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Abstract: This paper computes the small signal dy- 
namic response of a thyristor controlled series capaci- 
tor system for use in control design. The computation 
includes the effects of synchronization and the nonlin- 
earity due to thyristor switchings. Eigenvalues of the 
small signal dynamic response are computed and used 
to study the dynamic response of the Kayenta system 
using different methods of synchronization and a closed 
loop control. 
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Introduction 
The optimization of controllers for a Thyristor Con- 

trolled Series Capacitor (TCSC) is critical for its use in 
power systems. This is a difficult task due to the non- 
linearities introduced by the switching of the thyristors. 
In particular, the dynamic response of a TCSC changes 
as a function of its operating point. This dependence is 
discussed in papers describing the design of the Kayenta 
system [1,2]. 

Table 1. Complex poles for Kayenta System [l] 

(T=200 
U = 40° 
u=500 

s = -14.5 f j56.2 
s = -13.5 f j48.1 
s = -10.6 f j30.2 

( T = 6 O 0  s = -13.5 f j11.9 

cal degrees. The natural frequencies of oscillation range 
from 8.9 Hz to 1.9 Hz. 

The control design for Kayenta was achieved by us 
ing these transfer functions in a closed loop model al- 
lowing the use of standard tools to optimize the control 
response. This method is effective but provides little 
insight into the behavior of the system and requires d e  
tailed EMTP simulations to find the necessary transfer 
functions. This paper presents a first principles method 
for computing eigenvalues of the small signal response 
of TCSC systems. The method takes account of the 
nonlinearities of the thyristor switchings and the syn- 
chronization and controller dynamics. Related work in- 
cludes computations of the closed loop dynamic response 
of controlled AC/DC or resonant convertors [3,4,5] and 
analysis of instabilities, damping, and resonance in an 
open loop static Var control system [6,7,8]. 

Kayenta System 
The 230 kV, 330 Mvar TCSC system shown in 

Figure 1 was installed in northeastern Arizona at the 
Kayenta Substation. There are two conventional 165 
Mvar series capacitor banks with a nominal reactance 
of 55 R each. One of these segments is divided into 40 R 
and 15 R.  The 15 R unit is configured as a TCSC so 
that 15 R of capacitance is in parallel with a Thyristor 
Controlled Reactor (TCR) of 2.56 R.  

The design of the Kayenta controller was achieved 
by first finding the open loop response of line current to 
changes in the firing point using a detailed EMTP model. 
The resulting envelope of the line current response en- 
abled control engineers to find a transfer function which 
approximates the dynamics of the system around an o p  
erating point. The resulting fourth order transfer func- 
tion has two poles on the real axis and a complex pair of 
poles. The dependence of the complex poles on the oper- 
ating point is shown in Table 1. The operating points are 
specified by o, the thyristor conduction time in electri- 
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Figure 1. Kayenta System 

The fundamental impedance of the TCSC is similar 
to that of a parallel LC circuit with a variable inductance. 
With the thyristors off and conduction time o = Oo, the 
impedance per phase is 15 R. As U is increased, the ca- 
pacitance increases to a large value at the fundamental 
resonance point o = 74O [l]. It is assumed that control 
limits prevent even temporary operation near the res* 
nance. It is also assumed that operation will be limited to 
the capacitive region except for full bypass at G = 180O. 
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Basic Concepts of TCSC Dynamics 
The dynamics of any system which is periodic with 

period T can be studied by sampling the system states 
once per period. If the resulting values of the state vari- 
ables are equal to the previous sampled states, the sys- 
tem is in steady state. The system dynamics can be 
described as the change in the sampled states from one 
sampled point to the next. This concept is formalized as 
the Poincarb mapping F from dynamical systems theory 
[9] which maps the system states forward in time from 
t o  to t o  + T. That is, F[z(to)] = z(t0 + T) where z r e p  
resents the system states. If F[z(to)] = z(to), the map 
has a fixed point z(t0) and the system is in steady state. 

Figure 2 describes the system dynamics as the 
TCSC states evolve over a period T. The conduction 
periods starting at times 40, 4112, 4 1  are defined by the 
control system and the method used to synchronize the 
thyristor firing times to the system states. The turn off 
times TO, 7112, 7 1  are defined as the times at which the 
thyristor current becomes zero. The dependence of these 
switching times on the system states causes the system 
nonlinearity. 

At the beginning of the period to,  the initial states 
are the vector z o  and a thyristor is on. This conduc- 
tion mode ends when the thyristor current goes through 
zero at TO. The off or non-conducting mode starts at 
TO and continues until the next firing pulse is applied at 
951/2, where the subscript 1/2 refers to the half period. 
The system progresses through a thyristor firing at time 
4112, a thyristor turn off at 7112 and a thyristor firing 
at 4 1  until arriving at the end of the period at t o  + T 

' with states F(z0).  The Poincarb map F(z0)  takes into 
account the dependence of the switching times on the 
system states and can be computed by integrating over 
the period the appropriate state equations as determined 
by the switching times. 

t o  t i  = t o  + T 
on , Off , on , off , on 

I I I I I 
4 0  i TO 4ip 7 1 / 2  4 1  ; 7 1  

20 : F&O) 

Figure 2. System dynamics over one period. 

The small signal stability of the TCSC can now be 
computed from the Jacobian of the Poincarb map evalu- 
ated at  a sampled steady state 20. 

Jacobian = DF(z0) 

The detailed derivation of the Poincarb map and its Jaco- 
bian is given in Appendices B and C. The eigenvalues of 
the Jacobian DF provide information on the small signal 
dynamics of the system. More precisely, the eigenvalues 
are the poles of the sampled data transfer function which 
is the best linear approximation to the system response 

to small disturbances. In particular, the steady state is 
exponentially stable if the eigenvalues of the Jacobian 
evaluated at z o  lie strictly inside the unit circle. The 
eigenvalues or poles lie in the z-plane familiar from sam- 
pled data systems. The expected relationship between 
s-plane and z-plane poles applies so that an s-plane pole 
s = --a f j w  maps to the z-plane as z = e-aTe*jwT. 
The magnitude 1.1 = e--oT defines the damping so that 
a pole inside the unit circle has positive damping and a 
pole outside the unit circle implies instability. The pcr 
lar angle, wT defines the frequency of oscillation about 
the sampling fiequency. As polar angle traverses from 00 
to 3600 the modulation1 frequency increases from zero to 
the sampling frequency of 60 Hz. Care must be taken to 
correctly interpret the angle in the presence of aliasing. 

All the computed examples of this paper are half 
wave symmetric. Half wave symmetry means that the 
system states are equal in magnitude and opposite in sign 
to the system states half period or T/2 later. Moreover, 
the firing times 40 and 4112 and the thyristor switch off 
times TO and rlp differ by exactly half a period. 

Open loop response 
This section compares the effects of synchronization 

with respect to zeros of TCSC voltage and line current 
by computing the dynamic response and eigenvalues as 
0 varies [8]. 
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Figure 3. Response of line current to 4" step change 
in U with synchronization on (a) voltage (b) line current. 

The Kayenta system is used for all examples. The 
dynamic open loop response for both voltage and current 



synchronization are shown in Figure 3. The solid lines 
represent the solution of the state equations for succes- 
sive sample points. A detailed EMTP simulation was 
done to confirm these results. The dots are derived by 
using the Jacobian to compute the dynamic response of 
the transfer function. The Jacobian computation closely 
approximates the simulated dynamic response. Figure 3 
clearly shows the dependence of the dynamics on U.  The 
data using voltage synchronization agree with other p u b  
lished results [l]. 

I 0 Data from Table 1 I 

0 (degrees) 

Figure 4.  Eigenvalues for voltage synchronization. 
(a) locus of eigenvalues as U varies (b) Attenuation; real 
pole=---- , complex pole- (c) Modulation frequency 

Figure 4 shows the details of the calculated eigenval- 
ues when the firing is synchronized to zeros of the voltage 
across the TCSC. The system has four eigenvalues. For 
some values of U these eigenvalues form complex pairs 
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while at other values they lie on the real axis. This is 
best seen in figure 4(a) and (b). The letters A,B,C in- 
dicate the values of U used in Figure 3. The dynamics 
calculated in [l] by fitting a fourth order transfer function 
are also shown as rectangles in Figure 4, The differences 
may be due to the fitting methods used or the inclusion 
of filters or other dynamical components in the modeling. 

Note that one of the eigenvalues leaves the unit 
circle for values of U greater than 1400 which implies 
that the halfwave symmetric solution becomes unstable. 
EMTP simulations verify this fact. (More detailed anal- 
ysis shows that the stability is lost by an eigenvalue of 
the Jacobian of the halfwave map leaving the unit circle 
at -1 in a period doubling bifurcation.) 

0 (degrees) 

Figure 5. Eigenvalues for current synchronization. 
(a) locus of eigenvalues as U varies (b) Attenuation; real 
pole=---- , complex pole- (c) Modulation frequency 
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Figure 5 shows the details of the calculated eigen- 
values when the firing is synchronized to zeros of the line 
current. This synchronization was used in the final con- 
trols for Kayenta. In general the line current is very sts- 
ble and less susceptible to ambient harmonics. The half 
wave symmetric steady state is unstable for a between 
69O and 76O and is shown as a gray area in Figure 5. The 
differences in the eigenvalues of Figures 4 and 5 show the 
significant differences in dynamic response between volt- 
age and current synchronizations. 

Closed loop control 
A basic control issue for TCSC is the dependence of 

the dynamic response on the operating point of a; see 
Figure 3. To reduce this variance, a feedback control on 
a is proposed. In this controller the error function is 
the difference between a requested and a measured 
value a,,,. The measured value a, is updated twice per 
period while the requested value can change continuously 
depending on the action of higher level controllers. The 
controller is a PI controller as shown in Figure 6. The 
controller gains Kp = -1OExp [-d(65 - 0re,)/2] and 
Ki = -23-24 Exp [(a,,, - 65)/2] were chosen to develop 
a uniform response over the TCSC impedance ranging 
from 1.0 to 3.0 p.u. capacitive, or a less than 6 4 O  (the 
normal capacitive range of operation). 

Figure 6. a Controller. 

The formulation of the Poincar6 map of the closed 
loop system and the computation of its Jacobian are de- 
scribed in Appendix D. For this example, line current 
synchronization was assumed and two extra states were 
added to represent the control. 

I - Simulation 
Jacobian 

Time (seconds) 

Figure 7. Closed loop system response. 

The dynamic response to step changes in a is shown 
in Figure 7. The step changes in a are the same as for the 
open loop case. The dynamics are greatly improved when 
compared to the open loop response shown in Figure 3b. 
The dynamics are almost uniform across the operating 
range of ~7 and overshoots and undershoots are greatly 
reduced. The transients settle in half the time required 
in the open loop cases. 

35 t 

8 16 24 32 40 48 56 
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Figure 8. Eigendues of the closed loop system. 
(a) locus of eigenvalues as a varies (b) Attenuation; real 
pole=---- , complex pole- (c) Modulation frequency. 

The closed loop eigenvalues are shown in Figure 8. 
In this example, the operation of TCSC was limited to 
the capacitive region, or a less than 64O. Compared to 
the open loop response in Figure 5 there are important 
differences. Comparing the dotted curves in Figure 5 (b) 
and Figure 8 (b) shows a marked difference in the damp 
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Appendix A. System Modeling 
This section describes the system modeling with 

thyristor firing synchronized with voltage or current ZB 
ros. During the thyristor conduction time, the system 
state vector is z ( t )  = ( I r ( t ) ,  Vr(t), I , ( t ) ,  VS(t))’ ,  where I, 
is the thyristor current, V, is the thyristor controlled ca- 
pacitor voltage, I, is the line current and V, is the fixed 
capacitor voltage. The system dynamics are described 
by the linear differential equations: 

X = h + B u  (Al l  
where 

ing near 64O. In the open loop case, the damping has an 
oscillatory behavior showing very low attenuation close 
to 64O whereas in the closed loop case, the attenuation 
is much more uniform. The modulation frequencies also 
show more uniform behavior for the closed loop case. 

Conclusion 
The effects of synchronization and thyristor switch- 

ing on system dynamics have traditionally been difficult 
to include in models for control design. Detailed and 
time consuming simulations have been used to approxi- 
mate transfer functions for the control design at a selec- 
tion of operating points. This paper derives formulas for 
the linearized dynamics of a TCSC system with synchro- 
nization and a feedback control. Evaluating the formulas 
yields the system Jacobian and eigenvalues as a function 
of firing angle U which can then be used in controller de- 
sign. It is more insightful and much quicker to evaluate 
formulas for a general operating point than to numer- 
ically approximate transfer functions with simulations. 
Currently the authors are investigating the applications 
of these methods to SSR damping using TCSC, the de- 
sign of SVC compensators and HVDC controllers. 
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, L, = 406 mH and R, = 19.89 fl are the total line 
impedance and resistance, C, = 27.9 pF is the fixed 
capacitor, L, = 6.8 mH and C, = 177 pF are the thyris- 
tor controlled reactor and capacitor, and the net source 
voltage u( t )  = 67sinwt kV. During the off time of each 
thyristor, I, is identically zero and the system state vec- 
tor is y ( t )  = (Vc(t) ,13(t) ,V3(t))t  and the system dynam- 
ics are 

y = PAPty  + PBu (A21 

where P is the projection matrix P = 0 0 1 0 . 

The circuit state at the turn on time 40 is denoted 
(: : : :) 

either by ~ ( 4 0 )  or by ~ ( 4 0 )  and these are related by 

4 4 0 )  = P”(40) (A31 

The state at the turn off time TO is denoted either by 
~ ( 7 0 )  or  TO) and these are related by 

Y(T0) = P4.0) . (A41 
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The thyristor turn on times at 41/2 and 41 depend 

(a) Synchronizing the firing with respect to the zeros 
on the firing scheme: 

of the voltage V, is given by 

41/2  = TWO + 7~ - ureq/2 (A51 

where T ~ O  satisfies V,(T,O) = 0 and is the requested 
value of U.  T,O is assumed to occur when the thyristor is 
conducting. 

(b) Synchronizing the firing with respect to the zeros 
of the line current I$ is given by 

41 /2  = 7c0 + (n - areq)/2 (A61 

where T,O satisfies 18(7&) = 0. T,O is assumed to occur 
when both the thyristor are off. 

Appendix B. Poincar6 map 
This section sketches the construction of a Poincarh 

map as in [6,10,8]. Given a time interval [sl,s2], it is 
convenient to write ~ ( Z , S ~ , S Z )  for the map which ad- 
vances the state z ( s 1 )  at 51 to the state Z(52) at 52. If 
the thyristor is on during all of the time interval [SI, SZ], 

we write f ( x ,  51, 52) as fon(x,  51, 52). Similarly, if the 
thyristor is off during all of [ s l , s2 ] ,  we write f(y,  51, 52) 

as foff(y, SI,  s a ) .  A half period map advancing the state 
from t o  to tl12 may be written in terms of fori and foff 

taking into account the coordinate changes (A3) or (A4) 
at the switching times: 

The Poincar6 map F may now be written by composing 
two successive half period maps and then neglecting the 
details of the time arguments: 

Appendix C. Computation of the Jacobian 
This section derives the formulas to compute the 

Jacobian D F .  Since the thyristor turn off time and the 
Poincarh map are discontinuous at a switching time bi- 
furcation, we assume that the system is not at a switch- 
ing time bifurcation [6,11,8]. The first step is to compute 
the Jacobian of the half period map f(zo, t o ,  t1/2).  De- 
fine HO(ZO, TO, 4112) to be the right hand side of (Bl). HO 
expresses z ( t l / 2 )  as a function of XO, the turn off time TO 

and the turn on time 41/2. TO is a function of zo which 
is determined by the constraint of zero thyristor current 
at time TO. The turn on time 41 /2  depends on 20 via the 
firing strategy. The half period map may be written as 

By the chain rule, the Jacobian of the half period map 
is: 

Now we compute the partial derivatives of Ho in (Cl). 

bHo - eA(tl/a -61 12 )ptePAPt(+i/2-~o )peA(To - to ) .  (c2) 
ax0 

since the only term of Ho(x0, TO, 4112) depending on xo is 
the right hand side of (C2) times 20. An important sim- 
plification proved in (3,101 and also used in [6,7] asserts 
that 

(C3) 
- = o  aH0 
a70 

Ho(z0, TO, ~ ~ 5 ~ 1 2 )  can also be written as 

and differentiating and using (Al)  gives 

(The notation y(&12-) means the limit of y(t) as t a p  
proaches 4112 from below.) Since (A2), (A4) and (Al) 
imply that 3i(41,2-) = Pi(41/2+) and the form of P 
implies that PtP - I = -ctc, where c = (1, O,O,  0), (C4) 
may be rewritten as 

Note that ~ k ( 4 ~ / 2 + )  is the gradient of the thyristor cur- 
rent as it turns on at 41 /2 .  

Now we compute~the term Dqh1/2 in (Cl). The row 
vector D 4 1 p  is the gradient of the turn on time 4x12 
with respect to XO. D41/2 depends on the firing scheme: 

(a) For voltage synchronization, differentiation of 
(A5) yields D&/2  = DT,O so that we need to compute 
DT,~. The constraint determining T ~ O  is 0 = Vr(Tu0) = 
~x(T,o)  = mfon(20, t o ,  T,O) where m = (0, l , O ,  0). Dif- 
ferentiation with respect to $0 yields 0 = mDfon + 
m ~ l T u O D ~ u O  = meA(Tuo-to) + m$(~,o)D~,,o and 

Ddlp = DT,O = -meA(Tuo-to)/m~(~,O) (C6a) 

Note that mk(~,o) is the gradient of V, as it passes 
through zero at 7,o. 

(b) For current synchronization, differentiation of 
(A6) yields D 4 1 / 2  = D T , ~ .  The constraint determining 
T,O is 0 = I#(T&) = ny(T,o) where n = (0, 1,O). Differen- 
tiating the constraint as in case (a) yields 

D 4 1 / 2  = DTCO = -nDf(zo, t o ,  Tco)/n@(Tco) 

- - -  n e ~ A ~ ' ( ~ ~ - ~ ~ ) p e A ( ~ = ~ - t o )  /ni(T,o) (C6b) 

where the final expression for Df(so,to,~,o) was ob- 
tained using the simplification (C3). 



1615 

g ( z o , t o , t l / 2 )  advancing the state zo = (ZO,UO,EO)‘ to 
the state 2112 = ( z 1 / 2 , ~ 1 p , e 1 / 2 ) ’  are (D4), (D2) and 
(Dl). Differentiating these equations, using the simpli- 
fication (C3), and omitting terms which vanish because 
eo = e l12  = 0 when DzOg is evaluated at the fixed point 
gives 

DZog(ZOz0, t o ,  t1/2) = 

The corresponding equations for half period map 
f (x1 /2 , t1 /2 , t1 )  can be obtained from the results above 
by changing all of the subscripts ‘1/2’ to ‘1’ and all of 
the subscripts ‘0’ to ‘1/2). Finally, differentiating (B2) 
and using the chain rule, the Jacobian of the Poincark 
map is 

DF = Df(X1/2 , t1 /2 ,  t l ) D f ( Z O ,  t o ,  t1/2) (C8) 

If the steady state waveform is assumed to be half wave 
symmetric, then (C8) simplifies to 

or, in detail for the case of voltage synchronization, 

In the case of current synchronization, one eigenvalue of 
DF is identically zero. 

Appendix D. Closed loop control 
The controller equations can be written by inspect- 

ing figs. 2 and 6. The error function e is updated at each 
thyristor switch off. The error function at  time tl12 is 

e1/2 = a r e ,  - (70 - 40) (D1) 

where 40 can be computed from XO. The integrator out- 
put U at time t lp is 

a l l 2  = a0 + Ki€O(TO - t o )  + Ki€1/2(t1/2 - TO) 

= uo + K~Q(TO - t o )  + K i ( 0 r e q  + 40 - ~ 0 ) ( t 1 / 2  - 70)(D2) 

The midperiod turn on time 41 /2  depends on rCo and the 
control output at time 4112: 

41/2  = ~ c o + ~ p ~ l / 2 + ~ o + ~ i ~ o ~ 7 0 - ~ O ) + ~ i ~ 1 / 2 ( 4 1 / 2 - 7 0 )  

and solving for 4112 and substituting for ell2 from (Dl) 
gives 

41/2  = 

x1/2  = ~ o ( ~ o , ~ o ( z o ) ,  41 /2(50 ,  ao, Eo))  034) 

The circuit state x is augmented by the integrator 
output and the error to form a 6 dimensional state vec- 
tor z = (z, a, e)’. The equations for the half wave map 

. -  
(D5) 

where 2 and E are given by (C2) and (C5) and the 
term D 4 1 j 2  evaluates to 

0 4 1 1 2  = DTCO + ( K p  + Ki(~ ,o  + ao - TO) )  (WO - DTO) 
(D6) 

In (D6), DrCo is given by (C6b) and it remains to com- 
pute D ~ O  - 070. The constraint equation determining 
TO is 0 = &(TO) = =(TO) = cfon(zo,t~,to + ro),  where 
c = (1,0,0,0). Differentiation with respect to zo yields 
0 = cDfon + c* lTo DTO = ~ e ~ ( ~ 0 - ’ 0 )  + &(To-)DTO and 
DTO = - c e A ( T o - t o ) / & ( ~ O - ) .  Note that &(ro-) is the 
gradient of the thyristor current as it turns off at TO. 

Similarly, ~ 4 0  = -ceA(do--to) / ci (40+) and hence 

~h - 0 7 0  = -ceA(70-tO)/C3t(T0-)+ceA(do-to) / 4 4 0 + )  

The equations for the half wave map 9 ( ~ 1 / 2 ,  tli2, t l )  
and its Jacobian D21/2g(21/2,  t l / 2 ,  t l )  can be transcribed 
from the corresponding results above by changing all 
of the subscripts ‘1/2’ to ‘1’ and all of the s u b  
scripts ‘0’ to ‘1/2’. The Poincar6 map G(z0) = 
g(g(zo,to, tip), t1/2, t i)  and finally the Poincar6 map Ja- 
cobian can be computed from 

We remark that one eigenvalue of D,,G is identically 
zero and that (D7) does not simplify under half wave 
symmetry. 
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