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Dynamic Resource Trading in Sliced Mobile

Networks
Özgür Umut Akgül, Ilaria Malanchini, and Antonio Capone

Abstract—Expanding the market of mobile network services
and defining solutions that are cost efficient are the key chal-
lenges for next generation mobile networks. Network slicing is
commonly considered to be the main instrument to exploit the
flexibility of the new radio interface and core network functions.
It targets splitting resources among services with different re-
quirements and tailoring system parameters according to their
needs. Regulation authorities also recognize network slicing as a
way of opening the market to new players who can specialize
in providing new mobile services acting as “tenants” of the
slices. Resources can also be distributed between infrastructure
providers and tenants so that they meet the requirements of the
services offered. In this paper, we propose a model for dynamic
trading of mobile network resources in a market that enables
automatic optimization of technical parameters and of economic
prices according to high level policies defined by the tenants.
We introduce a mathematical formulation for the problems
of resource allocation and price definition and show how the
proposed approach can cope with quite diverse service scenarios
presenting a large set of numerical results.

Index Terms—Network slicing, infrastructure sharing, wireless
market, pricing mechanism, dynamic resource sharing

I. INTRODUCTION

THE traditional business model of mobile networks is

centered on operators who acquire licenses for spectrum

use, build their own infrastructure, and control the resource

allocation according to their needs. This model is currently

being challenged by a number of economic, regulatory, and

technical circumstances, which are expected to change the

mobile landscape in the near future.

The first well known factor that is challenging this model is

the exponential growth of mobile traffic (cf. [1]) that is pushing

operators to rapidly expand the capacity of their network with

technology upgrades, coverage densification, and spectrum

refarming. Unfortunately, the average revenues per user are not

growing with the same pace (in some countries they are even

decreasing) and the number of traditional users can no longer

be increased. This is leading to an aggressive cost optimization

and reduction that is not sustainable in the long run. A possible

solution to the problem is the evolution of the technology

towards supporting a larger set of applications beside the

traditional mobile broadband. It is important, that not only

the market expands but we use the network infrastructure

intelligently as well to further stimulate the digital growth.

Research and standardization work items on 5G networks

during the past few years have similarly been focusing on
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forming a new technology not only to be able to improve the

performance of the previous network technologies, but also to

support a wide range of vertical applications with diverse and

stringent requirements in terms of throughput, delay, reliability

and energy [2]. However, due to some fundamental technical

limits, increasing the performance significantly, while satisfy-

ing all these heterogeneous constraints, is simply not possible,

and the network must be optimized depending on the specific

application domain. The concept of network slicing has been

introduced with the goal of allowing resource allocation to

different applications and traffic classes so that it meets the

various quality requirements [3].

Even if network slicing can be seen as a precious tool for

operators to manage their new generation networks, it poses

new challenges as well. A straightforward way of allocating

resources to different slices is through (almost) static parti-

tioning, which can however lead to low efficiency. Dynamic

resource allocation can be a solution, but it must accurately

consider traffic evolution and performance constraints of all

applications. Slicing the network might naturally generate new

participants in the market. The operators of the network slices,

named “tenants” in the 5G terminology, acquire resources from

the traditional operators, who are turning into infrastructure

providers in this changing environment. From the regulation

authorities perspective, using slicing as a tool for infrastructure

sharing, is a way of creating new market opportunities and

exploring new spectrum licensing strategies.

The idea of infrastructure sharing among multiple virtual

mobile operators has long been under considerations. Among

the alternative sharing approaches listed by the Organization

for Economic Co-operation and Development (OECD) report,

active sharing is considered to be the most cost-efficient shar-

ing approach [4]. Active sharing includes sharing both active

network elements and spectrum resources. Virtual operators

can then share resources with other operators and decrease

costs [5]. Although a number of different sharing scenarios

exist, the most common one includes a single infrastruc-

ture provider and a set of virtual mobile network operators

(MVNOs) who acquire resources to serve their users. Note

that MVNOs and tenants are similar in the sense that they

both manage resources and can provide specialized services,

the former in legacy networks while the latter as independent

entities. For a given quality target, sharing allows saving

resources by exploiting the multiplexing gain. The increased

efficiency in resource usage and the adaptability to traffic

conditions, are clear advantages [6] [7]. Infrastructure sharing

has some similarities with resource sharing in Cognitive Radio

Networks (CRNs) [8], but with the fundamental difference that
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tenants (or MVNOs) have equal rights to access resources and,

therefore, the problem is basically about resource negotiation

rather than opportunistic access.

Most of the proposed sharing models rely on pre-negotiated

service level agreements (SLAs) which regulate responsibili-

ties of each party and define the fraction of resources to be

assigned. Obviously, long term agreements with static resource

assignments are not able to follow the fluctuations in the

network demand [9]. Moreover, in wireless networks, there are

some geographical areas that are not profitable for the virtual

operators but still need to be covered by the infrastructure

provider and the associated costs are hard to be mapped into

SLAs. For these reasons, dynamic sharing of infrastructure

resources is a more attractive alternative where virtual oper-

ators or tenants can negotiate resource allocation based on

the needs following traffic and channel fluctuations [5] [10].

As argued in [7], the dynamic adjustment of the allocated

resources, gives operators the possibility to take more business

risks and thus, a dynamically shared wireless market tends to

foster innovation. Considering all these aforementioned factors

though, ensuring quality with heterogeneous traffic and with

different performance parameters still need to be addressed

in order to apply infrastructure sharing to network slicing

scenarios.

Unlike infrastructure sharing, network slicing is a relatively

new concept. Despite the commonly accepted definition of

vertically grouped network resources, the specific negotiable

attributes of each slice and the tools for service differentiation

are still under discussion in the related literature and standard-

ization bodies. In this work, we adopt the concept of a slice

as a set of dedicated network resources assigned for specific

services in a time interval. In order to assign resources to slices

efficiently, the channel conditions, traffic characteristics and

variations, and service heterogeneity must be considered [11].

The benefits of network slicing are investigated in [12]–[14]

considering static SLAs without dynamic resource adaptation.

The resource sharing among tenants in a sliced network is

also investigated in [15] and [16]. However, built upon well-

defined SLA shares, these works are unable to offer the

needed flexibility in the next generation wireless networks.

Moreover, they do not consider the long-term evolution of the

infrastructure resources, which requires a dynamic resource

pricing in line with the required capacity expansion. On

a different note, [17] focus on the design of an optimum

contract (i.e. SLA) among a set of infrastructure providers

and a single MVNO. However, regardless of how well the

agreed SLA is designed, the proposed over-restrictive structure

prevents the exploitation of the dynamic network conditions

(e.g. variations in the traffic demand or channel conditions).

A virtualization framework is proposed in [18], where the

resources are scaled according to tenants’ dynamic needs

and fairness is guaranteed not only between tenants, but also

between users of different services. The model however does

not consider adaptation to channel conditions and economic

aspects of resource trading. In [19], we have proposed the

first step towards dynamic network slicing in a shared network

where tenants are able to renegotiate their slice sizes. In our

proposed scheme, tenants retain service level guarantees, but

they can revisit the agreements on the allocated resources in a

very short time frame so that they can exploit fluctuations in

traffic and channel condition and can efficiently control costs.

An important element for tenants and their business strate-

gies (i.e. making long term plans, analyzing the possible risks

and performing innovation) is a reasonable and predictable

pricing model [7]. In the conventional network provisioning

model, the infrastructure provider (whether it is a local opera-

tor or a specialized entity) charges tenants according to costs

associated to the long-term infrastructure expansion strategy.

This long-term strategy may not always be in line with the

changes of the market and is definitely not able to meet all

the tenants’ interests [20]. The pricing model of infrastructure

providers can therefore create barriers for the entrance of new

players, as already shown for the traditional virtual mobile

operator approach in [21]. The structure of the competition

based on geographically distributed resources tends to favor

a small number of major operators [22], eventually leading

to a monopoly that can slow down innovation [7]. However,

with dynamic infrastructure sharing, since the resources are

pooled and tenants can adjust their shares dynamically, a

more efficient and neutral pricing framework can be potentially

achieved [23].

A reasonable approach is that of using variable market-

driven prices and allowing tenants trading the resources based

on needs and within short time frames. Unfortunately, it

is not possible to understand the relationship between the

economic aspects and the technical performance without a

well-defined model. Such a model would also enable, tenants

to exploit the full potential of dynamic sharing. Thus, a scheme

able to automatically define prices and resource allocation

based on high level tenant strategies and traffic estimation

is of fundamental importance [9]. Even if there is extensive

literature focused on the economic aspects (such as [21], [24])

and technical considerations (such as [25], [26]) separately, the

definition of techno-economic models for resource sharing in

sliced networks is still an uncovered area.

In this paper, we propose a dynamic wireless market model

that can flexibly adjust the share of resources, assigned to

network slices, to achieve the maximum utility for tenants.

The contributions of this work can be summarized as follows.

We propose:

• an enhanced wireless market model based on different

services and quality requirements using dynamic pricing

through the formulation (1a)-(1h) in Section III-A

• a two-step approach for adapting the network slices

according to the fluctuations of the achievable rate and

the variations of the traffic mix in short time scale in

Section III-B

• a dynamic updating mechanism for optimizing the slice

configuration based on the evolution of the resource dis-

tributions over time and the achieved spectral efficiency

in Section III-C

• exploitation of the anticipatory information of the achiev-

able rates for the resource allocation in Section III-D

The remainder of the paper is organized as follows: Sec-

tion II contains the system model and the main assumptions.

Following the system model, the optimization model is pre-
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Fig. 1. Proposed negotiation platform

sented in Section III. In Section IV, the behavior and the

validity of the optimization model are investigated through

simulations. Section V concludes the paper and discusses

possible extensions of the proposed approach.

II. SYSTEM MODEL

In order to provide a flexible and adaptive resource sharing

algorithm for network slicing in a multi-tenant environment,

we introduce a dynamic negotiation platform, shown in Fig. 1,

which interacts with the different stakeholders and, based on

the received inputs, allocates resources, assesses the perfor-

mance and evaluates the corresponding costs. Table I summa-

rizes the notation adopted in this work. In our system model,

the stakeholders are as follows: a set of tenants M , with index

m, sharing the downlink of a base station, an infrastructure

provider (InP) who provides the shared base station, and a

set of users K, who require heterogeneous services from their

corresponding tenant. Also, let the set Km be the set of users

of tenant m, and thus
P

m∈M

|Km| = |K|. In particular, we

assume that each user requests only one type of service and

the number of active users per tenant, i.e. the cardinality of

Km, is the same for all tenants (i.e. tenants have similar market

shares). Note that such assumptions do not limit the generality

of the proposed model, and they are made mainly for the sake

of better understanding how the proposed framework is able

to adapt the resource allocation to different slices based on

different service requirements (and not due to the different

traffic load of each slice). Generally speaking, our algorithm

can cope with nonequivalent user distributions, which would

lead to similar average achieved utilities among users of the

same service type, but different resource distributions among

tenants (scaled according to the total number of users). Time

is discretized into slots, n, where N is the set of all time slots,

i.e. simulation horizon.

Service level agreements regulate the sharing of resources

between the InP and the tenants. We assume that the slice

of tenant m is defined by three parameters, Sm, ∆m and

Wm. Sm ∈ (0, 1), referred to as guaranteed resource share,

indicates the ratio of resources that tenant m expects to

receive on average. Furthermore, to guarantee flexibility, we

assume that the resource allocation can deviate from the

guaranteed resource share. In particular, the maximum average

allowed deviation is denoted as ∆m (as introduced in [27]).

Namely, ∆m sets the limit on the maximum deviation from

Sm within a tenant-specific time window, Wm (over which

the average is computed). Therefore, within each time window

TABLE I
SUMMARY OF ADOPTED NOTATION

Symbol Meaning

M Set of tenants

m Index of a specific tenant

K Set of users

k Index of a particular user

N Total simulation horizon

n Index of a particular time slot

Sm Guaranteed resource share

∆m Maximum average allowed deviation

Wm Time window of tenant m

RI Renegotiation interval

Uth Utility target

Bm Budget of tenant m

Cop Operational expenses

Cca Capital expenses

Cpre Pressure cost

xk[n] Assigned wireless resources to user k at n

rk[n] Achievable rate of user k at n

ξm[n] Gap between the expected and achieved utility for tenant m

U1 Utility of a not-activated service

R1 The minimum rate for a service to be actived

U2 Utility of a service that receives standard quality

R2 Required achievable rate for standard quality

U3 Maximum achievable utility for a service

R3 Saturation point for a utility function

Wm, tenant m receives (on average) a fraction of resources

between (Sm−∆m, Sm+∆m). Note that, the time constraint

imposed by the time window Wm can also be used to achieve

differentiation among tenants and corresponding services. As

opposed to [27], where sharing parameters were assumed to be

constant, in this work Sm and ∆m are periodically updated to

fully exploit the advantages of dynamic trading. Namely, the

period of such updates is set by the InP and is referred to as

“renegotiation interval” (RI).

Furthermore, we assume that tenants set their utility targets1,

Uth ∈ (0, 1) and their available budgets, Bm. In contrast,

the InP is responsible for setting the respective costs of

the wireless resources (c.f. Fig. 1). The total cost of the

wireless resources consists of three parts, i.e., capital expenses,

Cca, operational expenses, Cop and pressure cost, Cpre. We

assumed that the infrastructure provider does not have profit

constraints and his main objective is to run a sustainable

business model. Therefore, Cca and Cop are scaling the cost

of the conventional infrastructure and the operational cost of

the resources. The pressure cost helps the regularization of

the resource allocation. Similar to any demand based market,

the pressure cost also regulates the resource consumption. For

instance, if the system does not have sufficient resources to

satisfy all the users, i.e. resource scarcity, the pressure cost

is set to be greater than zero, so that tenants will have less

incentive to buy resources (in terms of Sm), but more incentive

to trade resources (via ∆m). In contrast, in case the system has

more than sufficient resources for all the users, i.e, resource

surplus, the pressure cost is set to zero, reducing the overall

cost and increasing the incentive to buy. Moreover, pressure

cost can be seen as a way for the InP to collect the necessary

1In this work, we assume that all tenants select the same utility target,
however, an analysis of the effects of choosing different utility targets, as
means of differentiation for the tenants, has been proposed in [19].
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revenue in order to upgrade or expand the existing network

capacity (in case of resource scarcity). The pricing mechanism

is further explained in Section III.

Based on all the inputs described above as well as the users’

channel conditions, the proposed negotiation platform opti-

mally allocates the resources to the different slices. Namely,

let xk[n] be the wireless resources allocated to user k at time

slot n, and rk[n] the achievable rate for user k at time slot

n. The actual achieved rate of user k at time slot n is then

given by rk[n]xk[n]. Furthermore, we assume that each user

k produces a utility Uk[n] that depends on the achieved rate

as well as the requested service type. The average achieved

utility of tenant m at n is the average achieved utility over

all its users, i.e.
P

k∈Km

Uk[n]
|Km| . The difference between the

utility target Uth and the average achieved utility is defined

as the tenant’s gap and denoted by ⇠m[n]. Such gap is used

to measure the performance of the proposed resource sharing

algorithm, where the best possible operating point is the one

for which the gap is equal to zero.

A. Utility Functions

Even if the quality perceived by the users depends on

several elements, we assume in this paper that it can be

quantified by using the achieved rate. We therefore consider

a generic continuous utility function Uk(Rk[n]), function of

the average achieved rate Rk[n], as shown in Fig. 2(a).

This function is used in our framework to model different

utilities for heterogeneous services. Namely, each specific

service function is determined by varying six parameters, i.e.

U1, U2, U3, R1, R2 and R3. The minimum rate, required to

consider a service as active, is assumed to be R1. When the

average achieved rate is lower than R1, i.e. Rk[n] < R1, the

utility function returns the utility value U1 ≤ 0. In case the

service achieves the average rate of R1 than the utility returns

zero. R2 represents the standard quality for the services where

the utility function provides a utility value equal to U2. Finally,

R3 indicates the saturation point for the utility function, after

which the function becomes non-increasing. The maximum

utility for the service type, that is achieved at Rk[n] = R3,

is given by U3. Note that the modeling of the function by

using four regions (hence six parameters) reflects the idea

that the service quality can fall in either one of the following

categorizes: no service, low quality, high quality, maximum

quality (above which no further advantage is perceived by the

user). Furthermore, the choice of piecewise linear functions

is mainly due to mathematical tractability, but this does not

limit the validity of the proposed sharing platform, which can

incorporate also more complex functions.

Using the generic utility function presented above, we

defined the specific utility functions for four service types

envisioned for 5G: elastic services, inelastic services, machine

to machine (M2M) services and background services. In

particular, prioritization (or fairness) among services (and in

particular between critical and non-critical services) can be

set by using different (or equal) slopes of the utility functions

(e.g. between R1 −R2 and R2 −R3). A detailed description

of the specific utility functions chosen for the four different

services is provided here and presented in Fig. 2(b):
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Fig. 2. Generic utility function (left) and exemplary utility functions per
service type (right)

1) Elastic traffic: By definition, elastic services, do not

have strict rate or delay constraints. Thus, we consider them to

be active as soon as the average achieved rate is greater than

zero, Rk[n] > 0, meaning R1 = 0 and U1 = 0. Moreover,

for elastic users we do not set any upper bound on their rate

expectations, meaning R3 → ∞ and U3 → ∞. Since the

service requirements are quite flexible, the utility function has

a smaller slope compared to the ones of the other services in

any of the same regions.

2) Inelastic traffic: Inelastic services, being a demanding

service type, require a minimum rate to provide service

availability, e.g. as in case of video streaming. For this reason,

we set R1 relatively high, e.g. to provide a continuous service

experience for the users. Similar to video streaming, the utility

of inelastic services (i.e. perceived quality) is highly affected

by the fluctuations of the achieved rate (e.g., the variations

in the video quality between 144p and 720p). Therefore, we

impose a steep slope between R1 and R2 to force a quick

increase in the utility as a function of the average achieved

rate. However, after reaching a certain quality, the increase

in the average achieved rate is less noticeable, and therefore,

we choose a lower slope between R2 and R3. As mentioned

above, to enforce fairness, the slope of inelastic services

between R2 and R3 is equal to the one of elastic services

between R1 and R2.

3) Background traffic: These services usually run in the

background and require relatively low rate. As soon as this is

achieved, the utility function reaches its saturation point, i.e.

R2 = R3. Furthermore, since they do not have a strict delay

constraint, the minimum utility is considered to be zero, i.e.

U1 = 0.

4) Machine to machine (M2M) traffic: We group M2M

services envisioned in 5G into three main categories and

model the M2M requests as a mixture of all three service

types. Namely, the M2M utility function represents three types

of services, i.e. emergency, low-rate-delay-sensitive and rate

sensitive. We assume that M2M incorporates all three services

but how the tenant-specific resource distribution is handled

within M2M is not in the scope of this work. However,

we assume that tenants will prioritize their M2M services

and assign resources accordingly. The emergency services,

which require low rate but with high priority, are modeled

with the R1 rate. Since not achieving this rate can have a

dramatic impact on the system, we set U1 to a negative value.
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Consequently, not serving the emergency services results in a

big gap for the tenants. The low rate and delay-sensitive M2M

applications are modeled between R1 and R2. As shown in

Fig. 2(b), since there is a delay constraint, the utility function

characteristic has a relatively large slope for these types of

services. Finally, for the rate constrained services, as the name

suggests, achieving higher rates has higher priority than having

a low delay. Therefore they are modeled between R2 and R3

with a relatively smaller slope.

III. SCHEDULING PROBLEM AND ANALYSIS

A. Mathematical programming formulation

The scheduler of the shared base station allocates resources

by using the optimization model formulated in (1a)−(1h).

The proposed techno-economic model runs in real time and

controls both the resource allocation and the respective price

negotiations in an online manner. Namely, the resource shares

of the tenants are dynamically chosen based on their Quality

of Service (QoS) expectations (i.e. the achieved rate per user

and tenant’s time window, Wm), the channel conditions and

tenant’s market power (i.e. their budget, number of users and

traffic mix). The optimizer dynamically assigns resources to

each slice per service type and per tenant to minimize the

total gap, i.e., as in (1a),
P

m∈M ⇠m. By jointly optimizing

the resource allocations for all tenants, the scheduler has the

flexibility to prioritize the users with the best channel condi-

tions and therefore maximize the utilization of the resources

and spectral efficiency.

Constraint (1b) sets the gap of tenant m as the difference

between its target utility (i.e. Uth) and the sum of the achieved

utility over its users (i.e. sum of Uk(Rk[n])). Note that within

each time window, of length Wm, we evaluate the average by

considering the values from the beginning of the time window

to the current time slot n, i.e. over am + 1 time slots, where

am ≡ n − 1 mod Wm. Therefore, the average achieved rate

for user k at time slot n is

Rk[n] =
1

(1 + am)

✓ n
X

i=n−am

xk[i]rk[i]

◆

.

Furthermore, we assume that all the users have the same

importance to the tenants, thus, U3 = Uth/Km ∀k ∈ Km. By

selecting the same value of maximum utility, U3, for all the

users, the tenants also guarantee neutrality in their provided

services. However, depending on the agreements between the

service providers and the tenants, as well as in accordance

with regulatory constraints, this value can be changed, thus

allowing our model to include also non-neutral services.

The instantaneous average deviation from the guaranteed

resource share, ✏m[n], is given in (1c). Namely, the instan-

taneous deviation at n for tenant m is given by subtracting

the guaranteed resource share Sm from the average assigned

resource to the users of m, where the average, as done for the

average achieved rate, is evaluated from the beginning of the

current time window till time slot n.

Constraint (1d) ensures that ✏m[n] is not larger than ∆m,

which by definition is the tenant-specific maximum allowed

deviation. Note that ✏m can either be positive or negative,

min
xk[n]

X

m∈M

⇠m[n] (1a)

s.t. Uth −
X

k∈Km

Uk(Rk[n]) ≤ ⇠m, ∀m ∈ M, (1b)

✏m[n] =

 

1

(am + 1)

n
X

i=n−am

X

k∈Km

xk[i]

!

− Sm, ∀m ∈ M,

(1c)

|✏m[n]| ≤ ∆m, ∀m ∈ M, ∀n ∈ N, (1d)

n
X

i=n−am

(Sm(Cca + Cop) + ✏m[i]Cop + fpre(Cpre, ⇠m))

≤ Bm(am + 1), ∀m ∈ M,

(1e)

0 ≤ ∆m ≤
1

am + 1

n
X

i=n−am

X

k∈Km,elastic

xk[i], ∀m ∈ M,

(1f)
X

k∈K

xk[n] ≤ 1, xk[n] ≥ 0, ∀k ∈ K, (1g)

X

m∈M

Sm ≤ 1 , Sm ≥ 0, ∀m ∈ M, (1h)

i.e. ✏m ∈ [−∆m,∆m]. The former case indicates that the

tenant has received – on average and within the current time

window – more resources than Sm, while the latter case

corresponds to the opposite.

Furthermore, constraint (1e) sets the budget constraint per

tenant. The first term of the left-hand side scales both CAPEX

and OPEX according to Sm, which means that in case of no

sharing (when ∆m = 0), the tenant will have to pay for the

requested resources. The second term, i.e. ✏m[n]Cop, allows

tenants to dynamically adjust their total costs according to

their resource usage and budget. Namely, if a tenants’ actual

resource usage is less than the guaranteed resource share (i.e.

✏m[n] < 0), then the tenant will not pay for the OPEX

cost of the unused resources. The third term of the budget

constraint is a function, fpre(Cpre, ⇠m), of the pressure cost

unit Cpre, defined by the InP, and of the tenant’s gap ⇠m.

Namely, the gap considered for the evaluation of the pressure

cost is the one obtained at the end of the previous time

window (i.e. it varies at every time window, but kept constant

within the same time window). The effects of the pressure

cost term are evident when, e.g., there is a resource demand

that exceeds the available resources. In this case, since the

resources are limited, the tenants face non-zero gaps, ⇠m > 0,

which corresponds to an increase of the pressure cost as well

as of the total cost of resources. This increase in the cost

pushes tenants to increase their ∆m and decrease Sm. In the

extreme case, tenants opt for full sharing, i.e. ∆m = 1, which

allows the scheduler to provide the most spectrum efficient and

cost efficient allocation. Moreover, the pressure cost allows

the infrastructure provider to accumulate additional revenues

not directly used for the current infrastructure, but envisioned

to support capacity expansion to meet the tenants’ quality

requirements. In this respect, scaling the pressure cost by the
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gap provides an accurate estimation of the capacity needed to

satisfy all the tenants.

Constraint (1f) forces the maximum deviation ∆m to be at

maximum, equal to the resources assigned to the elastic users

of tenant m, which implies that tenants are not willing to trade

resources used for critical, i.e. non-elastic, services. By setting

∆m = 0, tenants indicate that their services are non-elastic and

they require the resources they stated by Sm. However, in this

case, they also lose the flexibility to adapt to traffic dynamics.

Finally, (1g) ensures that the assigned resources do not exceed

the total available resources in the system and, similarly, (1h)

limits the sum of all Sm to the total amount of resources.

B. Two-step approach

The formulation presented in the previous section is able to

capture the dynamics of the resource negotiation, considering

both the scheduling aspects and the economical constraints

(prices and budgets). However, due to its computational com-

plexity, it is not suitable to be used in real-time. Therefore,

we decided to split the problem into two, namely the decision

on the real time resource allocation and the decision on the

negotiations of the sharing parameters (Sm,∆m).

In particular, we separate our model into two sub-problems,

P1 and P2. The first problem, P1, focuses on the real time

resource allocation with the objective of minimizing the total

gap and it is solved at every time slot n. During P1, the

sharing parameters (Sm,∆m) are assumed to be constant and,

therefore, the constraints that regulates the sharing (i.e. (1f)

and (1h)) are inactive. The outcome of P1 is then given by

the allocated resources and corresponding tenants’ gaps. The

second problem, P2, is solved at the end of each time window,

by the update of the sharing parameters according to the

channel conditions of the users at that time and the tenants’

targets (i.e. in terms of Uth). In this case, the objective is

to find the best sharing parameters so that the total gap of

the previous time window is minimized. Namely, P2 receives

the achievable rates from the previous time window as input

and derives the optimum sharing parameters Sopt
m and ∆

opt
m by

solving (1a)−(1h).

Note that even if both problems, P1 and P2 are derived from

the same formulation (1a)−(1h), they are actually separate and

different problems since the active variables (and constraints)

are different. Formally, P1 and P2 are defined as follows:

P1 := min
xk[n]

⇠m[n]

s.t. (1b), (1c), (1d), (1e), (1g)

P2 := min
xk[n],Sm,∆m

⇠m[n]

s.t. (1b), (1c), (1d), (1e), (1f), (1g), (1h)

C. Update mechanism

As described above, P2 derives the optimum sharing pa-

rameters, i.e. Sopt
m and ∆

opt
m , for all the tenants, in order

to achieve the minimum total gap
P

m∈M

⇠
opt
m . However, it is

important to remember that the optimization problem is solved

by using the achievable rates of the previous time window

only, meaning that Sopt
m and ∆

opt
m are optimal only with respect

to the previous window. Therefore, to capture the statistic

nature of the channel over a longer time span, the sharing

parameters are updated with a weighted approach. Namely,

the new values for the sharing parameters, Snew
m and ∆

new
m to

be used in the upcoming time window, are derived as:

Snew
m = ↵mSopt

m + (1− ↵m)Sold
m , (2)

∆
new
m = ↵m∆

opt
m + (1− ↵m)∆old

m . (3)

where the feature scaling coefficient, ↵m, is calculated as:

↵m =
⇠m − ⇠

opt
m

⇠m + ⇠
opt
m

. (4)

By definition ↵m measures the difference between the

achievable optimum gap and the actual gap observed by the

tenant. For instance, when ⇠m = ⇠
opt
m = 0, the feature scaling

coefficient is also 0, which means that the most recently

calculated sharing parameters are the optimum values and are

therefore also used for the upcoming time window without

scaling. In general, with the proposed update mechanism, our

framework is able to adapt to the varying channel conditions

in a reactive manner. The sharing parameters are automatically

updated to provide service quality which is satisfying the

tenants’ requirements while maintaining proportional fairness

among them. A thorough study of the ↵m selection and its

effects on the model’s adaptability has been proposed in [9].

In summary, the following Algorithm 1 is used to solve

the dynamic network slicing and resource trading problem

introduced in (1a)−(1h).

Algorithm 1 Two-step algorithm with update mechanism

Input: Cca, Cop, Cpre, Uth, Uk(Rk), Bm, rk, N,Wm, RI

1: for Every Renegotiation Interval RI do

2: for Every time slot in RI , n ∈ RI do

3: xk[n], ⇠m[n] ← P1(rk[n], Sm,∆m)

4: Sopt
m ,∆opt

m , xopt

k , ⇠opt
m ← P2(rk[n−RI : n− 1])

5: ↵m ←
⇠m−⇠opt

m

⇠m+⇠
opt
m

6: Snew
m ← ↵mSopt

m + (1− ↵m)Sold
m

7: ∆
new
m ← ↵m∆

opt + (1− ↵m)∆old

D. Exploiting the channel information

The real-time scheduling problem, P1, exclusively focuses

on the optimization of the current time slot n without taking

into account the upcoming slots. Thus, it is incapable of

fully exploiting the transmission opportunities. As a result,

P1 requires a larger amount of resources compared to the one

estimated by P2 in order to provide comparable performance.

As a matter of fact, P2 derives the minimum values of Sm

and ∆m, in order to minimize the gap, which are however too

restricting for P1. Therefore, to improve the performance of

P1, a channel-aware filter is designed to exploit the statistical

information of the channel.

Specifically, we design a channel-aware filter to evaluate

the rate expectations for the upcoming time slots of each user,

while scheduling the resources for the given time slot n. Even
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Fig. 3. Variation of the sigmoid function for different a1 (left) and a2 (right)
values

though prediction techniques of the channel characteristics are

out of scope of this paper, we assume that the infrastructure

provider can learn a statistical profile of the channel behaviors.

Therefore, we assume that there is available data on the

probable density rate on each available user, k ∈ K, for

the infrastructure providers. Based on this data the probability

can be evaluated for each specific user within the given time

window, whether the user is in the “best” time slot to assign

resources, Prk[n] = P (rk[n] ≥ rk[i] ∀i ∈ W ) ∈ [0, 1], i.e.

the slot with best channel conditions compared to the other

time slots. In particular, a probability value of 0 indicates that

the channel condition at slot n is the worst that can ever be

observed, thus, the scheduler should avoid assigning resources,

while a value of 1 means that the current channel condition is

the best possible and therefore as many resources as possible

should be assigned. However, we do not use this probability

directly, but we filter it as described below before passing it

as input to P1.

We design a two-step filtering function to map the statistical

information onto the assignment decisions. As a first step,

the statistical information is scaled using a sigmoid function,

i.e. f(Prk[n], a1, a2) = 1/(1+e−a1(Prk[n]−a2)), as presented

in Fig. 3. The characteristic of the sigmoid function can be

controlled by using two parameters, i.e. [a1, a2] (cf. Fig. 3(a)

and Fig. 3(b)). The former parameter, a1, controls the slope

of the linear region of the sigmoid and indirectly controls the

resource efficiency. Namely, assuming that the number of users

is low, decreasing the slope of the linear region leads to a

situation where unassigned resources exist while the tenants

cannot achieve their goals. In contrast, increasing a1 results

in assigning resources also with bad channel conditions, thus

decreasing the efficiency of the channel utilization. The latter

parameter, a2, allows the shift of the sigmoid function (c.f.

Fig 3(b)). In this case, choosing large values of a2 gives

advantages only to the users with high probabilities. However,

when tenants select small time windows, it leads to unassigned

resources even in the presence of gaps. In contrast, small

values of a2 equalizes all users making the filter ineffective.

The output of the sigmoid function, f(Prk[n], a1, a2), pro-

vides an understanding on how good the channel conditions

for a specific user are with respect to what the certain user can

achieve in the given time window. However, f(Prk[n], a1, a2)
does not give information on how good the channel is with

respect to the other users in that time slot. Therefore, this first

step of the filtering process might not be sufficient to guide

the scheduler when there is a significant difference among the

distributions of the users’ channel.

Consequently, an additional filtering step is introduced to

capture these variations among the users’ channel conditions.

More specifically, taken the output of the sigmoid function,

f(Prk[n], a1, a2), the second step outputs f(Prk[n], a1, a2)
p,

where p is scalar. If the variations in the achievable rates

among users are negligible, e.g. the users have similar

pathlosses, the p value can be set to 1. In contrast, if the

difference is not negligible, a larger value of p should be

chosen.

The output of the filter function, referred to as “priority

coefficient” and indicated by �k[n], is then used by the

scheduler to give priority to the users with the best channel

condition (i.e. �k[n] = 1) and to discard the users with

the worst channel conditions (i.e. �k[n] = 0). In order to

incorporate this information into P1, the constraint (1b) is

updated as

Uth −
X

k∈Km

�k[n]Uk(Rk[n]) ≤ ⇠m, ∀m ∈ M. (5)

Since the channel information is used to guide the real-time

scheduling algorithm, the gap values calculated by P2 are then

derived without priority coefficients, as given in (1b).

Note that the specific values chosen for [a1, a2] as well as

p, combined with the channel conditions, affect the resource

allocation. Hereafter, we do not discuss the policies used

by the tenants to select those values, but assumed they are

given (i.e. we empirically derived those used for the numerical

evaluation).

IV. SIMULATION RESULTS

In this section, we first present the parameters and the

simulation setup used for the evaluation and then show the

effectiveness of the proposed algorithms with some numerical

results.

A. Parameters and simulation setup

We consider the downlink of a single base station, shared

among |M | tenants. Unless specified otherwise, each tenant

serves |Km| = 4 users and each user is associated with a

specific traffic type, i.e. elastic, inelastic, M2M or background.

The total set of users, K = ∪mKm, is distributed homoge-

neously in the coverage area of the base station and considered
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Fig. 4. Changes in the characteristic of the filter function according to the
variations of p
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TABLE II
SERVICE SPECIFIC PARAMETERS AND THEIR VALUES

Parameter Elastic Inelastic M2M Background

R1 (bps/Hz) 0 0.1 0.01 0.05

R2 (bps/Hz) 1.083 0.225 0.075 0.07

R3 (bps/Hz) ∞ 0.55 0.4 0.07

U1 0 -0.5 -1 0

U2 1 0.7 0.7 1

U3 ∞ 1 1 1

to be active during the whole simulation, which is set to

N = 5000 transmission time intervals (TTIs). Depending

on the considered technology, capability of the base station

and physical constraints, the TTI can be translated into a

specific time duration such that enough time is given to the

proposed mechanism to converge to the optimum solution.

The presented results are averaged over 100 independently

generated instances.

The parameters that are used for the utility functions, pre-

sented in Fig. 2, are given in Table II. The utility target is Uth =
|Km|, ∀m ∈ M . Unless specified otherwise, the length of the

time window, Wm, is considered to be equal for all tenants.

The time window for the renegotiation interval is assumed to

be 80 TTI long. The values used for the costs and budgets

are Cca = 20, Cop = 20, Bm = 100, ∀m ∈ M . As proposed

in [9], when tenants have the same budget, the pressure cost

is evaluated as Cca scaled by the number of tenants, i.e.

Cpre =
Cca

|M | and f(Cpre, ⇠m[|Wm|]) = ⇠m[|Wm|]×Cpre/|Wm|.
A frequency flat fading channel is assumed between the base

station and the users. This is model by using i.i.d. Rayleigh

coefficients, which lead to exponential channel gains, |hk[n]|
2.

Based on that, the Signal to Interference-plus-Noise Ratio

(SINR) is calculated for each user k at each time slot n as:

�k[n] = |hk[n]|
2 Pd−↵

k

�2 + I0
, (6)

where P is the transmit power (in Watts), dk is the distance

between the user k and the base station (in meters) and ↵ is the

path-loss exponent. In this work, the interference is modeled as

the sum of the thermal noise, �2 and the average interference,

I0. Therefore, by using (6), the achievable rate of user k at

time slot n is expressed by

rk[n] = log2(1 + �k[n]). (7)

Finally, the considered filter values (introduced in Sec-

tion III-D) are set to a1 = 10, a2 = 0.5, p = 3.

B. Time complexity analysis

As briefly analyzed in [9], the renegotiation interval, which

is set by the InP, affects the time complexity of the algorithm.

Table III depicts the variation of average computation time of

P1 and P2 depending on the renegotiation interval in a scenario

with |M | = 3, |K| = 12. The simulations are run in Matlab,

whereas the optimization problems P1 and P2 are solved by

the Gurobi commercial solver [28]. The simulations are run

on a Intel 2.4 GHz PC with 6 GB of RAM.

The results show that the longer the renegotiation interval is,

the longer it takes to solve P2. This is reasonable though since

the algorithm has to find the optimal sharing parameters over

a longer time interval. In contrast, the duration of solving the

real time scheduler, P1, is not heavily affected by the length

of the renegotiation interval.

TABLE III
EFFECTS OF RENEGOTIATION INTERVAL ON COMPUTATION TIME

Renegotiation Interval P1 duration (sec) P2 duration (sec)

5 TTIs 0.0015 0.0431

25 TTIs 0.0012 0.1923

50 TTIs 0.0016 0.5069

80 TTIs 0.0011 1.4832

100 TTIs 0.0015 2.4412

Note that both P1 and P2 have time constraints dictated by

the system model we proposed. Namely, we need to run P1

every time slot and P2 every time window. In order to obtain

acceptable computation time for real time implementation, two

different approaches could be used. On one hand, P1 could be

run using more powerful machine to reduce the computation

time. On the other hand, for cases where the computational

time of P2 becomes too large, an alternative heuristic approach

could be proposed, which is, however, out of the scope of this

paper.

C. Value of channel information

In Sec. III-D, we introduce a channel-aware filter to in-

tegrate the statistical channel information into the real time

scheduler. Basically, we propose to replace constraint (1b)

with constraint (5). The proposed channel-aware approach is

a simple prediction algorithm, that evaluates current channel

conditions taking into account past observations and future

expectations.
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Fig. 5. Effects of integrating channel information on the total gap, for |M | =
2, |K| = 8

Hereafter, we want to show the effects of exploiting such

channel information on the total achieved gap with respect

to: (1) the case without channel information (P1 solved using

constraint (1b)) and (2) the case with perfect knowledge of

the future channel conditions (Oracle scenario). Fig. 5 shows

the results for |M | = 2 tenants and |K| = 8 users. Our

observation is that feeding the model with an estimation of the
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channel allows the scheduler to better detect the instantaneous

opportunities and to increase resource and cost efficiency, by

decreasing the total gap.

TABLE IV
CHANNEL INFORMATION’S IMPROVEMENT ON THE TOTAL GAP WITH

RESPECT TO NO-CHANNEL INFORMATION CASE

|K| Improvement of total ξm

8 33.2%

16 38.5%

24 38.6%

Table IV shows the effect of increasing the number of

users |K| on the total gap, as percentage improvement with

respect to no-channel information case. Increasing |K| gives

the scheduler a higher flexibility in exploiting the transmission

opportunities and also higher probability to detect good time

slots. In contrast, when |K| is small, the scheduler needs

higher accuracy to detect transmission opportunities. How-

ever, we can also observe that the performance improvement

saturates when further increasing the number of users. This

indicates a limit in the improvement that can be achieved by

using this approach.

D. Symmetric traffic scenarios

In this section, we report results for a case in which |M | = 3
tenants have symmetric traffic (the same amount of users per

service type).
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Fig. 6. Average resource distribution and average total cost per tenant for
|K = 12|

Due to the symmetry among tenants, we can observe an

equivalent resource and cost distribution, as shown in Fig. 6.

This proves that, as desired, in symmetric cases our model

behaves perfectly fair among tenants. Furthermore, Fig. 7

reports the average utility per tenant per service and, as

above, we can observe that there is a symmetric behavior

among tenants, but different prioritization among slices, i.e.,

services. Namely, due to the utility based prioritization, when

the system does not have sufficient resources to fully satisfy all

of them, the elastic users are penalized and reach lower utility

compared to the other services. Moreover, both inelastic and

M2M services are achieving an average utility less than 1 due

to the utility function used (c.f. Fig. 2(b)). To be more precise,

after reaching the utility value of U2, all the services have the

same slope, that provides fairness between elastic service and

the rest of the services.
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Fig. 7. Average utility per service per tenant

Now, we show how the proposed framework reacts to load

changes. In particular, we increase the number of users of

each tenant to |Km| = 16 users (i.e. total number of users

|K| = 48), while keeping fixed the system capacity and

utility function parameters. As shown in Fig. 8, despite the

strong competition for resources, fairness among tenants is

still achieved. Moreover, in Fig. 8(b) even more emphasis

is shown on the prioritization given to different services. As

expected, the elastic traffic, which has the lowest priority, is

being affected mostly from the resource scarcity. In contrast,

such prioritization guarantees that the emergency and low-

rate-delay-sensitive M2M traffic (i.e. defined in Section II-A4)

can achieve the service expectations even in such an extreme

scenario (which is proved by the fact that for this service type

at least utility equal to U2 is achieved).
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Fig. 8. Average resource distribution and average utility per service per tenant
for |K| = 48
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Fig. 9. Adaptation of ∆m to the increasing traffic

Another interesting effect of the increasing load is shown

in Fig. 9. We can observe that resource scarcity affects the

tenant’s willingness of trading resources. As a matter of fact,

when |K| = 12, ∆m converges to a non-zero value, which
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guarantees a certain level of flexibility in resource allocations

(c.f. Fig. 9(a)). This flexibility allows the scheduler, and

tenants, to adopt an opportunistic behavior thus enhancing cost

and resource efficiency. On the other hand, when the load

drastically increases (c.f. Fig. 9(b)), the inability of serving

elastic users forces ∆m = 0, ∀m ∈ M , thus reducing the

flexibility of sharing.

E. Impact of time window

In this section, we analyze the impact of time window

differentiation among tenants. Fig. 10 and Fig. 11 show the

effects of varying the time window length on the resource

distribution between |M | = 2 tenants in case of resource

scarcity and resource surplus, respectively.
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Fig. 10. Effects of window differentiation on average resource distribution
per tenant in resource scarcity scenario
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Fig. 11. Effects of window differentiation on average resource distribution
per tenant in resource surplus scenario

Generally speaking, smaller time windows indicate that

the tenant’s requirements need to be satisfied with higher

frequency (i.e. within a shorter time frame). Therefore, due to

the more stringent delay constraints, the InP has to prioritize

the tenant with smaller Wm in order to be able to satisfy its

utility target. On one hand, this prioritization does not affect

the resource distribution between the two tenants, whenever

there are sufficient resources to satisfy all the tenants, i.e.

resource surplus (cf. Fig. 11). On the other hand, however,

in case of resource scarcity (cf. Fig. 10), the priority given

to the tenant with smaller time window (Tenant 2 in this ex-

ample) causes an imbalance in the resource allocation, which

increases proportionally the difference between the window

lengths. Since choosing a smaller time window corresponds

to potentially getting more resources, the selection of this

parameter has to be monitored by the InP or a regulatory body.

Fig. 12 shows the effects of time window differentiation on

the average utility per tenant per service in case of resource

scarcity. As expected, the tenant with smaller time window

receives a higher priority in the scheduler, which corresponds

to a higher average utility with respect to the one achieved

by the other tenant. Furthermore, results show that the service

which is most penalized by the prioritization is the elastic one.
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Fig. 12. Effects of window differentiation on average utility per service in
resource scarcity scenario
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Fig. 13. Effects of window differentiation on average total cost per tenant in
resource scarcity scenario

In contrast, non-elastic services are preserved by the utility

based prioritization (i.e. the slopes of the utility functions

shown in Fig. 2(b)) and experience only marginal decrease

in the achieved utility. On the other hand, the tenant with

smaller time window perceives an increase in utility for all

the services, for critical as well as for elastic services. Note

that this implies the negative effect of reducing the efficiency

in resource usage, since more resources are assigned to either

of the two tenants, independent of the channel conditions of

its users.

Finally, Fig. 13 and Fig. 14 report the economic effects

of window differentiation. Fig. 13 shows that, according to

the resource distribution, the tenant with smaller Wm pays

a higher cost, on average, while the tenant with larger time

window length decreases the total costs. On the other hand,

Fig. 14 reveals that the tenants’ actual average cost per bps/Hz

is similar for all cases. This confirms that the costs paid by

the tenants is actually proportional to the resources they get.
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Fig. 14. Effects of window differentiation on average total cost per bps/Hz
in resource scarcity scenario

F. Adaptation to changes in traffic mix

In [19], we analyze the ability of the proposed model

to adapt to the changes of the wireless environment. Also

we conclude that, in case of resource scarcity, such changes

mainly affect the elastic services and our model is able to

converge to a new optimal state adapting to the new conditions.

Preprint Version



11

In other words, we investigate a resource surplus scenario, and

analyze the reaction time and the effects of varying the traffic

mix of the tenants.
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Fig. 15. Adaptation to the variations in the traffic mixture

Fig. 15 shows the adaptation to the changes in the traffic

mix. In particular, we assume that till n = 1920, the two

tenants have symmetric traffic, i.e. 1 user per service type and

a total of |K| = 8 users. At n = 1920, the traffic mix of the

tenants changes as follows: the first tenant retains only non-

critical services (i.e. it has 2 users with elastic services and

2 users with background services) while the second tenant

specializes on critical services (i.e. 3 users with inelastic

services and 1 user with elastic service). In Fig. 15(a), we

can observe, between n = 1920 and n = 2000, a gradual

change in the instantaneous assigned resources. After at least

one renegotiation interval, the tenant’s sharing parameters

are updated, and this leads to a converge of the resource

assignment. In Fig. 15(b) and Fig. 15(c), the average utility

per service per tenant is shown before and after the traffic

mix change, respectively. Note that, after the change, the

elastic services achieve smaller utility on average. This is due

to the fact that the number of users per service increases,

which means that the resources requested by the non-elastic

service (background for tenant 1 and inelastic for tenant 2)

also increase.

G. Service specialized tenants

This section investigates the effects of service specialization

on the proposed model. More specifically, we analyze the

coexistence of four tenants with only one service type and

one tenant with multiple service types. This also helps us

addressing the question on whether our framework motivates

tenants to enter the sharing market as specialized tenants or, in

contrast, it is neutral to this choice. Therefore, we consider the

scenario with |M | = 2 tenants, where the first tenant enters

the market as virtually 4 different tenants (one per type). Also,

we assume |K| = 16 users in total (2 users per service per

tenant).
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Fig. 16. The average utility per services per tenant

Fig. 16 clearly shows that entering the market as specialized

tenant does not provide any advantages in terms of average

achieved utility. Furthermore, Fig. 17 shows that a symmetry

between the specialized tenants and the tenant with multiple

services also exists in terms of the total average costs. Finally,

Fig. 18 reports the resource distribution among tenants, which

clearly indicates that also resources are split equally (i.e. each

tenant gets approximately half of the available resources).

We can conclude that the proposed framework and the cor-

responding pricing mechanism are neutral to service special-

ization. Also, service prioritization (defined in Section II-A)

is preserved and fairness is achieved in terms of both resource

allocation and costs.
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Fig. 17. The average total cost per service per tenant
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Fig. 18. Effects of service specialization on resource distribution

H. Costs and utility in different sharing scenarios

In this subsection, the effects of the number of tenants |M |
on the average cost per tenant and the average utility per tenant
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Fig. 19. Effects of increasing number of tenants on the average utility and
average costs per tenant

per service are investigated. The analysis is conducted consid-

ering two different time scales, i.e. short term and long term.

In the short term, we assume that the infrastructure provider

cannot react to the increase of the number of tenants |M |
(and thus users |K|), e.g., expanding the available capacity. In

contrast, in the long term capacity can be scaled according to

the demand.

Fig. 19(a) shows the result for the short term analysis,

where the capacity is kept fixed while increasing |M |. On the

other hand, Fig. 19(b) presents the result for the long term

assumption, where the capacity is proportionally increased

with |M |. Namely, we assume that the increase in capacity

is achieved by the infrastructure provider increasing the total

bandwidth. Results show that in the short term, see Fig. 19(a),

increasing the number of tenants causes a resource scarcity and

leads to a decrease of the average utility per tenant as expected.

On the other hand, as shown in Fig. 19(a), the increase in |M |
also causes a decrease of the individual costs of tenants. In

contrast, when considering a longer time scale (in the order of

months), the infrastructure provider can react to the changes in

|M | and adjust the available capacity according to the needs.

In this case, as depicted in Fig. 19(b), the average achieved

utility and the average cost are not a function of |M | (i.e. are

almost constant when varying |M |).
Therefore, on one hand we can conclude that, in the long

term, if the InP is able to expand the network capacity ac-

cording to the tenants’ needs, the proposed platform provides

a sustainable resource sharing even when increasing |M |.
On the other hand, in the short term, we cannot draw any

conclusion only based on Fig. 19(a), since a decrease of

the average utility could be compensated by a decrease in

terms of cost (and hence price for the users). To evaluate the

tradeoff between utility and cost (price), we use the concept

of acceptance probability presented in [29]. In particular, the

authors propose to model the acceptance probability as:

Ak(p, Uk) = 1− exp(−Cp−✏Uµ
k ), (8)

which basically corresponds to the likelihood of user k to

accept a service with price p and a corresponding utility Uk,

where µ and ✏ are microeconomic parameters and C is a

constant (that we set to the same values suggested in [29]).

To assess the sustainability of the sharing platform, we

assume that each tenant aims to keep its profit constant,

regardless of the number of tenants. This means that a variation

of the costs directly affects the prices (that are computed as

the sum of the costs and the profit). Therefore, increasing |M |
is accepted by the tenants, if the market share (i.e. the number

of users) of each tenant is not decreasing, meaning that the

acceptance probability (Ak(p, Uk)) should be a non-decreasing

function of |M |.
By using (8), the condition above can be used, for two

generic values |M1| ≤ |M2|, as:

Ak,M1
(pM1

, Uk,M1
) ≤ Ak,M2

(pM2
, Uk,M2

), (9)

where

Ak,M1
(pM1

, Uk,M1
) = 1− exp(−Cp−✏

M1
Uµ
k,M1

),

Ak,M2
(pM2

, Uk,M2
) = 1− exp(−Cp−✏

M2
Uµ
k,M2

).

Assuming that the parameters µ, ✏, and C are the same for

both M1 and M2, (9) can be formulated as
✓

Uk,M1

Uk,M2

◆µ

≤

✓

pM1

pM2

◆✏

. (10)

Satisfying (10) means that the variation in the average utility

is accepted by the users since it is compensated by the decrease

of the service price. In this case, the acceptance probability of

k ∈ K is a non-decreasing function of |M |.
Considering the same scenario of Fig. 19, Table V reports

the numerical values for (10). As one can observe, inequality

is always satisfied, which means that the users are paying less

for their utility, and they are still willing to accept the service.

Therefore, we can conclude that our proposed model provides

a cost efficient and sustainable model even in short term.

TABLE V
VARIATION OF AVERAGE UTILITY AND TOTAL COSTS PER TENANT WITH

THE NUMBER OF TENANTS IN SHORT TERM

|M1| → |M2|

✓

Uk,M1

Uk,M2

◆µ ⇣

pM1

pM2

⌘

✏

2 → 3 1,2834 3,7822

3 → 4 1,1744 2,6893

4 → 5 1,1372 2,2142

A further insight is given in Table VI, where Eq. (10) is

evaluated for all the slice types (where ‘yes’ means that the

Eq. (10) holds). In this case, we can see that, by increasing

the number of tenants from |M | = 4 to |M | = 5, the

acceptance probability of the elastic users decreases, whereas

always increases for non-elastic services. This means that the

tenants have a risk of losing some of the elastic traffic.

TABLE VI
EVALUATION OF THE USERS’ ACCEPTANCE PROBABILITY FOR ALL SLICE

TYPES (WE USE ‘YES’ TO INDICATE THAT EQ. (10) HOLDS, ‘NO’
OTHERWISE)

|M1| → |M2| Elastic Inelastic M2M Background

2 → 3 Yes Yes Yes Yes

3 → 4 Yes Yes Yes Yes

4 → 5 No Yes Yes Yes
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The decrease in the acceptance probability of elastic ser-

vices can be handled by an accurate and timely capacity

expansion. The proposed pressure cost allows the infrastruc-

ture provider to accurately estimate the capacity needs and

the expansion time. Even though increasing |M | leads to

lower utilities, since the collected pressure cost proportionally

increases with the utility decrease, higher |M | also implies

faster capacity expansions.

V. CONCLUSION

We have shown that dynamic network slicing offers an effi-

cient way of exploiting variable traffic and channel conditions

to share resources among tenants, following different strate-

gies, bearing different characteristics. Our proposed scheme

defines a new platform where tenants can acquire resources

within a short time frame, negotiating through a set of network

and economic parameters. Our numerical results demonstrate

that the proposed approach provides fairness among both

tenants and services and can improve the efficiency of resource

allocation up to 40% by exploiting simple prediction mech-

anisms. Despite the tenants share a common infrastructure,

results have also demonstrated that it is possible for them to

differentiate their services by tuning model parameters. We

have also shown that the pricing model can allocate economic

resources for capacity expansion and that this is crucial to keep

infrastructure sharing convenient for the tenants.

ACKNOWLEDGMENT

This work is funded by the European Unions Horizon

2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement No. 643002.

The authors would like to thank Ms. Noemi Wagner for

copy editing the publication material.

REFERENCES

[1] Cisco, “The zettabyte era: trends and analysis,”
2017. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.pdf

[2] W. Lemstra, “Leadership with 5G in Europe: Two contrasting images of
the future, with policy and regulatory implications,” Telecommunications

Policy, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0308596118300491

[3] China Mobile Communications Corporation, Huawei Technologies,
Deutsche Telekom, and Volkswagen, “5G service-guaranteed network
slicing white paper,” 2017.

[4] OECD, “Wireless market structures and network sharing,” 2014.
[Online]. Available: http://dx.doi.org/10.1787/5jxt46dzl9r2-en

[5] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and pricing
models: A survey,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 2, pp. 954 – 1001, 2017.

[6] D. Zhang, Z. Chang, and T. Hamalainen, “Reverse combinatorial auction
based resource allocation in heterogeneous software defined network
with infrastructure sharing,” in IEEE Vehicular Technology Conference

(VTC Spring), 2016.
[7] P. Cramton and L. Doyle, “An open access wireless market

supporting competition, public safety, and universal service,” 2016.
[Online]. Available: http://www.cramton.umd.edu/papers2015-2019/
cramton-doyle-open-access-wireless-market.pdf

[8] M. R. Hassan, G. C. Karmakar, J. Kamruzzaman, and B. Srinivasan,
“Exclusive use spectrum access trading models in cognitive radio
networks: A survey,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2192–2231, Fourthquarter 2017.

[9] O. U. Akgül, I. Malanchini, V. Suryaprakash, and A. Capone, “Dynamic
resource allocation and pricing for shared radio access infrastructrue,”
in IEEE International Conference on Communications (ICC), 2017.

[10] G. S. Kasbekar, S. Sarkar, K. Kar, P. K. Muthuswamy, and A. Gupta,
“Dynamic contract trading in spectrum markets,” IEEE Transactions on

Automatic Control, vol. 59, no. 10, pp. 2856 – 2862, 2014.
[11] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slicing

in virtual wireless networks: A survey,” IEEE Transactions on Network

and Service Management, vol. 13, no. 3, pp. 462 – 476, 2016.
[12] X. Ting, P. Zhiwen, L. Nan, and Y. Xiaohu, “Inter-operator resource

sharing based on network virtualization,” in International conference on

Wireless Communication Signal Processing (WCSP), Oct 2015, pp. 1–6.
[13] M. I. Kamel, L. B. Le, and A. Girard, “LTE wireless network virtu-

alization: Dynamic slicing via flexible scheduling,” in IEEE Vehicular

Technology Conference (VTC Fall), Sept 2014, pp. 1–5.
[14] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing manage-

ment & prioritization in 5G mobile systems,” in 22 European Wireless

2016; 22th European Wireless Conference. IEEE, May 2016, pp. 1–6.
[15] D. Zhang, Z. Chang, T. Hmlinen, and F. R. Yu, “Double auction based

multi-flow transmission in software-defined and virtualized wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 12, pp. 8390–8404, Dec 2017.

[16] K. Zhu, Z. Cheng, B. Chen, and R. Wang, “Wireless virtualization as
a hierarchical combinatorial auction: An illustrative example,” in 2017

IEEE Wireless Communications and Networking Conference (WCNC),
March 2017, pp. 1–6.

[17] D. Zhang, Z. Chang, T. Hmlinen, and W. Gao, “A contract-based
resource allocation mechanism in wireless virtualized network,” in IEEE

INFOCOM 2018 - IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), April 2018, pp. 474–479.
[18] A. Gran, S.-C. Lin, and I. F. Akyildiz, “Towards wireless infrastructure-

as-a-service (WIaaS) for 5G software-defined cellular systems,” in 2017

IEEE International Conference on Communications (ICC), 2017.
[19] O. U. Akgül, I. Malanchini, V. Suryaprakash, and A. Capone, “Service-

aware network slice trading in a shared multi-tenant infrastructure,” in
IEEE Global Communications Conference (GLOBECOM), 2017.
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