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ABSTRACT 
 

In this paper, an analytical approach is presented for the determination of the natural 

frequencies of tall structures with a combined system of the framed tube, shear core and 

outrigger-belt truss. It has been assumed that the structure has variable stiffness and mass 

along the height. The framed tube is modeled as a cantilevered beam with variable box cross 

section and effects of outrigger-belt truss and shear core on the framed tube system are 

modeled as a concentrated moment applied at outrigger-belt truss locations. Through 

repetitive integrations, the governing partial differential equations are converted into weak 

form integral equations. By applying the boundary conditions, the integration constants are 

determined. The mode shape function is approximated by a power series. Substitution of the 

power series into weak form integral equations results in a system of linear algebraic 

equations. The natural frequencies are determined by calculation of the non-trivial solution 

for the resulting system of equations. Accuracy of the proposed method is verified through 

several numerical examples, in which the results of the analysis are compared with those 

obtained from other references. 

 

Keywords: Tall structure; weak form integral equation; framed tube; shear core; outrigger-

belt truss; natural frequency. 

 

 

1. INTRODUCTION 
 

The natural frequency of a tall structure is one of the most important parameters that effects on 

the response of the structure to earthquake excitation. Hence, it is necessary to develop new 

and simple methods for free vibration analysis and determination of the natural frequencies 

and mode shape functions. In existing real tall structures, the stiffness and mass of the 

structure changes along the height. Therefore, modeling of the tall structure by a cantilevered 

beam with variable stiffness and mass may provide a realistic distribution of mass and stiffness 

desired for accurate structural analysis. In recent years, tubular building has been accepted as 
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an economical and developed structural system. This system consists of closely spaced 

exterior columns along the periphery of the structure interconnected by deep spandrel beams 

of each floor level. This produces a system of rigidly jointed orthogonal frame panels forming 

a rectangular tube which acts as a cantilever hollow box (Fig. 1).  

 

 
Figure 1. Equivalent structure of tubular building with variable stiffness and mass, (a): actual 

structure, (b): equivalent cantilevered beam with variable hollow box cross section 

 

In tubular buildings, flexibility of spandrel beams produces shear lag phenomenon which 

has the effect of increasing axial stress in corner columns and decreasing the axial stress in 

the inner columns while reducing lateral stiffness of the structure [1]. Tubular buildings 

combined with shear core and outrigger-belt truss have shear-flexural behavior in vibration, 

hence provide sufficient rigidity and strength, limited lateral displacement, less material 

consumption and high flexibility provided in the internal space design in compare to 

commonly framed structures. It should be noted that when buildings taller than a certain 

limit are to be constructed, common structural systems will no longer be suitable. This is 

because of the fact that in tall buildings, rigidity and stability criteria become more 

important than the strength criterion [2].  

Exact analysis of tall structure (3-D analysis) is expensive, but approximate methods 

presented for free vibration analysis of the structures are suitable solutions for preliminary 

design stage. Many researchers have investigated free vibration of the tall structures using 

various approaches [3-15]. An analytical model for the dynamic analysis of tall buildings with 

a shear wall–frame structural system has been proposed by Park et al. [16]. It has been shown 

that the deformed shape of the shear wall–frame structural system is the combination of 

flexural mode and shear mode. A modified theory on the premise that a frame-wall system, 

deforming in shear and flexural modes, can be separated into two substructures that lie above 
and below the point of counter-flexure in the base story columns has been developed by Kazaz 

et al. [17]. Rahgozar et al. [18] presented a dynamic analysis of the combined system of 

framed tube and shear walls by Galerkin method using B-spline functions. Rahgozar et al. [1] 

determined the optimum location of a belt truss reinforcing system on tall buildings such that 

the displacements due to lateral loadings would generate the least amounts of stress and strain 
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in building’s structural members. Malekinejad and rahgozar [2] calculated the natural 
frequencies and mode shapes of multistory buildings with combined system of framed tube, 

shear core and outrigger- belt trusses systems. Timoshenko’s beam model, which considers the 
influence of shear and flexural deformation, has been used in modeling of framed tube 

structures by Kamgar et al. [19]. Lee [20] has presented an approximate solution procedure for 

free vibration analysis of tube-in-tube tall buildings using the power-series solution method. 

The first natural frequency of tall buildings including framed tube, shear core, belt truss and 

outrigger system with multiple jumped discontinuities in the cross section of framed tube and 

shear core has been determined by Kamgar and Saadatpour [21]. They partitioned the entire 

length of the tall building into uniform segments between each two successive discontinuity 

points and by applying the continuity conditions in conjunction with different segments 

obtained the unique mode shape for mentioned system. The optimal outrigger placement of 

tall structure using topology optimization has been determined by Lee et al.[22]. Saffari et al. 

[23], Mohammadnejad et al. [24], Saffari et al. [25] and Mohammadnejad [26] presented an 

analytical approach for determination of the natural frequencies of non-prismatic Beams. They 

converted the governing differential equations to its weak-form integral equations. The 

continuum approach has been used for conversion of the governing equations of wall-frame 

structures with outriggers into solvable equations by Lee et al., [15]. They idealized the whole 

structure as a shear-flexural cantilever with rotational springs. Kwan [27] has proposed an 

approximate method for analysis of framed tube structures with the shear lag effects.  

In this paper, a new and simple analytical approach is proposed for approximate analysis 

of tall structure with a combined system of framed tube, shear core and outrigger-belt truss. 

The tall structure is modeled by a cantilevered beam with variable stiffness and mass along 

the height, hence the governing partial differential equation with variable coefficients is 

solved in order to calculate the natural frequencies. The effects of outrigger-belt truss and 

shear core on the framed tube system are modeled as a concentrated moment applied at 

outrigger-belt truss locations. Behavior of the tall structure is equivalent to a cantilevered 

beam with variable hollow box cross section that has been constrained at belt truss locations 

with rotating springs (Figs. 1, 2). 

 

 
Figure 2. Constrained beam at belt truss locations with rotating springs, a: Plan of the original 

structure at location of Belt truss with outrigger b: Equivalent rotational springs including the 

effect of the belt truss and outrigger system on the framed tube 
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2. METHODOLOGY: WEAK FORM OF DIFFERENTIAL EQUATIONS 
 

The governing differential equation for free vibration of a beam with variable stiffness and 

mass is a partial differential equation with variable coefficients. Many mathematical 

techniques may be employed to determine the numerical solution or the approximate 

solution for this equation. The presented approach in this paper for conversion of the 

governing partial differential equation into solvable one is based on the conversion of the 

governing equation into its weak form. A differential equation includes a function and its 

derivatives. The weak form of the differential equation is obtained through the repetitive 

integration of the initial equation. The integration continues till the resulting integral 

equation, includes only the function itself after the last integration stage; derivatives of the 

function will have been eliminated due to the integration. The solution of the weak form of 

the differential equation instead of the initial equation has many applications in the finite 

elements analysis [28]. 

 

 

3. FORMULATION AND SOLUTION 
 

3.1 Conversion of the governing partial differential equation into its weak form 

Consider a tall structure with a combined system of framed tube, shear core and outrigger-

belt truss elements which has variable mass and stiffness along the height and subjected to 

the action of transverse loading, q, distributed along the its height. Accounting for total 

potential energy of the system and applying Hamilton’s principle, the governing equation for 

equivalent beam is given as follows [2]: 

 
2 2 2

2 2 2
[ (x) (x, )] [ (x) (x, )] (x) (x, ) (x, ) 0,

0 (1)

GA y t EI y t m y t q t
x x x x t

x L

    
   

    
 

 

In which (x, ), , (x), (x)y t L m EI  and (x, )q t  are the transverse displacement, height of 

structure, mass per unit length, bending stiffness and distributed applied load, respectively.

(x)GA  is the shear stiffness which depends on both shear modulus of elasticity G and 

cross-sectional area (x)A . In order to treat free vibration of the structure, it is necessary to 

take (x, ) 0q t  . If motion is represented by a harmonic vibration, the transverse 

displacement is obtained using the following relation: 

 

  i, ( ) (2)t
y x t x e


 

where ( )x and   are the mode shape function and natural frequency of the beam, 

respectively. Substitution of relationship (2) into Eq. (1) leads to a single-variable equation 

in terms of location, as follows: 
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2 2
2

2 2

d d d d
[ (x) (x)] [ (x) (x)] (x) (x) 0, 0 (3)

dx dx dx dx
GA EI m x L       

 

For further convenience, the following variables are introduced: 

 

(4)
x

L
 

 

Substituting variable (4) into Eq. (3) leads to: 

 
2 2

2 2 4

2 2

d d d d
[ ( ) ( )] [ ( ) ( )] ( ) ( ) 0, 0 1 (5)

d d d d
L GA EI L m          

   
    

 

Eq. (5) is, in fact, the free vibration equation of the tall structure based on the non-

dimensional variable . In order to transform Eq. (5) to its weak form, both sides of Eq. (5) 

are integrated twice with respect to  within the range 0 to . The results are the integral 

equations as follows: 

 
2

2 2 4

12

0

d d d
( ) ( ) [ ( ) ( )] ( ) ( ) (6)

d d d
L GA EI L m s s ds C



       
  

  

2 2 4 2

0

2

1 22

( ) ( ) [ ( ) ( ) ( )] ( )

d
( ) ( ) (7)

d

L GA L s m s L GA s s ds

EI C C



     

   


  

  



 
 

Further, integration from both sides of Eq. (7) twice with respect to


 from 0 to


yields: 

 
2 4

2 2 2

0

21
2 3

[ ( ) ( ) ( ) ( ) ( ) ( )] ( )
2

d
( ) ( ) ( ) ( ) (8)

d 2

L
L GA s L G s A s EI s s m s s ds

C
EI EI C C

   

       


     

    



2 2 4
2 2 3

0

3 21 2
3 4

[ ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )] ( )
2 6

( ) ( ) (9)
6 2

L G L
L G s A s s A s EI s s EI s s m s s ds

C C
EI C C

     

     

         

    


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Eq. (9) is the integral equation of the weak form of Eq. (5). As can be seen, Eq. (5) 

includes a fourth order derivative of the mode shape function and after four successive 

integrations, Eq. (9) includes only the mode shape function itself. In Eq. (9) 1C , 2C  , 3C  and

4C are the integration constants which are determined through boundary conditions of both 

ends of the beam. Eqs. (6)-(9) are applicable for determination of the integration constants. 

 

3.2 Boundary conditions 

Since the original structure is modeled by an equivalent cantilevered beam, the following 

boundary conditions must be considered for the cantilevered beam: 

 

0 (0, t) 0 0 (0) 0 (0) 0 (10)

d d
0 (0, t) 0 0 (0) 0 (0) 0 (11)

d d

i t

i t

x y or e

y
x or e

x L





  
 
 







     
     


 

Also, the following boundary conditions are established for a tall structure with a 

combined system of framed tube, shear core and belt truss elements: 

 
2

2

2

2

2

1

(x) (x, ) [ (x) y(x, )] 0

d d d
( ) ( ) [ ( ) ( )] 0 (12)

d d d

x L

GA y t EI t
x x x

or

L GA EI



     
  





  
  

  

  

  
  

 


      

1 2

1 2

2

1 22

2

1 22

1

(x) (x, ) 2 ( , ) 2 ( , ) 0

d d d
( ) ( ) 2 ( ) 2 ( ) (13)

d dd

e e

e e

x L

EI y t k y L t k y L t
x xx

or

EI k L k L


      

  

  
  
    

       

     
 

  

 

In the above relations, 
1ek and 

2ek are the equivalent stiffness values of rotational springs 

placed at 1x L and 2x L respectively. 1L and 2L are location of belt truss. In Eq. (13) 

1
1

L

L
  and 2

2

L

L
  are applied. The effect of belt truss and shear core on the framed tube 

structure are modeled as a concentrated moment applied at belt truss locations; which acts in 

the opposite direction of rotation created by the lateral loads(Fig. 2). Application of the 

condition (10) at Eq. (9) and conditions (10) and (11) at Eq. (8) leads to: 

 

3 40, 0 (14)C C 
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Also, Application of the condition (12) at Eq. (6) leads to: 

 
1

2 4

1

0

[ ( )] ( ) (15)L m s s ds C  
 

Substitution of the condition (13) and relation (15) into Eq. (7) yields: 

 

1 2

1

2 4 2 2 4

0

2

1 2 2

[ (1 ) ( ) ( ) ( )] ( )

d d
(1) (1) 2 ( ) 2 ( ) (16)

d d
e e

L s m s L GA s L m s s ds

L GA k L k L C

  

   
 

  

   



 

It is easily found that in Eq. (16), 1(1) , ( )
d

d

 


 and 2( )
d

d

 


 are also unknown. As a 

consequence, two other independent equations are needed for uniquely determining 2C . 

Substitution of 1 3,C C  and 4C  into Eq. (9) results in an equation which can be used for 

calculation of ( )  as follows: 

 
2 2

2

0

12 4 2 4
3 3 22

0

2 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( )

( ) ( )] ( ) ( ) ( ) (17)
6 ( ) 6 ( ) 2 ( )

[

[ ]

L G L G I s s I s
s A s s A s

EI EI I I

CL L
s m s s ds m s s ds

EI EI EI

    
   

     
  

      

   




 

(1) can be calculated by setting 1  into Eq. (17). The result is as follows: 

 
1 2 2 2 4

2 3

0

2 4

2

2 ( ) (1 ) ( )
(1) (1 ) ( ) (1 ) ( ) (1 ) ( )

(1) 2 (1) (1) (1) 6 (1)

( ) ( ) (18)
6 (1) 2 (1)

[

]

L G L G I s s I s L
s A s s A s s m s

EI EI I I EI

CL
m s s ds

EI EI



 

        

 



 

Also, substitution of 1 3,C C  and Eq. (17) into Eq. (8) results in the following equation 

which can be used for calculation of 
d

( )
d

 


: 
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1 2 4 2 4
3 21

22 2

0 0

2

22

( , )d ( ) ( )
( ) ( , ) ( ) ( ) ( ) ( )

d ( ) 2 ( )( ) 6 ( )

( )
[ ] (19)

( )2 ( )

[ ] [ ]
f s I L I L

f s s ds m s m s s ds
EI EIEI EI

I
C

EIEI


          

   

  


 
   


 

 

 

In which 1( , )f s and 2 ( , )f s are obtained as follows: 

 
2 4

2 2 2
1

2 2 4
2 2 3

2

( , ) ( ) ( ) ( ) ( ) ( ) ( )
2

( , ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )
2 6

(20)

L
f s L GA s L G s A s EI s s m s

L G L
f s L G s A s s A s EI s s EI s s m s

  

    


      


           

 

1

d
( )

d

 


and 2

d
( )

d

 


 can be calculated by setting 1  and 2  into Eq. (19) respectively. 

The results are as follows: 

 
1 1 2 4 2 4

3 21 1 1 1
1 2 1 1 12 2

1 11 10 0

2
1 1 1

22
11

( , ) ( ) ( )d
( ) ( , ) ( ) ( ) ( ) ( )

d ( ) 2 ( )( ) 6 ( )

( )
[ ] (21)

( )2 ( )

[ ] [ ]
f s I L I L

f s s ds m s m s s ds
EI EIEI EI

I
C

EIEI


         

   

  


 
   


 

 

2 1 2 4 2 4
3 21 2 2 2

2 2 2 2 22 2
2 22 20 0

2
2 2 2

22
22

( , ) ( ) ( )d
( ) ( , ) ( ) ( ) ( ) ( )

d ( ) 2 ( )( ) 6 ( )

( )
[ ] (22)

( )2 ( )

[ ] [ ]
f s I L I L

f s s ds m s m s s ds
EI EIEI EI

I
C

EIEI


         

   

  


 
   


 

 

 

By substitution of 1(1) , ( )
d

d

 


 and 2( )
d

d

 


 into Eq. (16), integration constant 2C is 

calculated. Substitution of the integration constants 1C , 2C , 3C  and 4C into Eq. (9) results in 

an integral equation in ( )   as follows: 

 
1 21

2 3 4 5

0 0 0 0

( , ) (s)ds ( , ) (s)ds ( , ) (s)ds ( , ) (s)ds ( ) ( ) 0 (23)f s f s f s f s EI

 

                 
 

In which: 
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2 2 4
3

3 1

2

4 2

2

5 3

( , ) ( ) ( )
2 6

( , ) ( ) (24)
2

( , ) ( )
2

L
f s M s m s

f s M s

f s M s

  






 


 







 

where: 

 

1 1 2 2

1 1

5 2 3 5 2 2 5 2 3 5 2 22 6
1 1 1 2 2 22 4 2 4

1 2 2
1 21 2

2
2

2

1

2 1 1
1

( ) ( )(1)
( ) (1 ) ( )

6 (1) ( ) ( )3 ( ) 3 ( )

(1)
( ) (1, )

(1)

2 2 ( )
( ) ( , )

( )

e e e e

e e

k L I k L k L I k LL GA
M s L s L m s

EI EI EIEI EI

L GA
L GA s f s

EI

k L k LI
M s f s

EI EI

          
  






  
        
  

 


 

2 2

1 1 2 2

2 12
1

2

3 1 2 2 22
2 2

2
1 1 2 22 2

1 22 2
1 21 2

( , ) (25)
( )

2 2 ( )
( ) ( , ) ( , )

( ) ( )

2 ( ) 2 2 ( ) 2(1)

2 (1) ( ) ( )2 ( ) 2 ( )

e e

e e e e

f s

k L k LI
M s f s f s

EI EI

K LI K L K LI K LL GA

EI EI EIEI EI





 
 

   
 

  













 
  



 
      


 

3.3 Solution of the resulting integral equation 

In preceding section, the governing partial differential equation for free vibration of the tall 

structure with a combined system of framed tube, shear core and outrigger-belt truss is 

converted into the integral equation (23) as: 

 
1 21

2 3 4 5

0 0 0 0

( , ) (s)ds ( , ) (s)ds ( , ) (s)ds ( , ) (s)ds ( ) ( ) 0f s f s f s f s EI

 

                   

 

The mode shape function ϕ(s) is the only unknown parameter in the obtained integral 

equation. In order to solve the integral equation (23) and to determine the natural 

frequencies, the mode shape function is approximated by the following power series: 

 

0

( ) (26)

R
r

r

r

c  



 

where rC  are unknown coefficients to be determined and R is a given positive integer, 
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which is adopted such that the accuracy of the results are sustained. Introducing Eq. (26) 

into integral equation (23) leads to: 

 

1 21

2 3 4 5

0 0 0 0 0

( , ) d ( , ) d ( , ) d ( , ) d ( ) 0 (27)

R
r r r r r

C r

r

f s s s f s s s f s s s f s s s EI

 

     


 
     
 
 

    
 

Both sides of Eq. (27) are multiplied by m  and integrated subsequently with respect to 

 between 0 and 1. This results in a system of linear algebraic equations in rC : 

 

2 3 4 5

0

( , ) ( , ) ( , ) ( , ) ( , ) 0 0,1,2,..., (28)

R

r

r

F m r F m r F m r F m r G m r c m R



       
 

In which functions ( , ), ( 2,3,4,5)iF m r i  and ( , )G m r  are expressed as follows: 

 

1

2

1

2 2

0 0

1 1

3 3

0 0

1

4 4

0 0

1

5 5

0 0

1

0

( , ) ( , ) d d

( , ) ( , ) d d

( , ) ( , ) d d (29)

( , ) ( , ) d d

( , ) ( )d

r m

r m

r m

r m

r m

F m r f s s s

F m r f s s s

F m r f s s s v

F m r f s s s

G m r EI







  

  

  

  

  


 



 


 












 

 

 

 


 

The system of linear algebraic equations (28) may be expressed in matrix notations as 

follows: 

 

0 (30)
( 1) ( 1) ( 1) 1 ( 1) 1

A C
R R R R

                
 

In which [ ]A  and [ ]C  are coefficients matrix and unknowns vector respectively. The only 

unknown parameter in the coefficients matrix [ ]A  is the natural frequency of the tall 

structure . [ ] 0C  is a trivial solution for the resulting system of equations introduced in 

(30). The natural frequencies are determined through calculation of a non-trivial solution for 

resulting system of equations. To achieve this, the determinant of the coefficients matrix of 

the system has to be vanished. Accordingly, a frequency equation in (which is a 
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polynomial function of the order 2( 1)R  ) is introduced. The roots of the frequency equation 

are the natural frequencies of tall structure. Given the fact that the mode shape function is 

approximated by the power series of (26), the results accuracy is improved if more number 

of the series sentences is taken into account. 

 

 

4. MODE SHAPE FUNCTIONS 
 

After calculation of the natural frequencies according to presented approach, we can 

calculate the mode shape functions of the vibration. Using Eq. (26) the mode shape function 

of thi mode ( )i  corresponding to natural frequency of thi mode i is obtained as follows:  

 

         2
0 1 2

0

( ) .... (31)

R
r R

i r Ri i i ii
r

c c c c c     


     
 

In which  r i
C  (r=0,1,…R) are the unknown coefficients of the power series 

corresponding to thi mode. To calculate the mode shape function ( )i  , the unknown 

coefficients of power series  r i
C  should be calculated independently. System of linear 

algebraic equations (28) has the matrix form ( 1, 1) ( 1,1)[ ] [ ] 0R R r RA C    . The natural frequency 

  is the unknown parameter in the coefficients matrix 
( 1, 1)[ ] R RA   . By substitution of the 

natural frequency of thi mode i  calculated in the preceding section, into the coefficients 

matrix 
( 1, 1)[ ] R RA   , the system of linear algebraic equations (28) takes the following form: 

 

( 1, 1) ( 1,1)[A ] [ ] 0 (32)
iR Ri r RC   

 
 

In which 
( 1, 1)[A ] R Ri    and ( 1,1)[ ]

ir RC  are the coefficients matrix and unknowns vector 

corresponding to thi mode, respectively. By setting  0 1
i

C  into Eq. (32) and solving the 

obtained equation, the coefficients   1,2,...,r i
C i R are calculated.  

 

 

5. NUMERICAL EXAMPLES 

 

In order to verify the accuracy and efficiency of the proposed analytical approach, five 

numerical examples that have been examined by previous researcher are investigated in this 

section.  

 

5.1 Numerical example 1 

In this example, the numerical example presented by Malekinejad and Rahgozar [2] is 

investigated. Analyses has been performed for three high-rise 40, 55 and 70-storey 
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reinforced concrete buildings for which the horizontal resistance to wind loading is provided 

by systems of (i) framed tube, (ii) framed tube and shear core, (iii) framed tube, shear core 

and two belt trusses. Geometric and material characteristics for the equivalent structure are 

given in Table 1. The first two natural frequencies for each building are calculated according 

to presented approach in this paper. The results are then compared to results of Malekinejad 

and Rahgozar [2] and those obtained using finite element analysis (SAP2000, Advanced 

V12, Computers and Structures, Berkeley, California, USA). The results are listed in Tables 

2 and 3.In these tables, parameters 2 m
L

EI
  , 1

1

2 e
e

k
k L

EI


 
and 2

2

2 e
e

k
k L

EI
  are applied.  

 
Table 1: Geometric and material characteristics for the equivalent structure 

Type of building 
Properties of equivalent structure 

2
(kg.m )EI  (kg)GA  

Framed tube 131.0115 10  92.651 10  

Framed tube with shear core 131.0151 10  94.651 10  

Combined system with double belt trusses 131.0151 10  94.651 10  

 
Table 2: Comparison of the first two natural frequencies of 40, 55 and 70-storey buildings 

Type of building ( )mL    

rad
( )
sec

  

proposed 

method 

rad
( )
sec

  

Malekinejad and 

Rahgozar [2] 

rad
( )
sec


 

SAP-2000 

1  2  1  2  1  2  

Framed tube 

120 2.7591 1.9327 8.9239 1.923 8.928 1.986 8.376 

165 5.1962 1.2344 5.1334 1.236 5.137 1.372 4.575 

210 8.4394 0.891 3.4478 0.893 3.451 0.976 3.270 

Framed tube 

with shear core 

120 2.7983 2.2394 9.4248 2.230 9.425 2.035 9.590 

165 5.2708 1.4666 5.6139 1.467 5.614 1.391 5.744 

210 8.5598 1.0742 3.8807 1.075 3.881 0.989 3.524 

 
Table 3: Comparison of first two natural frequencies of 40, 55 and 70-storey buildings with 

double outrigger-belt trusses 

1H  2H  ( )mL    
1ek  

2ek  

Proposed 

method 

Malekinejad 

and 

Rahgozar [2] 

SAP-2000 

1  2  1  2  1  2  

6

L
 

4

L
 

120 2.9536 0.1192 0.1185 2.1407 8.868 2.141 8.869 2.295 8.886 

165 5.4479 0.1632 0.1618 1.4288 5.3936 1.429 5.394 1.499 4.937 

210 8.7596 0.2066 0.2045 1.055 3.7677 1.056 3.768 1.029 3.388 

6

L
 

2

L
 

120 2.9536 0.1192 0.1164 2.1435 8.9079 2.144 8.908 2.238 8.699 

165 5.4479 0.1632 0.1580 1.4296 5.4192 1.430 5.421 1.463 4.856 
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210 8.7596 0.2066 0.1987 1.055 3.7849 1.056 3.785 1.006 3.319 

6

L
 

3

4

L
 

120 2.9536 0.1192 0.1145 2.1422 8.9487 2.142 8.949 2.120 8.213 

165 5.4479 0.1632 0.1546 1.4283 5.4422 1.429 5.443 1.415 5.035 

210 8.7596 0.2066 0.1929 1.0545 3.7977 1.055 3.799 0.989 3.442 

6

L
 L  

120 2.9536 0.1192 0.1128 2.1403 8.9530 2.141 8.954 2.043 8.648 

165 5.4479 0.1632 0.1513 1.4270 5.4422 1.428 5.443 1.388 4.774 

210 8.7596 0.2066 0.1880 1.0537 3.7965 1.054 3.797 0.969 3.277 

4

L
 

2

L
 

120 2.9536 0.1185 0.1164 2.1461 8.9083 2.147 8.909 2.217 8.510 

165 5.4479 0.1618 0.1580 1.4308 5.4201 1.431 5.422 1.458 4.707 

210 8.7596 0.2045 0.1987 1.056 3.7859 1.057 3.787 1.002 3.276 

4

L
 

3

4

L
 

120 2.9536 0.1185 0.1145 2.1446 8.9492 2.145 8.950 2.103 8.939 

165 5.4479 0.1618 0.1546 1.4294 5.4431 1.430 5.444 1.411 4.848 

210 8.7596 0.2045 0.1929 1.0551 3.7991 1.056 3.800 0.985 3.389 

4

L
 L  

120 2.9536 0.1185 0.1128 2.1427 8.9535 2.143 8.954 2.028 8.431 

165 5.4479 0.1618 0.1513 1.4281 5.4430 1.429 5.444 1.384 5.615 

210 8.7596 0.2045 0.1880 1.0543 3.7974 1.055 3.798 0.966 3.732 

2

L
 

3

4

L
 

120 2.9536 0.1164 0.1145 2.1474 8.9893 2.147 8.99 2.303 9.156 

165 5.4479 0.1580 0.1546 1.4302 5.469 1.431 5.470 1.372 4.804 

210 8.7596 0.1987 0.1929 1.0552 3.8165 1.056 3.817 0.970 3.359 

2

L
 L  

120 2.9536 0.1164 0.1185 2.1459 8.9954 2.146 8.996 2.281 8.798 

165 5.4479 0.1580 0.1513 1.4289 5.4682 1.429 5.470 1.348 5.529 

210 8.7596 0.1987 0.1880 1.0544 3.8142 1.055 3.815 0.952 3.694 

3

4

L
 L  

120 2.9536 0.1145 0.1185 2.1446 9.0346 2.144 9.036 1.913 9.597 

165 5.4479 0.1546 0.1513 1.4276 5.4902 1.428 5.491 1.308 4.995 

210 8.7596 0.1929 0.1880 1.0535 3.8268 1.054 3.828 0.941 3.568 

 

5.2 Numerical example 2 

The numerical example presented by Malekinejad and Rahgozar [6] is investigated here. A 

high-rise 60-storey reinforced concrete building, which consisted of framed tube, shear core 

and multi-outrigger–belt truss, is analyzed. Flexural and shear stiffness and mass per unit of 

length of equivalent beam for framed tube are 13 21.0115 10 kg.mEI   , 92.651 10 kgGA   and

377593.5
kg

m
m

 . Also, the framed tube with shear core has 13 21.0151 10 kg.mEI   , 

94.651 10 kgGA    and 389666.1
kg

m
m

 . The results of first four frequencies of framed tube 

with and without shear core are presented in Table 4. 

 
Table 4: first four frequencies of framed tube with and without shear core 

 
Present 

Malekinejad and Rahgozar 

[6] 
SAP-2000 

 
1  2  3  4  1  2  3  4  1  2  3  4  

Framed tube 1.0846 4.3872 10.6703 20.0987 1.09 4.39 10.67 20.10 1.17 3.98 9.99 19.5 

Framed tube 

with shear 

core 

1.2947 4.8463 11.082 20.379 1.29 4.85 11.08 20.38 1.24 4.46 10.72 19.06 
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The first four frequencies of building with combined system of framed tube, shear core 

and double-belt trusses are calculated and presented in Table 5. The mass per unit of length 

of the building is 413467.6
kg

m
. Flexural and shear stiffness of this building are the same 

what was stated for framed tube with shear core. In Table 5 1, 2
2

i

i

e
e i

k
k L

EI
  is applied. 

 
Table 5: First four frequencies of building with combined system of framed tube, shear core and 

double-belt trusses 

Position of Belt 

truss from Base 

of structure 
1ek  

2ek  

Present Malekinejad and Rahgozar [6] SAP-2000 

1  2  3  4  1  2  3  4  1  2  3  4  

L/6 L/4 0.178 0.176 1.264 4.6726 10.786 19.787 1.27 4.67 10.79 19.79 1.32 4.32 10.03 18.90 

L/6 L/2 0.178 0.172 1.2654 4.6946 10.748 19.769 1.27 4.69 10.75 19.77 1.30 4.24 9.84 18.73 

L/4 L/2 0.176 0.172 1.2663 4.6956 10.735 19.798 1.27 4.69 10.73 19.79 1.29 4.32 9.74 18.82 

L/4 3L/4 0.176 0.178 1.2653 4.7160 10.783 19.790 1.26 4.71 10.78 19.79 1.26 4.28 9.97 18.90 

L/2 L 0.172 0.164 1.2645 4.7353 10.765 19.825 1.26 4.74 10.77 19.83 1.20 4.37 9.89 19.18 

 

5.3 Numerical example 3 

In this example a 25-story tube-in-tube structure that has been examined by previous 

researchers is investigated. The flexural stiffness of the outer tube is

  9 235.2872 10 kN.m
o

EI   ,the flexural stiffness of the inner tube is   9 27.5538 10 kN.m
i

EI   . 

The total stiffness of equivalent beam of the tube-in-tube is      
t i o

EI EI EI  . The shear 

stiffness is 73.9888 10GA kN  , mass per unit length is
kg

3385.728m
m

 and building height 

is L=75.9 m. The first two natural frequencies are calculated and compared with those 

obtained by previous researchers. The results are presented in Table 6. 

 
Table 6: Comparison of first two frequencies of the 25-story tube-in-tube tall building. 

Methods 
Proposed 

method 

Malekinejad 

and Rahgozar 

[3] 

Youlin, 

[5] (Top 

displacem

et method) 

Youlin, [5] 

(Mode 

superpositio

n method) 

Wang, 

[7] 

Wang, 

[8] 

Lashkari 

[9] 

Wang, 

[11] 

Lee, 

[20] 

1 (rad/ sec)  3.7056 3.705 3.157 3.279 3.462 3.461 3.715 3.462 3.518 

2 (rad/ sec)
 

16.1326 16.127 - 17.921 
21.52

5 

19.23

9 
21.200 21.200 20.763 

 

5.4 numerical example 4: Tall structure with variable properties 

In this example, the numerical example presented by Kamgar and Saadatpour [21] which is 

a high-rise 40-storey reinforced concrete building consisting of framed tube, shear core, belt 

truss and outrigger system is analyzed. The flexural stiffness, shear stiffness and mass per 

unit length of the structure change along the height of the structure. Variation of the 

structure properties along the height are presented in Table 7. 
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Table 7: Equivalent properties of combined system consisting of framed tube, shear core, belt 

truss and outrigger system 

No. story 

Height from the 

base of the 

structure (m) 

Shear Stiffness 
(kg)AG  

Flexural Stiffness
2

(kg .m )EI  

Mass per unit 

length 
(kg/ m)m  

10 30 843.803 10  131.0548 10  378576  

21 63 843.803 10  131.0548 10  410432  

40 120 823.129 10  125.9091 10  343968  

 

In order to calculate the natural frequency of the structure with variable properties 

according to presented approach in this paper, we need to interpolate the functions which 

describe the variation of the structure properties along the height. Using data presented in 

Table 7, the interpolated functions for Shear stiffness ( )GA  and flexural Stiffness ( )EI  are 

obtained as follows: 
211 2 12 13

7 2 7 8

kg.m (0 1)

kg (0 1)

/

( ) 4.608 10 4.17708 10 1.0548 10

( ) 20.16 10 186.012 10 43.803 10

378576 410432 343968
( ) 377658

3
ave kg m

EI

GA

m m





  

  



 

 

      

      
 

  

 

Shear correction factor 0.86623  and the equivalent stiffness of the rotational spring 

including the effect of the belt truss and outrigger system on the framed tube
95.0115 10 .ek kg m   are applied. The height of the structure is 120 m. The location of belt 

truss and outrigger system is 30 m from the base of the structure (or 1 0.25  ). By neglecting 

axial force effects, the first natural frequency of the structure is calculated and compared 

with the result of Kamgar and Saadatpour [21] and result of analysis by SAP-2000. The 

results are presented in Table 8.  

 
Table 8: the first natural frequency of 40-storey structure of example 5.4 with combined system 

and variable properties 

Method present Kamgar and Saadatpour [21] SAP-2000 

1 (rad/ sec)  1.9393 1.855 1.8034 

 

5.5 Numerical example 5: Tall structure with variable properties 

Another numerical example that has been presented by Kamgar and Saadatpour [21] are 

investigated here. A high-rise 50-storey reinforced concrete building consisting of framed 

tube, shear core, belt truss and outrigger system is analyzed. Table 9 presents variation of the 

structure properties along the height. Shear correction factor 0.86623   and the equivalent 

stiffness of the rotational spring 95.0115 10 .ek kg m   are applied. The height of the 

structure is 150 m. The location of belt truss and outrigger system is 24 m from the base of 

the structure (or 1 0.16  ). 
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Table 9: Equivalent properties of combined system of example 5.5 

No. story 
Height from the base 

of the structure (m) 

Shear Stiffness 
(kg)AG  

Flexural Stiffness
2

(kg .m )EI  

Mass per unit 

length (kg/ m)m  

10 30 101.5327 10  132.4084 10  482238.72  

20 60 98.4894 10  131.6589 10  444240  

30 90 94.3803 10  131.0548 10  380646.4  

40 120 92.3129 10  125.9091 10  327868.8  
50 150 91.7745 10  122.6340 10  290304  

 

Using data presented in Table 9, the interpolated functions for Shear stiffness ( )GA  , 

flexural Stiffness ( )EI  and mass per unit length are obtained as follows: 

2

11 5

14 5 14 4 14 3 2 12

1

11 4 11 3 11 2 9

10

3
kg.m (0 1)

kg (0 1)

1.

( ) 1.4258 10 4

2728 0 3.8579 0 4.2816 0

.0219 10 4.3272 10 2.0189 7.3203 10

2.4084 10

( ) 1 1 1 1 1

1

( )

1.8983 0 6.6285 0

1.5327 0

385ave

EI

GA

m m





  

     

 





 

 

        

 

     











 


/059.5 kg m

By neglecting axial force effects, the first natural frequency of the structure is calculated and 

compared with result of Kamgar and Saadatpour [21] and result of analysis by SAP-2000. 

The results are presented in Table 10. 

 
Table 10: The first natural frequency of 50-storey structure of example 5.5 with combined 

system and variable properties 

Method Present Kamgar and Saadatpour [21] SAP-2000 

1 (rad/ sec)  1.7208 1.551 1.6175 

 

 

6. CONCLUSION 
 

Application of the weak form integral equations for free vibration analysis of tall structures 

with a combined system of framed tube, shear core and outrigger-belt truss that have 

variable stiffness and mass along the height has been presented. Through repetitive 

integrations, the governing partial differential equations with variable coefficients have been 

converted into weak form integral equations. In order to solve the resulting integral 

equations, the mode shape function of the vibration has been approximated by a power 

series and substitution of the power series into weak form integral equations transformed 

them into a system of linear algebraic equations. The natural frequencies of tall structure 

have been calculated by determination of a non-trivial solution for system of linear algebraic 

equations. Presented approach has been also used for determination of the mode shape 

functions of the vibration and internal forces of the structure. The accuracy, simplicity and 

reliability of the proposed method are verified thorough several numerical examples. 
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Differences between natural frequencies of proposed method and previous published works 

are in acceptable ranges. 
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