short times of stability involve little chance to
have a right view of the network for a sufficiently long time
(which is useful for routing). The values of the first quar-

tile show that only 25% of the sequences are too short to be
useful, while the remaining (75%) could be considered long
enough to be used for the path prediction or to support the
agreement process. We can also notice how all the values, in
particular the median and the quartile values, decrease as the
number of nodes is incremented. The reason is that, as the
number of the nodes increases, both the probabilities for a
link establishment and disruption during the node motion
increase. It is worth observing that the negative effect of a
nonmatching link has more influence when the number of
nodes is low. In this sense, our statistics can be considered
very pessimistic, leaving space to further improvements for
networks with high number of nodes.

Figure 13b reports the statistics about the sequences of
nonmatching matrices. It is relevant that, despite that the
maximum length of a nonmatching sequence is in the order
of n2, the values of the third quartiles indicate that the 75%
of the sequences have a length less than or equal to n.

In order to have an overall view of the topology dur-
ing nodes motion, the results of both graphs can be
merged and compared. Basically, the sequences of match-
ing/nonmatching chains are typically made by very long
matching chains ending in very short nonmatching chains.
Within such a general behavior, short matching chains and
few relatively long nonmatching chains can be found.

The global behavior of the algorithm and the proposed
round-robin approach is summarized in Figure 14, which il-
lustrates the percentage of time during which the connectiv-
ity matrices can be considered reliable for different speeds
and communication ranges. Results with solid lines sum all
the contributions from the matching chains (without con-
sidering the length), whereas those with dotted lines take
into account the sum of the contributions of the chains with
length greater than 2n, for a given n. They are a more reliable

728 EURASIP Journal on Wireless Communications and Networking

v = 1m/s, rad = 10m
v = 1m/s, rad = 25m
v = 1m/s, rad = 45m
v = 2m/s, rad = 25m

v = 1m/s, rad = 10m
v = 1m/s, rad = 25m
v = 1m/s, rad = 45m
v = 2m/s, rad = 25m

4 5 6 7 8 9 10 11 12

n

45

50

55

60

65

70

75

80

85

90

95

100
To

po
lo
gy

m
at
ri
x
st
ab
ili
ty
(%

)

Figure 14: Percentage of time in which the connectivity matrix is
stable during the mobility test as a function of n. Solid lines sum
the contributions from matching chains, whereas dotted lines sum
those chains with length greater than 2n.

estimate of the quality of the topology approximation, and
could be particularly useful for packet routing.

The curves highlight the higher influence of the node
speed with respect to the transmission range. Such a behav-
ior has been observed in several simulation experiments, not
reported in this paper for lack of space.

Different transmission ranges were considered in the ex-
periment: a short range of 10m (20% of the 50× 50m mov-
ing area), a medium range of 25m (50%) and a long range
of 45m (90%). The worst-case situation was observed for a
medium range. This can be explained considering that for
a short transmission range the nodes are isolated most of
the time, whereas for a long range they are strongly con-
nected most of the time. In fact, in these two extreme situ-
ations, the links are kept in the same state (broken or estab-
lished) for long periods, thus the length of the stable chains
is longer.

The strictly decreasing trend of the curves outlines the
dependency of our approach on the number of nodes. This is,
again, related to the time required to complete a full round of
transmissions of the synchronization message, which is pro-
portional to the number of nodes.

8. IMPLEMENTATION ISSUES

To deploy the protocol proposed in this paper there are sev-
eral additional aspects to consider. One regards clock syn-

chronization, which is fundamental to support the proper
functioning of implicit EDF. The method to achieve clock
synchronization, however, is independent of our protocol
and several possibilities exist, for example, the fault-tolerant
average algorithm used in TTP/C, the IEEE 1588 standard
(master-slave), or even GPS whenever the operational envi-
ronment allows its usage.

Another aspect concerns handling inconsistencies in the
EDF schedulers that may arise for some unforeseen reason.
To detect them, the CRTs are transmitted with a timestamp
of the last update. Therefore, whenever a node receives, the
received table is more up to date than its own. In that case,
it replaces its CRT with the one just received and continues
operation.

The startup procedure is another practical aspect of ma-
jor importance. In the current stage, a special node, called
the team leader, starts transmitting its synchronization mes-
sage after detecting silence for longer than a given timeout.
This allows other waiting nodes to join, one by one, building
up the team. However, to prevent the single point of failure
formed by the team leader, a fully distributed startup proce-
dure with automatic election of team leader is currently be-
ing designed.

Finally, it is also necessary to set the protocol operational
parameters. Two fundamental parameters are Ttick (the slot
duration) and Tsync (the synchronization step). The former
has a deep impact on the protocol data efficiency because, if
it is much larger than the average length of the messages to
be transmitted, a substantial part of the bandwidth is wasted.
On the other hand, if it is too short, each message will always
require the use of several slots, being broken into several slot
packets and increasing the protocol overhead.Moreover, Ttick

must include a guarding window between consecutive slots
to account for possible clock drifts among nodes. The dura-
tion of this window should be equal to twice the precision
achieved by the clock synchronization.

Consider a transmission rate of 1Mbps, which is becom-
ing typical with modern RF transceivers such as the model
CC2400 of Chipcon, used in Bluetooth devices. With a clock
precision of 50microseconds, we can define guarding win-
dows of 100microseconds. If we define Ttick=1milliseconds,
we can transmit 900 bits per Ttick. Using 2-byte cyclic re-
dundancy code (CRC), 2-byte message identifer, plus 2-byte
preamble and control results in 48 bits of protocol control
information, leaving 852 bits, or 106 bytes for data payload.
This value seems a good compromise for a variety of applica-
tions and, if it is still too large, then nodes can aggregate data
into one single message to make a more efficient use of the
bandwidth.

In what concerns Tsync, it impacts directly on the reactiv-
ity of the system to global change requests. In fact, Tsync es-
tablishes the synchronization step, and thus the duration of
the consensus processes is directly proportional to this value.
Moreover, Tsync also determines the overhead introduced by
the periodic transmission ofmsync.

If a value of Tsync = 20milliseconds is used, then, for
a team of 10 units a consensus process would take around
2 seconds to complete. The adequacy of this value has to be

Dynamic Bandwidth Reservation for Mobile Robots 729

considered with respect to a specific application. As for the
overhead introduced by the msync message, one needs first
to determine its size. Recall that msync includes the following
data structures: CRT, M, A, and clk. As an indicative exam-
ple, consider that the team currently involves 10 nodes and
the total number of messages in the CRT is 15. For each mes-
sage there is an identifier, length, period, deadline, and off-
set, all expressed in slots, for example, using 1 byte for the
first two and 2 bytes for the remaining ones. This means the
CRT takes 120 bytes. The M matrix is a 10 × 10 bit struc-
ture, requiring 13 bytes. The A vector takes 10 bits, requiring
2 bytes. The clk includes a 4-byte slot counter plus an 8-byte
representation of continuous time. There is still a timestamp
(slot counter) associated with the CRT, taking extra 4 bytes.
Altogether, this results in 151 bytes. Using the message pay-
load of 106 bytes per slot as suggested above, the synchro-
nization data takes 2 slots. With a Tsync = 20milliseconds,
this means 10% of the bandwidth dedicated to the synchro-
nization mechanisms. If this is excessive in the scope of an
application, then it is necessary to search for a better compro-
mise between the overhead and the reactivity of the system,
for example, increasing Tsync.

In order to facilitate the deployment of our protocol, it
is also possible to build it on top of IEEE 802.11 for exam-
ple. This allows taking advantage of the framing of the PDUs
as well as of the respective physical layer. In this case, broad-
cast frames should be used, which are single frames trans-
mitted without acknowledgment or RTS/CTS channel reser-
vation. Indeed, these features are not needed as our proto-
col enforces colision-free transmission by means of sychro-
nization and the bandwidth is reserved by the EDF sched-
uler. When compared to 802.11 DCF communication, our
protocol requires the additional transmission of the msync

message, which adds to its overhead. The use of fixed frame
size also has a potential to increase the overhead of our pro-
tocol, requiring the transmission of several frames to con-
vey an amount of data that would fit within a single stan-
dard 802.11 frame. The guarding windows, which depend on
the achievable precision of the clock synchronization, may
also contribute to insert extra idle time between the trans-
mission of consecutive frames in our protocol. On the other
hand, we are able to provide real-time communication, while
802.11 DCF is not, particularly with high-bandwidth utiliza-
tion levels.

9. CONCLUSIONS

In this paper we proposed a new MAC level protocol to
schedule real-time communications in a network of robotic
mobile units over a wireless medium. It is based on the im-
plicit EDF scheduling algorithm, which is collision-free, thus
allowing high utilization of the medium bandwidth. The
protocol addresses the problem of having a team of fully-
connected, but not fully linked network units and tolerates
the presence of hidden nodes, either caused by excessive link
lengths or by the presence of obstacles. The protocol uses
global resource reservation to support dynamic changes in

the global communication requirements under guaranteed
timeliness. These changes may arise from external nodes that
wish to join the team, from nodes that leave the team, ei-
ther voluntarily or inadvertently (crash or movement), or
from requests to change the current communication require-
ments.

The global resource reservation is based on a specific con-
sensus process that uses periodic dissemination of system
state information. The main contributions of this work are
the adaptation of implicit EDF for a dynamic environment
and the design and analysis of the consensus process, includ-
ing the determination of bounds for the maximum required
number of steps to complete. The paper includes simulation
results that show the effectiveness of the protocol even under
transmission errors and nodes mobility.

Our approach also integrates a connectivity tracking sys-
tem that is proposed to support the resource reservation
phase. It can also be used as basic component for an efficient
packet routing strategy on top of the proposed MAC level
communication protocol.

The protocol is meant for small sets of mobile units, typ-
ically between 10 and 20. However, it can be integrated into
a hierarchical scalable routing framework, at the cell or zone
level.

A positive characteristic of the proposed solution is that
the period used for broadcasting system state information
can be tuned to balance reactivity of the resource reserva-
tion mechanism and its bandwidth requirements. In fact, the
longer the synchronization period, the longer the time re-
quired to agree on a decision, but the smaller the bandwidth
required to transmit the system data.

The framework within which this work developed in-
cludes current and future work to deal with the issues of
clique formation, message routing, topology management,
and scalability. Particularly, there is a substantial attention
dedicated to the use of the connectivity matrix to support
routing of data messages, topology management controlling
the movement of the robots to prevent R = 0 topologies, and
management of channel reutilization to improve bandwidth
efficiency.

REFERENCES

[1] Z. J. Haas, J. Deng, B. Liang, P. Papadimitratos, and S. Sajama,
“Wireless ad hoc networks,” inWiley Encyclopedia of Telecom-
munications, J. G. Proakis, Ed., John Wiley & Sons, New York,
NY, USA, December 2002.

[2] C. E. Perkins, Ad Hoc Networking: an Introduction, Addison-
Wesley, Boston, Mass, USA, 2001.

[3] R. Grabowsky, L. E. Navarro-Serment, C. J. J. Paredis, and
P. K. Khosla, “Heterogeneous teams of modular robots for
mapping and exploration,” Autonomous Robots, vol. 8, no. 3,
pp. 293–308, 2000.

[4] J. Wu and I. Stojmenovic, “Ad hoc networks,” IEEE Computer,
vol. 37, no. 2, pp. 29–31, 2004.

[5] J. A. Stankovic, T. E. Abdelzaher, C. Lu, L. Sha, and J. C. Hou,
“Real-time communication and coordination in embedded
sensor networks,” Proc. IEEE, vol. 91, no. 7, pp. 1002–1022,
2003.

730 EURASIP Journal on Wireless Communications and Networking

[6] J.-D. Decotignie, “Wireless fieldbusses—a survey of issues and
solutions,” in Proc. 15th IFAC World Congress on Automatic
Control, Barcelona, Spain, July 2002.

[7] B. Hughes and V. Cahill, “Achieving real-time guarantees in
mobile ad hoc wireless networks,” in Proc. Work-in-Progress
Session of 24th IEEE Real-Time Systems Symposium (RTSS
’03), pp. 37–40, Cancun, Mexico, December 2003.

[8] M. Gerharz, C. de Waal, M. Frank, and P. Martini, “Link sta-
bility in mobile wireless ad hoc networks,” in Proc. 27th An-
nual IEEE Conference on Local Computer Networks (LCN ’02),
pp. 30–39, Tampa, Fla, USA, November 2002.

[9] T. Srinidhi, G. Sridhar, and V. Sridhar, “Topology manage-
ment in ad hoc mobile wireless networks,” in Proc. Work-in-
Progress Session of 24th IEEE Real-Time Systems Symposium
(RTSS ’03), pp. 29–32, Cancun, Mexico, December 2003.

[10] S. H. Shah, K. Chen, and K. Nahrstedt, “Dynamic bandwidth
management in single-hop ad hoc wireless networks,”Mobile
Networks and Applications, vol. 10, no. 1-2, pp. 199–217, 2005.

[11] N. H. Vaidya, P. Bahl, and S. Gupta, “Distributed fair schedul-
ing in a wireless LAN,” in Proc. 6th Annual ACM International
Conference on Mobile Computing and Networking (MobiCom
’00), pp. 167–178, Boston, Mass, USA, August 2000.

[12] N. Johansson, U. Körner, and P. Johansson, “Performance
evaluation of scheduling algorithms for bluetooth,” in Broad-
band Communications: Convergence of Network Technologies,
H. K. T. Danny and J. K. Paul, Eds., Kluwer Academic, Hong
Kong, China, pp. 139–150, November 1999.

[13] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An im-
plicit prioritized access protocol for wireless sensor networks,”
in Proc. 23rd IEEE Real-Time Systems Symposium (RTSS ’02),
pp. 39–48, Austin,Tex, USA, December 2002.

[14] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement
in the presence of faults,” Journal of the ACM, vol. 27, no. 2,
pp. 228–234, 1980.

[15] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal
synchronism needed for distributed consensus,” Journal of the
ACM, vol. 34, no. 1, pp. 77–97, 1987.

[16] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” Journal of the ACM, vol. 43,
no. 2, pp. 225–267, 1996.

[17] J. Turek and D. Shasha, “The many faces of consensus in dis-
tributed systems,” IEEE Computer, vol. 25, no. 6, pp. 8–17,
1992.

[18] X. Defago, A. Schiper, and P. Urban, “Total order broadcast
and multicast algorithms: taxonomy and survey,” Research
Rep. IS-RR-2003-009, Japan Advanced Institute of Science
and Technology, Ishikawa, Japan, September 2003.

[19] T. Facchinetti, G. Buttazzo, M. Caccamo, and L. Almeida,
“Wireless real-time communication protocol for cooperating
mobile units,” in Proc. 2nd International Workshop on Real-
Time LANs in the Internet Age (RTLIA ’03), Porto, Portugal,
July 2003.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment,” Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[21] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. But-
tazzo, Deadline Scheduling for Real-Time Systems: Edf and
Related Algorithms, Kluwer Academic, Boston, Mass, USA,
1998.

[22] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading,
Mass, USA, 1983.

[23] B. Liang and Z. J. Haas, “Predictive distance-based mobility
management for PCS networks,” in Proc. 18th Annual Joint
Conference of the IEEE Computer and Communications Soci-

eties (INFOCOM ’99), vol. 3, pp. 1377–1384, New York, NY,
USA, March 1999.

[24] C. Bettstetter, “Smooth is better than sharp: a random mo-
bility model for simulation of wireless networks,” in Proc. 4th
ACM International Workshop onModeling, Analysis and Simu-
lation ofWireless andMobile Systems (MSWiM ’01), pp. 19–27,
Rome, Italy, July 2001.

[25] C. Bettstetter and C. Wagner, “The spatial node distribution
of the random waypoint mobility model,” in Proc. 1st German
Workshop on Mobile Ad-Hoc Networks (WMAN ’02), pp. 41–
58, Ulm, Germany, March 2002.

Tullio Facchinetti is a 2001 computer sci-
ence graduate from the Informatic Engi-
neering Department, University of Pavia
(Italy). He is currently waiting to defend his
Ph.D. thesis, which was cotutored by Uni-
versities of Pavia (Italy) and Aveiro (Portu-
gal), where he spent 6 months in 2004 re-
searching on distributed wireless commu-
nication algorithms. During his Ph.D., he
also worked at national and international
projects funded by the Italian Ministry of University and Re-
search and by the European Community. His main research in-
terests are on real-time wireless communication, distributed sys-
tems, sensor networks, mobile units coordination, and neural net-
works.

Giorgio Buttazzo is an Associate Professor
of computer engineering at the University
of Pavia, Italy. He graduated with a major
in in electronic engineering at the Univer-
sity of Pisa in 1985, received a Masters de-
gree in computer science from the Univer-
sity of Pennsylvania in 1987, and a Ph.D.
degree in computer engineering from the
Scuola Superiore S. Anna of Pisa in 1991.
During 1987, he worked on active percep-
tion and real-time control at the GRASP Laboratory, University
of Pennsylvania, Philadelphia. From 1991 to 1998, he held a posi-
tion of Assistant Professor at the Scuola Superiore S. Anna of Pisa,
doing research on robot control systems and real-time scheduling.
Hismain research interests include real-time operating systems, dy-
namic scheduling algorithms, quality of service control, multime-
dia systems, advanced robotics applications, and neural networks.
He is a SeniorMember of the IEEE and the IEEE Computer Society.

Luis Almeida is an Assistant Professor at the
Department of Electronics and Telecom-
munications, University of Aveiro, Portugal,
since 1999. He is also a Senior Researcher
at the IEETA research unit of the same uni-
versity. Formerly, he was a design engineer
in a company producing digital telecom-
munications equipment. He received a de-
gree in electronics and telecommunications
engineering in 1988 and a Ph.D. degree in
electrical engineering in 1999, both from the University of Aveiro.
His research interests lie in the fields of real-time networks for dis-
tributed industrial/embedded systems and navigation control for
mobile robots.

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	CONNECTIVITY TRACKING
	Data structures
	Updating algorithm
	Description of the algorithm
	Evaluation of the minimum distance
	Properties and usefulness of the matrix

	REACHING A CONSENSUS
	The consensus process
	Triggering a new process
	Updating the agreement vector
	Termination of a consensus process
	Adding new nodes

	VALIDATION OF THE MODEL
	Upper bound on the number of steps

	SIMULATION RESULTS
	Agreement process
	Connectivity tracking
	Mobility test for the connectivity tracking method

	IMPLEMENTATION ISSUES
	References

