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Abstract

This paper presents a dynamic model to predict the rotor-bearing system’s vibration characteristics using Dimensional 
Analysis (DA). A small increment in rotor unbalance, and radial clearance can cause multiple faults, ultimately causing 
catastrophic failure. Hence, this model considers the in�uence of rotor unbalance and radial clearance on the dynamics 
of the rotor-bearing system. Experimental investigation reveals the e�ects of multiple defects at di�erent rotor speeds. 
Employed Response Surface Method (RSM) correlates the clearance, unbalance, and rotor speed. Comparing experimen-
tal results with the RSM and DA indicates the e�ectiveness of the proposed methodology for condition monitoring of 
high-speed machinery in process industries.

Keywords Unbalance · Clearance · Dimension analysis (DA) · Response surface method (RSM)

1 Introduction

Rotating machinery used in processing industries is 
designed for high speeds, tight tolerances, and high 
reliability to transmit maximum power under di�erent 
working conditions. The designing of such a system is 
necessary to maximize the equipment’s life to improve its 
overall performance. The rotor-bearing systems of modern 
machinery are complex, requiring a reliable and accurate 
prediction of their �uctuating dynamic characteristics. The 
fault diagnosis and detection play an important role in the 
reliability of high-speed machinery [1, 2]. The vibration 
monitoring is gaining importance nowadays because of 
its accuracy and reliability. The vibration monitoring sys-
tem with an advanced data acquisition system uses robust 
sensors and gives accurate and reliable signals widely used 
for early prediction of possible faults. However, the e�ec-
tiveness of these systems is a�ected by unwanted noise 
and other sources of vibrations. Furthermore, the faulty 
rotor-bearing system exhibits multiple harmonics while 

running at a particular frequency. The dynamic behavior 
of the rotor-bearing system is a�ected by nonlinearities 
arising during operating conditions.

There are many studies carried out on the dynamic 
analysis of rotating machinery with di�erent analytical 
models. The analytical model possesses generalization 
of the solution, no need for in-depth understanding, and 
nonessential access to the physical process for modeling. 
Experimental modeling possesses a high degree of accu-
racy within the investigational limit and more straightfor-
ward application to systems having unknown underly-
ing physics. However, many experimental runs are often 
required to characterize and improve the process, which 
may be a costly scheme. The bene�ts of both are com-
bined by a semi-analytical or semi-experimental modeling 
approaches such as Dimensional analysis giving high inter-
polative and extrapolative accuracy with few experimental 
runs. Since this depends on experimental data, the mod-
eling is �exible as per the requirement of the system. Any 
low skilled person can perform the same with min e�orts. 
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It is reliable and straightforward as based upon physical, 
i.e., fundamental dimensions of the system. As cost and 
time are reduced compared to others, more suitable for 
small scale process industries are de�cient with expertise 
in modeling, analysis, and high investment in maintenance 
of machines.

In a vertically supported rotor having radial clearance, 
the amplitude of vibration decreases as the radial clear-
ance decreases at the critical speed [3]. Saito [4] proposed 
a harmonic balance methodology using Fast Fourier Trans-
formation (FFT) for a nonlinear rotor-bearing coupling sys-
tem. Ehrich [5] carried out a dynamic response analysis of a 
high-speed rotor system, which showed chaotic vibrations 
and subharmonic responses in the frequency spectrum. It 
gives a simple computer model based on the numerical 
integration of the �nite di�erence method. Ioannis Chatz-
isavvas et al. [6] investigated the procedure for identifying 
unbalance using the equivalent load method. This proce-
dure establishes a benchmark for the rotor at a constant 
speed. Krodkiewski et al. [7] formulated the nonlinear 
mathematical model for unbalance identi�cation for the 
multi-bearing system. Tandon and Choudhury [8] devel-
oped an analytical model to predict the vibrations’ ampli-
tude and frequencies. The model forecasts the discrete 
spectrum amplitude and frequencies for outer and inner 
race defects of deep groove ball bearing under radial load 
conditions.

Tiwari et al. [9] showed the existence of Hopf bifurca-
tion, sub-harmonics, and a shift in peak response through 
rotor-bearing experimentation. Tiwari [10] revealed the 
e�ect of sti�ness on radial clearance in the horizontal 
rotor-bearing system. The numerically integrated sys-
tem equations are validated by the harmonic balance 
method. Harsha [11] studied the high speed balanced 
horizontal rotor system’s nonlinear dynamics to show 
the occurrence of most severe vibrations on coinciding 
natural frequencies with varying compliance frequency. 
A.S. Sekhar [12] demonstrates the vibration measure-
ments at speed below balancing speed. It is found that 
modal correction mass must balance a rotor near the �rst 
critical speed with distributed unbalance. The author vali-
dates distributed unbalance in the modal balancing to 
balance �exible rotors having both unbalance and bow. 
Mohanty [13] investigated the identification of unbal-
ance and misalignment experimentally using the model-
based method. The rotor system is modeled using �nite 
element methods, and faults modeled with equivalent 
loads in this method. In the equivalent load’s method, the 
least-squares algorithm is used to identify fault parame-
ters. This method has a limitation as parameters increases 
with a decrease with the number of measured vibrations. 
Harsha [14] investigated the nonlinear dynamics of a bal-
anced rotor-bearing system by considering internal radial 

clearance. The model uses the Hertzian contact force to 
study the system dynamics with rotor trajectories, time 
response, and power spectrum. Kankar et al. [15] studied 
the rotor-bearing system’s nonlinear dynamics for fault 
diagnosis by Response Surface Methodology. It is found 
that dynamic responses are closely related and sensi-
tive to distributed defects and large internal clearance. 
Kankar et al. [16] investigated the rotor-bearing system 
with localized defects using Response Surface Method 
for fault diagnosis. The author explains the application of 
RSM for faults diagnosis of localized defects. Upadhyay 
et al. [17] studied the e�ects of unbalanced forces on the 
high-speed rotor-bearing system. The analysis was carried 
out at various speeds, and emphasis was given on the sys-
tem’s harmonic responses. The study includes the e�ect of 
combined defects on deep groove ball bearing consider-
ing Hertzian contact force and Internal Radial Clearance 
(IRC-C3). Lower speed transient chaos was observed. In 
dimensional analysis [18, 19], experimental data-based 
models were developed to diagnose the rotor-bearing 
system. The arti�cial neural network, regression analysis, 
and experimental results were used to validate the e�ec-
tiveness of the models developed using dimension theory. 
It is claimed that the model saves time and cost of condi-
tion monitoring. However, an unbalanced rotor-bearing 
system with internal radial clearance was not considered 
in these models developed for diagnosis. Also, very few 
studies are reported about the dynamic analysis of an 
unbalanced rotor-bearing system with the internal radial 
clearance. The MLTθ system was used to develop the math-
ematical model of the system. However, a more reliable 
FLTθ system is used for this model. Jamadar and Vakharia 
[20] developed a mathematical model for bearing vibra-
tion response analysis using the Matrix Method of Dimen-
sional Analysis (MMDA). The model was validated using 
RSM and experimental results. A lot of research is directed 
towards the fault diagnosis of the rotor-bearing systems 
with di�erent methods and faults. Many researchers car-
ried research on fuzzy logic; neural networks. However, the 
success of these techniques depends on how fault features 
are extracted from the system. Hence, an attempt has been 
made to investigate the dynamic response analysis of an 
unbalanced rotor-bearing system with loosely �tted bear-
ing by providing arti�cial internal radial clearance.

The literature review revealed that the e�ects of clear-
ance and unbalance had not been studied using Dimen-
sional Analysis (DA). Hence, this inspires to the investiga-
tion of an unbalanced rotor-bearing system’s vibration 
response having internal radial clearance by using DA 
and RSM. In this work, the vibration amplitude and defect 
frequency are predicted using the DA method based on 
Buckingham’s pi theorem. The results of DA are com-
pared with experimental and RSM results. In the rest of 
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the paper, mathematical expressions are derived in Sect. 2 
and 3. Section 4 and 5 present the experimental analysis 
and Response Surface Methods followed by results. The 
detailed results and discussion are given in Sect. 6 and fol-
lowed by the conclusions in Sect. 7.

2  Dynamic model of the rotor‑bearing 
system

A new dimensional analysis approach to model physical 
problems in simple form is applied to develop a math-
ematical model. The mathematical model is developed 
to estimate the amplitude of vibration using Dimensional 
Analysis (DA) techniques. In the dimensional analysis, the 
�rst task is to identify the process parameters. The process 
parameter involves independent variables, dependent 
variables, and extraneous variables.

As per the dimension theory, the "complete" set of the 
parameters may consist of dependent variables obtained 
from other variables, and none of the independent vari-
ables are derived from other variables [21]. The independ-
ent variables involve rotor-bearing geometry, material 
properties, and operating conditions.

A set of variables for establishing a mathematical model 
to obtain dynamic behavior is presented in three basic 
dimensions—length L, time T, and force F [21, 22]. Figure 1 
shows the correlation between the variables a�ecting the 
dynamic behavior of the system. Table 1 shows variables of 
the system with their corresponding dimensions, symbol, 
and unit system.

According to the dimensional analysis [21, 22], a com-
plete set of dimensionless products consists of total vari-
ables besides the maximum variables that will not form a 
dimensionless product. In the proposed model, vibration 
amplitude (dependent variable) can be expressed in other 
parameters given in Eq. (1). ‘f’ is the unknown function and 
represents the relation between input variables and exper-
imentally obtained response variables.

(1)

V = f
(

D, db, di , do, dm, B, L, �, ES , ER ,Ws,Wr , Is, Ir , c, �, T ,Δ, fs
)

In the rotor-bearing system, the unbalanced mass, 
clearance, and speed of rotation play a signi�cant role in 
changing the dynamic behavior of the system, therefore 
in this model, the e�ect of unbalanced mass, clearance, 
and speed of rotation on the amplitude of vibration of the 
rotor-bearing system bearing is considered. All the above 
variables considered for the formulation of the mathemati-
cal model are expressed as the number of dimensionless 
products as given in Eq. (2)

The total number of the dimensionless product is 23, 
and 03 variables do not form dimensionless products, 
as reported in Table 1. As per the applied dimensional 
analysis and modeling [21, 22], 23–3 = 20 parameters are 
required to describe the complete set.

(2)f
(

�1, �2, �3,… ., �m

)

= 0

Fig. 1  Variable a�ecting on the dynamic behavior of the system

Table. 1  Parameter for modeling the dynamic response of the sys-
tem

Parameter Symbol Unit Dimension

Inner race diameter d mm L

Ball diameter db mm L

Pitch diameter d
1

mm L

Bearing Width B mm L

Length of shaft L mm L

No. of Balls Z – –

Density of bearing � kg

m3

FL
−4
T
2

Young’s Modulus E N

mm2
FL

−2

Contact force for deformation k N

mm1.5
FL

−1.5

Hertzian contact force Fh N F

Mass of shaft m
s

Kg FL
2

Mass of rotor m
r

Kg FL
2

Mass Moment of Inertia of Shaft I
s Kg.mm2

FL
2

Mass Moment of Inertia of Rotor I
r Kg.mm2

FL
2

Damping factor c Ns

m
FL

−1
T
1

Speed of shaft N rpm T
−1

Radial load T N F

Bearing de�ection δ mm L

Unbalance mass on rotor Wu Kg FL
−1
T
2

Internal radial clearance R
c

�m L

Lubricant viscosity ʋ mm2/s L
2
T
−1

Vibration amplitude V
mm

s
LT

−1

Varying frequency component Fvc Hz T
−1

Inner race defect frequency fbpf Hz T
−1

Unbalance defect frequency fu Hz T
−1
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3  Rotor‑Bearing Model

The functional dependence of vibration characteristics 
is obtained from the association of the theory of dimen-
sional analysis and Buckingham’s ‘π’ theorem. The pitch 
diameter, speed of the shaft, and radial load are taken as 
repeating variables. These three variables are not going 
to form a dimensionless group [21, 22]. The dynamic 
response model can be written as

where a, b, and c represents constants, obtained from 
fundamental units, as given in Eq. (4).

The balancing of the fundamental units to �nd con-
stants a, b, and c, may be done as

The equations may be written as follows

By solving the above equations, the unknowns can be 
obtained as

Therefore, the �rst dimensionless group expressed as

With a similar procedure, the remaining 20 dimension-
less groups are obtained and are listed in Table 2.

3.1  Deducing of dimensionless groups

As the numbers of dimensionless variables are more, it is 
required to reduce these dimensionless groups. The reduc-
tion is carried out by taking products or divisions of one 
group by another group. They are reduced by performing 
the following mathematical operations:

(3)�R = V
[

d
1

]a
[N]

b
[W]

c

(4)�R = LT
−1[L]

a
[

T
−1
]b
[F]

c

(5)F
0
L
0
T
0
= F

c
L
1+a

T
−b−1

c = 0

1 + a = 0

−b − 1 = 0

a = −1

b = −1

c = 0

�R = V
[

d
1

]−1
[N]

−1
[

Wu

]0

(6)�R =
V

d
1
N

From above dimensionless variables, (�10,�11,�12) form 
a constant dimensionless group (Ψ) can be written as,

where Ψ the group of the dimensionless variables 
remains constant during the experimentation.

Using Eq. (11), �
1
 maybe written as,

πa =

π6 × π7

π1 × π2 × π3

πb = π14

πc =

π2

π5

× π8 × π13 πd =
1

π9 × π15

(7)

π
a
=

π
6
× π

7

π
1
× π

2
× π

3

π
a
=

IsIr

W
2
d
1
dbB L

(8)

πb = π14

�b =

Wud1N
2

W

(9)

π
c
=

π
2

π
5

× π
8
× π

13

π
c
=

�BR
c
N
2

E

(10)

πd =
1

π9 × π15

πd =

Wd .05

1
N

k�

(11)Ψ = (�
10
× π

11
× π

12
)

(12)�R = f
(

Ψ,�a,�b,�c ,�d

)

Table 2  Dimensionless Variables

variable �-terms variable �-terms

d1, N, W, and V πR =
V

d1N

d1, N, W, and �
π
8
=

�d4

1
N
2

W

d1, N, W, and db π
1
=

db

d1

d1, N, W, and K
π
9
=

Kd1.5

1

W

d1, N, W, and B π
2
=

B

d1

d1, N, W, and � π
10

=
�

d1

d1, N, W, and L π
3
=

L

d1

d1, N, W, and FH π
11

=
FH

W

d1, N, W, and Z π
4
= Z d1, N, W, and C

π
12

=
CNd1

W

d1, N, W, and E
π
5
=

Ed2

1

W

d1, N, W and Rc π
13

=
Rc

d1

d1, N, W and Is π
6
=

Is

Wd2

1

d1, N, W, andWu
π
14

=
Wud1N

2

W

d1, N, W and Is π
7
=

Ir

Wd2

1

d1, N, W, and � π15 =
�

Nd
2

1
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Substituting above dimensionless group, the Eq. (12) 
may be obtained as follows

Hence, a total of 20 parameters involved in the problem 
have been reduced to �ve dimensionless parameters. The 
relationship in the above governing equation can be writ-
ten as [21, 22] 

The governing Eq. (13) is solved by multiple factorial 
regression [23] using a code developed in MATLAB soft-
ware, and the coe�cients a0, a1, a2, a3, a4 are obtained 
by following the process of [23] as -

Similarly, other equations for the defect frequency can 
be developed.

Equation (15) and (16) show the vibration amplitude 
and defect frequency predictions model, respectively. 
The �ow chart for the proposed methodology is shown 
in Fig. 2.

4  Experimental system

Figure 3 shows the schematic layout of the experimen-
tal setup. It consists of a rotor shaft supported on two 
bearings. The AC motor drives this through the �exible 
coupling. The AC motor is connected with the variable 

frequency drive, and the controller unit is used to drive 
the shaft at various speeds. The bearing housing is �xed 
on the support frame. The two deep groove ball bear-
ings, 6209/C3-SKF (Sweden), are used. The speci�cations 
of the bearing are given in Table  3. The characteristic 
defect frequencies are given in Table 4. The SKF LGMT3 
type grease is used for the lubrication of the bearing. 
The accelerometer (ADASH piezoelectric type-1A-AC101, 
sensitivity-100  mV/g) with the Fast Fourier transform 
(FFT) analyzer is used to measure its vibration responses. 
The bearing’s sti�ness is obtained by testing bearing on 
the universal testing machine with a proper �xture. The 
damping is obtained by conducting an impact hammer 
test by using an FFT analyzer. The mass of the rotor and 
mass of the shaft is approximately 3 kg and 5 kg, respec-
tively. The experiments have been performed by adding 
an unbalanced mass approximately equal to 3% and 4% 

(13)

�R = f

(

Ψ
IsIr

W
2
d1dbB L

×
Wud1N

2

W
×
�BRcN

2

E
×
Wd0.5

1
N

k�

)

(14)�R = Ψ × (�a)
a1 × (�b)

a2 × (�c)
a3 × (�d)

a4

(15)πR = 0.091πe ×
−0.9103

×π
−1.7925
j

× π
0.26135
k

× π
0.1379
20

(16)πF = 0.075πe ×
0.478

×π
1.235
j

× π
−0.167
k

× π
−0.1524
20

of the rotor’s mass. The arti�cial internal radial clearance is 
created in the bearing and shaft. The internal radial clear-
ance of 0.04 mm and 0.02 mm is maintained between the 
shaft, and the sleeve of bearing and clearance of 0.04 mm 
and 0.02 mm is maintained between the inner race and 
the sleeve of the bearing, respectively, by losing the lock 
nut as shown in Figs. 4 and 5. The feeler gauge is used 
to measure internal radial clearance. The accelerometer is 
placed on the test bearing, as shown in Fig. 3. Variation in 

Fig. 2  Flow chart of the methodology
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the unbalance and internal radial clearance is simulated 
on the experimental set up between 1000 and 2500 rpm 
to obtain the dynamic response.

Fig. 3  Schematic layout of the 
experimental setup

Table 3  Rotor-bearing system speci�cations

Rolling element bearing SKF 6209

Outer race diameter (do) 85 mm

Inner race diameter (di) 45 mm

Ball diameter (db) 9 mm

Bearing Width (B) 19 mm

Radial load (T) 2500 N

Rotor disc diameter (dr) 180 mm

Mass of rotor, (Wr) 3 kg

Mass of the shaft, (Ws) 5 kg

Table 4  Deterministic characteristic defect frequencies of the sys-
tem

Frequency compo-
nents (Hz)

Expressions Shaft Speed

1000 2500

fFTF 1

2

N

60

(

1 −
db

d1

cos�

)

7.17 17.94

fVCF Z × f FTF 64.53 161.46

FBPFI Z

2

N

60

(

1 +
db

d1

cos�

)

85.34 213.46

FBPFO Z

2

N

60

(

1 −
db

d1

cos�

)

64.58 161.53

Fig. 4  Clearance of 0.04 mm in the shaft and sleeve

Fig. 5  Clearance of 0.02 mm in the sleeve and Inner race
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The vibration response spectra for all cases are pre-
sented in the frequency domain. The Response Surface 
Method (RSM) investigates the correlation between vari-
ables and their interactions. The results are compared with 
the results obtained through the dimensional analysis 
approach.

with three variables and 2 levels, a total of 8 experi-
ments are designed to obtain vibration amplitude and 
defect frequencies. Table 5 gives the details of the design 
of experiments.

5  Response surface method (RSM)

The RSM is a mathematical and statistical tool used for 
model responses of systems. The extraction of data a�ects 
the prediction of the model’s dynamic response and, 
hence, the selection of proper sampling size is important. 
As per the Taguchi technique, 8 trial runs are designed 
using Minitab-16. Details of trial runs are reported in Table 
6. The RSM has been used for studying the in�uence of 
three parameters (speed, clearance, and unbalanced mass) 
on di�erent responses of the rotor-bearing system. The 
relation between dependent and independent variables 
is expressed as

where ’A’ is the dependent variable, ie. Response ampli-
tude and ’i’ is the no. of the experiments and ai , bi ,… , fn 
represents the independent variable are given below.

ai = Rc , bi = Nr , ci = Wu, di = Rc ×Wu,

The �0, �1, �2,… �
n
 are constants and e

i
 represents the 

error between them [24]. The repeated experiments were 
conducted in experimental data analysis for better evalu-

ation of error. The Minitab-16 is used to analyze the experi-
mental data and response variables. Response amplitude 
peak and defect frequency values are given in Table 6 
for various combinations of radial clearance, speed, and 
unbalanced masses.

A = �
0
+ �

1
ai + �

2
bi +⋯ + �nfn + ei

ei = Rc × N, fi = Wu × N

6  Results and discussion

Vibration amplitude and defect frequencies are calculated 
using developed dimensional analysis model expression 
Eq. (15). The frequency response plot obtained experimen-
tally for all 8 trials is shown in Figs. 6, 7, 8, 9, 10, 11, 12 and 
13. The results of each trial are discussed below:

Trial 1 - This trial is conducted with a clearance of 
0.02 mm, an unbalanced mass of 0.084 kg, and a shaft 
speed of 1000 rpm. The frequency response plot is shown 
in Fig. 6. The signi�cant peak at a frequency of 1× rpm 
and 0.362 mm/s amplitude is observed. Also, the vibration 
excitation is observed at multiple frequencies of rotation. 
Other peaks are observed at fundamental train frequency 
fFTF equal to 8 Hz, the combinations of ball pass frequency 
of the inner race and shaft as fBPFI + 1.5 fFTF equal to 98 Hz. 
Other frequency components such as combinations of ball 

Table 5  Levels of the variables of experimental design

Variables Design variables Levels

1 2

Radial clearance Rc (mm) 0.02 0.04

Speed N (rpm) 1000 2500

Unbalance mass Wu (kg) 0.084 0.120

Table 6  Taguchi method planning for obtaining response ampli-
tude and defect frequency

Trial No 1 2 3 Response ampli-
tude peak (mm/s)

Defect 
frequency 
(Hz)

1 0.02 1000 0.084 0.362 17

2 0.02 2500 0.084 0.446 34

3 0.04 2500 0.12 0.851 34

4 0.04 1000 0.12 0.635 34

5 0.04 2500 0.084 0.491 38

6 0.04 1000 0.084 0.597 17

7 0.02 2500 0.12 0.627 33

8 0.02 1000 0.12 0.421 17

Fig. 6  Frequency response plot for trial 1
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pass frequency of the inner race and shaft as fBPFI + 4.5 fFTF 
equal to 125 Hz and 2.94 fBPFI of 250 Hz can be observed. 
The experimental values closely match with predicted 
values.

Trial 2 - This trial is conducted with a clearance of 
0.02  mm and an unbalanced mass of 0.084  kg. Shaft 
speed is 2500 rpm. The frequency response plot is shown 
in Fig. 7. The signi�cant peak at a frequency of 1/3× pm 
and 0.446  mm/s amplitude is observed. The vibration 
excitation is observed at multiple of sub-harmonics fre-
quencies of rotation. The other essential peak observed 
at multiples of rotation frequency 3× rpm equal to 50 Hz. 
The experimental value closely matches with predicted 

values. The peaks obtained by FFT at multiples of rotation 
frequency closely matches with a model derived from the 
dimensional analysis.

Trial 3 - This experiment is conducted with a clearance 
of 0.04 mm and an unbalanced mass of 0.120 kg. Shaft 
speed is 2500 rpm. The frequency response plot is shown 
in Fig. 8. In this trial, multiples of sub-harmonics frequen-
cies of rotation are seen, and maximum peak at a fre-
quency of 1/3× rpm of 0.851 mm/s amplitude is observed. 
The combined fault leads to an increase in the overall 
vibration level. It is also found that as clearance increases, 
the amplitude of vibration increases as the square of the 
shaft’s running speed. The other signi�cant peak at fBPFI 
equal to 268 Hz can be observed.

Trial 4 - This experiment is conducted with a clearance 
of 0.04 mm and an unbalanced mass of 0.120 kg. Shaft 
speed is 1000 rpm. The frequency response plot is shown 
in Fig. 9. In this trial, multiples of sub-harmonics frequen-
cies of rotation are seen, and maximum peak at a fre-
quency of 1/3× rpm of 0.635 mm/s amplitude is observed. 
It is seen that highly unbalanced forces and speed increase 
the vibration level of the system. Also, it is seen that system 
is unstable because of high unbalanced forces. The other 
signi�cant peak at fBPFI equal to 72 Hz can be observed.

Trial 5 - This experiment is conducted with a clearance 
of 0.04 mm and an unbalanced mass of 0.084 kg. Shaft 
speed is 2500 rpm. The frequency response plot is shown 
in Fig. 10. In this trial, the second-order spectrum with har-
monics in nature with a peak of 0.491 mm/s amplitude is 
seen. Signi�cant peaks are observed at 1× rpm and 2× rpm 
harmonics. It is found that as radial clearance increases, 
the amplitude of vibration increases.

Fig. 7  Frequency response plot for trial 2

Fig. 8  Frequency response plot for trial 3

Fig. 9  Frequency response plot for trial 4
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Trial 6 - This experiment is conducted with a clearance 
of 0.04 mm and an unbalanced mass of 0.084 kg. Shaft 
speed is 1000 rpm. The frequency response plot is shown 
in Fig. 11. In this trial, the second-order spectra with har-
monics with a peak of 0.591 mm/s amplitude are observed 
at sub-harmonics frequencies of rotation. The other signi�-
cant peak at fBPFI equal to 210 Hz can be observed.

Trial 7 - This experiment is conducted with a clearance 
of 0.02 mm and an unbalanced mass of 0.084 kg. Shaft 
speed is 2500 rpm. The frequency response plot is shown 
in Fig. 12. In this trial, the second-order spectra with har-
monics in nature are observed.

Trial 8 - This experiment is conducted with a clearance 
of 0.02 mm and an unbalanced mass of 0.120 kg. Shaft 
speed is 1000 rpm. The frequency response plot is shown 
in Fig. 13. In this trial, second-order spectra with harmonics 
in nature are observed.

The system’s chaos is observed from the above trial with 
the increase in peak amplitude of vibration. It indicates 
that at higher values of unbalance mass and clearance 

Fig. 10  Frequency response plot for trial 5

Fig. 11  Frequency response plot for trial 6

Fig. 12  Frequency response plot for trial 7

Fig. 13  Frequency response plot for trial 8
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increases the vibration level of the system. Also, com-
bined faults harmonics are seen at 1× rpm and 1/3× rpm 
of speed. From the above trial, it is clear that vibration exci-
tation is observed at multiple frequencies of rotation and 
1/3× of sub-harmonics of frequencies.

From the result analysis of trial 1 to trial 8, it is clear 
that the peak amplitude and defect frequencies obtained 
through the experimental study closely matches with the 
values predicted by the model Eq. 15.

The values of the amplitude of vibration and defect 
frequencies predicted by the mathematical model and 
experimental results are shown in Table 7. The numerical 
results and experimental results show good agreement 
for all 8 trial runs. The Minitab-16 software has been used 
to analyze the experimental data and analysis of variance 
(ANOVA). Regression coe�cients at 5% con�dence have 
been obtained. The p values and regression coe�cients 
are reported in Table 8. It shows that a p-value of less than 
0.05 indicates the signi�cance of the factor [23]. 

ANOVA is performed to analyze the results and inter-
action e�ect of the variables. Results obtained through 
ANOVA are listed in Table 8.

The f value 4681.18 indicates that the polynomial 
regression equation is significant. From ANOVA, it is 
observed that internal radial clearance, speed, and unbal-
anced mass are the signi�cant parameter which a�ects 
vibration amplitude. The response surface plots for clear-
ance and unbalanced mass vibration amplitude is shown 
in Fig. 14a–c.

The relationship between vibration and speed ampli-
tude is shown in surface response Fig.  14a. It is clear 
that as speed increases, the amplitude of vibration also 
increases. Also, the unbalance mass has a signi�cant e�ect 
on response amplitude. Figure 14b shows that as radial 
clearance increases, the amplitude of vibration increases. 
Figure 14c also shows that unbalanced mass and clearance 
signi�cantly a�ect the vibration amplitude. The polyno-
mial regression is solved to obtain vibration amplitude as 
given below.

Equation (17) is used to obtain response amplitude with 
clearance and unbalance defect condition.

The comparison of vibration amplitude obtained for 
all 8 trial runs by experimental analysis, numerical results 
obtained by DA, and RSM are shown in Fig. 15. Results pre-
dicted by the mathematical model, experimental results, 
and RSM values match and reveal that the proposed 
model is reliable for diagnosing the rotor-bearing system.

The comparison of results with experimentation con-
�rms the usefulness and accuracy of the RSM and DA. The 
results indicate that the proposed model forms an e�-
cient approach to predicting the rotor-bearing system’s 
dynamic behavior under unbalance and internal radial 
clearance conditions. This dimensional analysis approach 
can be easily implemented for condition monitoring.

7  Conclusion

This work demonstrates the dynamic modeling of the 
rotor-bearing system using DA to predict its vibration 
characteristics. Small enhancements in the rotor unbal-
ance and radial clearance tends to develop multiple 
faults or turn into complete system failure. Hence, the 
present modeling considers the e�ect of the rotor unbal-
ance and radial clearance on the rotor-bearing system’s 
vibration response. The developed MATLAB code solves 

(17)

Response amplitude peak (mm∕s) = 0.5282 + 0.08166 ai

+ 0.06266 bi + 0.003314 ci + 0.009121 d i

− 0.002872 ei + 0.004622 f i

Table 7  Comparison of numerical and experimental results

Bold values indicate signi�cant value of particular factor

Trial no Vibration amplitude (mm/s), Frequency 
in (Hz)

Model Experiment

1 (0.3695, 17) (0.362, 17)

2 (0.4486, 34) (0.446, 34)

3 (0.8447, 34) (0.851, 34)

4 (0.6340, 34) (0.635, 34)

5 (0.489, 38) (0.491, 38)

6 (0.5923, 17) (0.597, 17)

7 (0.6319, 34) (0.627, 33)

8 (0.4239, 17) (0.421, 17)

Table 8  ANOVA for response amplitude, clearance, speed and 
unbalance mass

*Indicates signi�cant factor

Source DF SS MS F P

Main E�ect 3 0.093548 0.031183 4681.18 0.011

Clearance 1 0.053350 0.053350 8009.02 0.007*

Speed 1 0.031413 0.031413 4715.74 0.009*

Unbalanced mass 1 0.008785 0.008785 1318.78 0.018*

Interaction 3 0.000909 0.000303 45.47 0.108

 R
c
×W

u
1 0.000668 0.000668 100.27 0.063

 R
c
× N 1 0.000067 0.000067 10.01 0.195

 W
u
× N 1 0.000174 0.000174 26.11 0.123

Error 1 0.000007 0.0000007

Total 7 0.094463

R2 = 99.99% R2-(adj) = 99.95%
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Fig. 14  a Surface plots for 
response amplitude (mm/s 
RMS), unbalanced mass (kg) 
and speed (rpm), b Surface 
plots for response amplitude 
(mm/s RMS), speed (rpm), and 
internal radial clearance (μm), 
c Surface plots for response 
amplitude (mm/s RMS), unbal-
anced mass (kg) and internal 
radial clearance (μm)
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the mathematical equations, and the steady-state solu-
tions are sought for di�erent amplitudes and frequencies. 
Experimentation was performed to obtain the vibration 
response of the developed test setup under di�erent faults 
such as unbalance and radial clearance. The Response 
Surface Method (RSM) is used to investigate the depend-
ency of unbalanced mass, speed, and clearance on the 
response parameters, i.e., vibration amplitude and defect 
frequencies.

Theoretical bearing defect frequencies are in good 
agreement with those obtained experimentally. Also, 
obtained vibration characteristics such as amplitude and 
defect frequencies are close matches with DA results. 
DA model allows determining the e�ect of faults such 
as unbalance and internal radial clearance. It is seen that 
the amplitude of vibration signi�cantly a�ected under 
the variation in the rotor speed, internal radial clearance, 
and unbalance mass and ultimately changes the non-
linear system’s dynamic response. Also, rotor speed and 
internal radial clearance were found dominant between 
the system’s response parameters. The change in system 
response is linear at lower clearance levels, unbalanced 
mass, and rotor speed. Whereas, the chaos is observed at 
a higher level of the operating parameters. The signi�cant 
peaks occur at a rotational frequency of 1× rpm and mul-
tiple sub-harmonics frequencies of rotation for combined 
faults. The internal radial clearance found the most signi�-
cant factor a�ecting the system’s vibration response from 
the surface response plot. Good agreement is observed 
among mathematical models, experimental results, and 
RSM results. This study contributes to the condition moni-
toring of high-speed machinery in the sugar, food, and 
power industries. The rotor unbalances, and radial clear-
ance e�ect can be investigated under �uctuating load and 
rotor speed in future studies.
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