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Abstract: This contribution is devoted to the analysis of three-dimensional elastodynamic problems
in multilayered road systems caused by moving loads with static and dynamic components. For
this purpose, a novel spectral element method (SEM) is derived to model the layers of a road and
the half-space. To reduce the order of wave equations, a state vector is introduced, and then a state
transition matrix is derived for the upper and lower boundaries of a layer. Based on the use of a
precise integration algorithm (PIA), very accurate numerical solutions can be obtained. The proposed
method was derived within 3D Cartesian coordinates, which facilitate the analysis of complex loads
or road structures. The stiffness matrix does not depend on tedious and lengthy analytical solutions,
which is conducive to the analysis of anisotropic materials. Numerical examples are presented and
compared with those of previous studies to show the accuracy and effectiveness of the proposed
SEM. Additionally, this model is further refined by examining the effects of moving load speed and
the properties of the road on the displacement and stress field of a stratified flexible pavement.

Keywords: multilayered road structures; anisotropic medium; spectral element method; precise
integration algorithm

1. Introduction

The problem of determining the roadway vibration that results from moving vehicles
has been a long-standing topic of interest. Roadways always have a layered structure, and
the physical and mechanical properties of each structural material are different. In order to
accurately and efficiently simulate the response of the road, this problem was idealized as
the dynamic analysis of a layered half-space subjected to a moving load [1]. Over the past
30 years, many rigorous models or numerical models have been developed on this topic,
which may be classified into two groups: the analytical method and the numerical method.

The analytical methods, or semi-analytical methods, are generally based on integral
transformation, which offers a more effective way of understanding the essence of those
kinds of problems. Based on the assumption that the layered half-space is uniform along
the horizontal direction, the semi-unbounded domain is transformed into a wavenumber-
frequency domain by using Fourier transformation or Hankel transformation. Thus, the
partial differential wave equations become the ordinary differential equation, the solution
to which can be obtained analytically. Pioneering work has been carried out by Thomson [2]
and Haskell [3], who proposed the transfer matrix method. However, it is computationally
unstable for high-frequency cases because it has a positive exponential element in the
transfer matrix. Many attempts have been made to remedy this problem, such as the
stiffness matrix method (SMM) proposed by Kausel et al. [4,5]. To better handle the problem
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of a moving load, Gunaratne and Sanders [6] developed a layer stiffness approach to study
the response of a layered elastic medium to a moving uniform distribution of normal
and shear stresses. Lefeuve-Mesgouez et al. [7,8] subsequently considered a harmonic
moving rectangular load for sub-Rayleigh and super-Rayleigh cases via a method that was
based on SMM. Grundmann et al. [9] researched the response of a 3D layered half-space
and a half-space with variable stiffness in the vertical direction when subjecting this to a
simplified train model. Recently, Kausel [10] also drew upon SMM to consider the case of a
moving load on the surface of a 3D-layered medium.

The transmission and reflection matrix method, which was developed by Barrors
and Luco [11,12], is also an integral transformation method. It can be used to obtain the
steady-state dynamic response of a multilayered, viscoelastic half-space for both a buried
and a surface-point load, moving at subsonic, transonic, and supersonic speeds. This is
similar to a method developed by Luco [13] and Apsel [14] for analyzing the responses to a
buried fixed-point load. Besides, a dynamic flexibility matrix approach was also developed
in the transformed domain by Sheng et al. [15,16], which is used to calculate the surface
displacement of a viscoelastic-layered half-space resulting from a harmonic or a constant
load moving along a railway track. By using some mathematical treatments, the terms
of this method involved no exponents and the difficulties encountered with very thick
layers were avoided. Based on this model, Sheng et al. [16] and Jones et al. [17] studied the
effect of a relative speed between load and wave propagation on the dynamic response in
layered ground structures. However, when calculating the internal displacement and stress
in the elastic-layered medium, similar difficulties were encountered when using transfer
matrix methods. Chen et al. [18] proposed an analytical approach for obtaining the accurate
surface mechanical responses of an isotropic-layered system subjected to a circular uniform
vertical load, for which the integral convergence of the surface response was improved.

In contrast to the isotropic case, many works have been published on the 3D anisotropic
uniformity, or layered half-space, under moving load. Beskou et al. [19] considered the
dynamic response of an elastic thin plate resting on a cross-anisotropic, elastic half-space to a
moving rectangular load via analytical methods. A direct stiffness method was employed by
Ba et al. [20] for investigating the dynamic response of a multilayered, transversely isotropic
half-space generated by a moving point load. Based on the Stroh formalism and Fourier
transform, Wang et al. [21] studied the problem of a moving point load over an anisotropic-
layered, poroelastic half-space. Ai et al. [22] investigated the response of a transversely
isotropic, multilayered poroelastic medium subjected to a vertical rectangular-moving
load, for which an extended precise integration method [23] was utilized. The precise
integration method was also applied by Han et al. [24] for the evaluation of the dynamic
impedance of a rigid foundation embedded in an anisotropic multilayered soil within a
cylindrical polar coordinates system. An analytical layer element method was developed by
Ai et al. [25] to obtain the solutions of transversely isotropic, multilayered media subjected
to a vertical or horizontal rectangular dynamic load. However, the analytical methods
for solving the multilayered anisotropic medium usually involve tedious and lengthy
analytical solutions, and for the medium with more elastic constants, the formulation could
become extremely cumbersome.

There are also some excellent works which used the discrete method to solve the
wave equation in the transform domain, such as the thin layer method (TLM). The TLM
was originally conceived by Lysmer and Waas [26,27] and was further developed by
Kausel [28,29]. This method combined an FE discretization in the direction of the layering
with an analytical solution in an infinite horizontal direction, with all the physical layers
being divided into thin sub-layers. To apply this method, the underlying half-space is
often replaced with an appropriately thick buffer layer on rigid bedrock. To enhance the
performance of the TLM, Jin et al. [30] used ‘absorbing boundary conditions’ to investigate
the dynamic response of layered media to a moving line load. However, the accuracy and
stability of using the TLM for discrete calculations in the vertical direction can be affected
by the selected thickness of the sub-layer.
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Commonly, the integral transformation method should be applied to specific geometry
and boundary conditions. In practice, various layer combinations and boundary conditions
are encountered, which may exceed the solution range of the integral transformation
method. Numerical methods are powerful tools for the dynamic analysis of complex
geometries and boundary conditions, such as the finite element method (FEM) and the
boundary element method (BEM). Generally, the FEM is not suitable to solve the dynamic
problem concerning the infinite domain because outgoing waves are reflected at the artificial
boundaries of the FE mesh. Some transmitting boundary conditions are employed to
account for the effect of the radiation damping of the outer infinite domain [31,32]. Instead
of setting artificial transmitting boundary conditions in the FEM, some hybrid methods
have combined the FEM with other discrete methods. The 2.5D finite/infinite element
procedure was adopted by Yang et al. [33] to solve the 3D moving loads problem in a 2D
half-space. The near-field that contains loads and irregular structures was simulated by
finite elements, and the far-field that covers the external infinite soil was simulated by
the infinite elements. Yang et al. [34] conducted a parametric study of the effect of the
shear wave velocity, damping ratio, layer thickness, moving speed, and vibration frequency
of trains on layered soils. It should be noted that a problem encountered in FEM-based
approaches, however, is that, as the load frequency increases, the finite element mesh needs
to be refined, which may require expensive calculation.

Another popular numerical method is the BEM, which is suitable for solving the
wave propagation problem related to the infinite domain. Rasmussen [35,36] derived
the formulation of Green’s function for a moving load in the time domain based on a
moving coordinate system. Andersen et al. [37] applied the BEM to an analysis of the
steady-state response of an elastic medium to a moving source with a moving local frame
of reference. However, the elements had to be very small because the wavelengths in the
moving reference frame became small when the load speed approached S-wave velocity.
Papageorgiou and Pei [38] studied the 2.5D elastodynamic scattering problem by using
a discrete wavenumber BEM. The radiation condition of an infinite medium can also be
satisfied automatically by the BEM. However, for three-dimensional multilayered media, a
full space fundamental solution, or Green’s function, and a discretization of the interfaces
between the layers, is required. Doing this involves a great deal of work.

Considering the limitations of analytical and numerical methods, a semi-analytical
method called the spectral element method (SEM) was developed to solve the dynamic
analysis of a layered half-space. The SEM can be considered as a combination of the key
features of the conventional FEM and SMM. In the SEM, the exact dynamic stiffness matrix
is used as the element stiffness matrices for the finite elements in a structure [39], and
the system response is obtained by summing a finite number of wave modes for different
discrete frequencies [40]. The problem size and degree of freedoms (DOFs) are always
small because the dynamic stiffness is accurate, so only one element can model the whole
soil layer. Another major advantage of the SEM is low computation cost, which is due
to the smallness of the system stiffness matrix, as well as due to the discretized series
summations obtainable by using fast Fourier transformation (FFT). Thus, the SEM is a
promising technique that has been widely used in engineering [41–43].

Despite the past studies performed on this issue, this field still experiences some
major shortcomings: (1) in the SEM, the dynamic stiffness matrix is based on the solution
of a set of transcendental equations, which may be unstable for high-frequency or thin
layer cases. (2) The versatility of the accurate stiffness matrix is poor, which needs to be
re-derived for different media, and, for anisotropic 3D problems, the stiffness matrix will be
extremely cumbersome. (3) By using 3D dynamic analysis, the parameter-based research
into the effects of layer thickness, material modulus, and load speed on the distribution
of displacement, stress, velocity, and acceleration in multilayered road structures remains
rather limited. This study is devoted to developing an SEM which is based on a precise
integration algorithm (PIA) [44] to fill the research gap. In the proposed SEM, the discrete
solution format of the stiffness matrix is presented to avoid cumbersome analytical for-
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mulas, thereby increasing the versatility of the method. It can be used to solve the wave
propagation problems for isotropic and anisotropic material without adding extra work. In
addition, by using the PIA, very accurate numerical solutions can be obtained. By using
the proposed method, a comprehensive study of the different parameters is conducted to
reveal the effects on the dynamic response of the layered system.

This paper is organized as follows. In Section 2, an SEM based on the PIA to solve
the moving load problem within a multilayered system is provided. Two distinct load
models are then adopted to derive the solutions for the time-spatial domain. In Section 3,
the proposed method is assessed and validated. Drawing upon equivalent conversion
rules, the impact of using a simplified tire contact model when modeling ground vibration
is studied. The effects of the thickness and material anisotropy of the layers on a layered
road structure, when subjected to a moving bell load, are investigated. Our conclusions are
summarized in Section 4.

2. Model Formulation

Consider a semi-infinite elastic road structure made up of l+1 horizontal, homoge-
neous, anisotropic viscoelastic layers which overlies a homogeneous, anisotropic viscoelas-
tic half-space (Figure 1). For the jth layer, the material constants are: the elasticity matrix
Dj; the mass density, ρj; the hysteretic damping ratio, η j; and the layer thickness, hj. It is
assumed that the z-axis is pointing downward through the medium, with the origin of the
axes placed at the surface.

Figure 1. Computational model of the multilayered system.

2.1. Governing Equation within the Frequency-Wavenumber Domain for a General Anisotropic
Multilayered Medium

According to Hook’s law, the stress–strain relationship in Cartesian coordinates for a
general anisotropic material is expressed as follows:

σx
σy
σz
τxy
τxz
τyz


=



d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
d41 d42 d43 d44 d45 d46
d51 d52 d53 d54 d55 d56
d61 d62 d63 d64 d65 d66





εx
εy
εz

γxy
γxz
γyz


(1)

or briefly
σ = Dε (2)
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where D is the elasticity matrix, σ is the stress vector, and the strain vector is ε = Lu; u
stands for the displacement vector, i.e., u= [ux uy uz]

T. The partial differential operator
L is expressed as:

L =


∂

∂x
∂

∂y
∂
∂z

∂
∂y

∂
∂x

∂
∂z

∂
∂z

∂
∂x

∂
∂y


T

(3)

The Lame wave motion equation for a 3D medium, with vanishing body forces, can
be formulated as:

LTσ = ρ
d2u
dt2 (4)

where the superscript dots in d2u/dt2 denote the second-order partial derivative, with
respect to time, t. ρ is the mass density.

For the solution of the problem, a Fourier transform, and its inverse, are performed to
convert the variables between the time-space domain and the frequency domain. It can be
defined as follows:

Γ(x, y, z, ω) =
1

2π

∫ ∞

−∞
Γ(x, y, z, t) e−iωtdt (5)

Γ(x, y, z, t) =
∫ ∞

−∞
Γ(x, y, z, ω) eiωtdω (6)

where ω is the angular frequency; Γ is an arbitrary variable in the time-space domain;
and Γ represents the variable Γ in the transformed domain. For a given layer, j, by sub-
stituting Equations (1)–(3) into Equation (4) and applying the Fourier transform, one can
obtain a transformed wave equation for a homogeneous anisotropic medium in terms of
displacements from Equation (4).

Dzz
∂2u
∂z2 + (Dxz + Dzx)

∂2u
∂x∂z +

(
Dyz + Dzy

) ∂2u
∂y∂z

+Dxx
∂2u
∂x2 +

(
Dxy + Dyx

) ∂2u
∂x∂y + Dyy

∂2u
∂y2 +

(
ρω2I

)
u = 0

(7)

where I is a 3× 3 unit matrix. The corresponding elasticity matrix Dij(i, j = x, y, z) is
derived as

Dzz =

 d55 d56 d53
d65 d66 d63
d35 d36 d33

; Dxx =

 d11 d14 d15
d41 d44 d45
d51 d54 d55

;

Dyy =

 d44 d42 d46
d24 d22 d26
d64 d62 d66

; Dxy = DT
yx =

 d14 d12 d16
d44 d42 d46
d54 d52 d56

;

Dzx = DT
xz =

 d15 d16 d13
d45 d46 d43
d55 d56 d53

; Dzy = DT
yz =

 d45 d46 d43
d25 d26 d23
d65 d66 d63

;

(8)

The solution of u for Equation (7) is in exponential forms. Based on the assumption
that the layered half-space is uniform in the horizontal direction, different waves should
have the same phase at the surface z = 0. Therefore, the solution of u for Equation (7) can
be expressed as

u =
[
ux(z) uy(z) uz(z)

]Te−iκx xe−iκxy = u(z)e−iκx xe−iκxy (9)

where κx and κy are the wave numbers along the x-axis and y-axis, respectively. Substituting
Equation (9) into Equation (7), one can obtain a transformed wave equation, with the
vertical coordinate z serving as a variable, i.e.,
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Cj
0uj

,zz +

(
Cj

1 −
(

Cj
1

)H
)

uj
,z −

(
Cj

2 − ρjω2I
)

uj = 0 (10)

Equation (10) is an ordinary differential equation, where uj
,z is the partial derivative of

uj with respect to z in the jth layer, and the coefficient matrices for the anisotropic medium
in the jth layer take the following form:

Cj
0 = Dj

zz

Cj
1 = −iκx

(
Dj

xz

)
− iκy

(
Dj

yz

)
Cj

2 = κ2
xDj

xx + κxκy

(
Dj

xy + Dj
yx

)
+ κ2

yDj
yy

(11)

where the effect of damping needs to be considered, the elastic constants in Equation (11)
need to be multiplied by 1 + 2iη j, (η j is the hysteretic damping ratio of the jth layer). In

order to solve Equation (10), the dual stress vector pj = −
[
τ

j
xz τ

j
yz σ

j
z

]T
for the jth layer

is introduced, and by applying the relationships between the stresses and the displacement
in the transformed domain, the stress vector can be expressed as follows:

pj = −Cj
0uj

,z −Cj
1uj (12)

By introducing the state vector Sj
=
[
uj pj]T into Equation (10), it can be rewritten

as a first-order ordinary differential equation in the frequency-wavenumber domain:

Sj
,z=HjSj (13)

where Hj is a Hamiltonian matrix, which is expressed as follows:

Hj =

 −(Cj
0)
−1

Cj
1 −(Cj

0)
−1(

Cj
1

)H
(Cj

0)
−1

Cj
1 −Cj

2 + ρjω2I
(

Cj
1

)H
(Cj

0)
−1

 (14)

2.2. Solution of the Transformed Wave Equation

Equation (13) is the governing equation of the wave propagation. The solution can be
obtained when the boundary conditions are determined. However, for different materials,
such as isotropic, anisotropic, etc., the solutions are different, and the exact solution is very
complicated. It should be noted that these solutions exhibit instabilities, such as the case
of sharp variations in the stiffness of the layered half-space. In this study, a numerical
procedure is used to obtain the solution of Equation (13), which can be used for any medium
material and is stable for any layered system.

The general solution of Equation (13) is an exponential function:

Sj
= exp(Hjz){ct} (15)

where {ct} represents the integration constants. It can be noted that the upper and lower
bounds and thickness of the jth layer are zj−1, zj, and hj = zj− zj−1, respectively. According
to Equation (15), the state vectors at the upper and lower bounds of the jth layer will satisfy
the following:

Sj
j = TjSj

j−1 (16)

where Tj = exp(Hjhj) is also an exponential function, which is referred to as the state
transition matrix.

For calculating the state transition matrix, a precise integration algorithm is applied.
The jth layer is divided into 2N min-layers of equal thickness, hj

mini = hj/2N , where N
is the number of actual integral calculations. Take N = 20 as an example; the integration
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step is very small, hj
mini = hj/1048576, which can guarantee calculation accuracy, and the

number of integral calculations is a small value: N = 20, which represents the calculation
efficiency of the PIA. The exponent Tj can be calculated as follows:

Tj = exp(Hjhj) = [exp(Hj hj

2N )]
2N

= [exp(Hjhj
mini)]

2N

(17)

When performing a Taylor series expansion of the exponent (as hj
mini is extremely

small), this will deviate from the unitary matrix by a small remainder, T0, as shown below:

exp(Hjhj
mini) = I + Hjhj

mini +
(Hjhj

mini)
2

2!
+

(Hjhj
mini)

3

3!
+

(Hjhj
mini)

4

4!
+ · · · = I + Tj

0 (18)

Tj
0 = Hjhj

mini +
(Hjhj

mini)
2

2!
+

(Hjhj
mini)

3

3!
+

(Hjhj
mini)

4

4!
+ · · · (19)

By successively factorizing the exponent, a recursive formula can eventually be ob-
tained for its evaluation:

Tj = (I + Tj
0)

2N

= (I + Tj
1)

2N−1

= · · · = (I + Tj
N−1)

2
= I + Tj

N (20)

where
(I + Tj

0)
2
= I + 2Tj

0 + (Tj
0)

2
= I + Tj

1, Tj
1 = 2Tj

0 + (Tj
0)

2

(I + Tj
1)

2
= I + 2Tj

1 + (Tj
1)

2
= I + Tj

2, Tj
2 = 2Tj

1 + (Tj
1)

2

· · ·

Tj
i = 2Tj

i−1 + (Tj
i−1)

2
, (i = 1, 2, · · ·N) (21)

By applying Equation (21) N times using Tj
0 calculated from Equation (18), Tj

N can be
determined with a high degree of accuracy. For example, with N = 20, when the Taylor
expansion takes the first four terms, the relative error of the omitted value is approximately
O(h4

mini) ≈ (hj)
4/1024. It should be noted that O(h4

mini) is smaller than the number of deci-
mal digits for double float-point numbers, which is 10−16. Therefore, it can be considered
that the accuracy of Tj will reach the highest accuracy for the computer storage.

2.3. Spectral Element Formulation

The spectral element method is applied to model the layered system. Based on
the state transition matrix, a two-node layer element is developed, and based on the
radiation conditions at infinity, a one-node layer element is obtained. In this sub-section,
the dynamic stiffness matrix of the two-node layer element and one-node layer element are
derived, respectively.

Based on the Cauchy stress principle, for the jth layer element, as shown in Figure 2a,
the surface traction of the upper bound is denoted as pj

j−1, and the surface traction of the

lower bound is expressed as −pj
j. The surface traction vector can be expressed as

{
tj
}
=

[(
f

j
j−1

)T (
f

j
j

)T
]T

=

[(
pj

j−1

)T
−
(

pj
j

)T
]T

(22)

in which
{

tj
}

is the force vector for the jth layer element, and f
j
j is the node force vector.

Referring to Figure 1, the continuity conditions relating to the displacements and stresses
at the interface between adjacent layer elements can be written as

uj = uj
j = uj+1

j , pj = pj
j = pj+1

j , (j = 1, 2, · · · , l) (23)
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where the superscripts for the displacements and stresses denote the layer number, while
the subscripts denote the interface number.

Figure 2. Schematic diagram of spectral elements: (a) two-node layer element and (b) one-node
half-space element.

For a natural layer, by using the PIA, the state transition matrix is obtained, which can
be indicated in a partitioned matrix as follows:{

uj
j

pj
j

}
=

[
Tj

uu Tj
ud

Tj
du Tj

dd

]{
uj

j−1

pj
j−1

}
(24)

Substituting Equation (22) into Equation (24), the relationship of the nodal traction
vector and displacement is obtained as follows:{

pj
j−1

−pj
j

}
=

[
kj

uu kj
ud

kj
du kj

dd

]{
uj

j−1

uj
j

}
(25)

where kj
uu, kj

ud, kj
du, kj

dd can be considered as the element dynamic stiffness, and they can
be expressed as follows:

kj
uu = −

(
Tj

ud

)−1
Tj

uu, kj
ud =

(
Tj

ud

)−1
,

kj
du = Tj

dd

(
Tj

ud

)−1
Tj

uu − Tj
du, kj

dd = −Tj
dd

(
Tj

ud

)−1 (26)

The compact form of Equation (25) can be expressed as{
tj
}
=
[
k

j
]{

uj
}

(27)

For a layered system overlying a homogenous elastic half-space, the wave modes
reflected from the boundary at the infinite should be removed. Therefore, there are only
waves that travel to infinity. For the one-node layer element, as shown in Figure 2b, the
state vector in the semi-infinite half-space also satisfies

Sl+1
,z =Hl+1Sl+1 (28)

That being so, the following eigenvalue problem relating to the infinite half-space
needs to be solved.

Hl+1Φ = ΦΛ (29)

where Λ is the eigenvalue matrix, and Φ is the corresponding eigenvectors. In the eigen-
value matrix, the positive and negative eigenvalues appear in pairs. The real part of the
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eigenvalue is positive, which represents the wave traveling from infinity to the surface, and
the negative one represents the downward wave.

The eigenvalues of Λ are sorted in descending order, according to the real part value.

Λ =

[
λi
−λi

]
, Φ =

[
Φ11 Φ12
Φ21 Φ22

]
(30)

In order to solve Equation (28), a new vector Q = Φ−1Sl+1 is introduced. Substituting
Equation (29) and Q into Equation (28), the following relationship can be derived:

Q,z = ΛQ (31)

The solution of Equation (31) can be expressed as

Q =

[
exp(zλi)

exp(−zλi)

]{
cg1
cg2

}
(32)

where cg1 and cg2 are the integration constants. This yields

Sl+1
= ΦQ =

[
Φ11 Φ12
Φ21 Φ22

]{
cg1exp(zλi)

cg2exp(−zλi)

}
(33)

The radiation boundary conditions require that there be no upward propagating wave,
which means the value of cg1 should be equal to zero. In that case, the boundary condition
at the bottom interface between the lth layer element and the half-space will be written as

pl+1
l = R∞ul+1

l (34)

with
R∞ = Φ22Φ−1

12 (35)

2.4. Moving Load

The aspects involved in the tire–pavement interaction mechanism include tire contact
area and tire contact pressure. The contact area depends upon several factors, including
the axle load, tire type, and inflation pressure. These factors, in turn, have an impact on
the distribution of the contact pressure. In the real-world, the outline of the contact area
is basically a rectangle or an ellipse full of tread patterns [45], and the contact pressure
distribution is usually not uniform [46]. However, taking all these factors into account is not
straightforward. So, in most studies, the shape of the contact area is simplified to a circle, a
rectangle, or an area that combines two semi-circles and one rectangle [47]. Generally, the
contact pressure distribution is also assumed to be uniform across the whole contact area.

To the best of our knowledge, the influence of these different simplified models on
ground vibration has not yet been studied. In this paper, two types of distribution are
considered: one is the uniform rectangular load. The other assumes a two-dimensional
Gaussian distribution over an elliptic area, which is similar to the measured tire–pavement
contact pressure distribution in [46,48]. We will discuss the ground vibration resulting
from each of these two load models (i.e., a rectangular load and a Gaussian bell load) in the
time–spatial domain.

2.4.1. Moving Rectangular Load

As shown in Figure 1, a vertical load fz(x, y, 0, t) is applied on the surface of the
layered system, which is moving in the positive x direction with a constant velocity of c
across the free surface, and it can be expressed as

fz(x, y, 0, t) = r(x− ct, y) f (t) (36)



Buildings 2022, 12, 1354 10 of 26

in which f (t) is the function of the time history of a load, and r(x, y) indicates the function
of the spatial distribution of the loads. Based on the assumption of a steady state analysis,
the loads have a harmonic time dependence, eiω0t, with ω0 denoting the angular frequency
of the loads, which can be expressed as

f (t) = Fzeiω0t (37)

where Fz is the magnitude of the vertical load. The load in the transform domain can be
obtained by the Fourier transform.

f z(κx, κy, 0, ω) = r(κx, κy)[δ(ω− (ω0 − κxc))]Fz (38)

For a moving rectangular load, this vertical harmonic point load, Fz, is distributed
uniformly over a rectangular area with a size of 2l1 × 2l2, and it can be expressed as

fz(x, y, 0, t) =
1

4l1l2
H
(

l2
1 − (x− ct)2

)
H
(

l2
2 − y2

)
Fzeiω0t (39)

in which H(·) is the Heaviside step function. The Fourier transform was utilized for the
moving rectangular load, with an x-axis and a y-axis, and the load in the transformed
domain is obtained as follows:

f z(κx, κy, ω) =
sin(κxl1) sin

(
κyl2

)
κxκyl1l2

[δ(ω− (ω0 − κxc))]Fz (40)

where δ(·) denotes the Dirac delta function.

2.4.2. Moving Bell Load

If the vertical harmonic load, Fz is distributed over an elliptical area, with an intensity
that obeys a two-dimensional Gaussian distribution. It can be expressed as a moving
Gaussian bell load as follows:

fz(x, y, 0, t) =
1

2πσ1σ2
e
− 1

2 (
(x−ct−µ1)

2

σ2
1

+
(y−µ2)

2

σ2
2

)
Fzeiω0t (41)

in which the parameters µ1 and µ2 are expectations in the x and y direction, respectively;
the parameters σ1 and σ2 are the standard deviation of the bell load, describing how fast
the intensity decays in the x and y direction, respectively. In this paper, µ1 and µ2 are set
to zero. The Fourier transform was applied to the moving bell load with an x-axis and a
y-axis, meaning the load in the transformed domain can be obtained.

f z(κx, κy, ω) = Fz[δ(ω− (ω0 − κxc))]e−
1
2 (σ

2
1 κ2

x+σ2
2 κ2

y) (42)

2.5. Solution of Layered System

The stiffness matrix of the two-node layer element (Equation (25)) and the one-node
layer element (Equation (35)) is assembled via the traditional finite element stiffness matrices
for the finite elements in a structure. The global system of equations are expressed as



F0
F1
F2
...

Fl



mn

=


K1

uu K1
ud

K1
du K1

dd + K2
uu K2

ud
K2

du K2
dd + K3

uu K3
ud

. . .
Kl

du Kl
dd + R∞



mn

u0
u1
u2
...

ul



mn

(43)
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with
F0 = f

1
0, Fj = ∑

e

{
fj

}e
= f

j
j + f

j+1
j (j = 1, 2, · · · , l)

where m represents the mth wave mode corresponding to the x-axis direction wavenumber
κxm, and n represents the nth wave mode corresponding to the y-axis direction wavenumber
κyn. ∑

e
represents the summation of layer elements related to interface j. The compact form

of the Equation (43) can be expressed as{
F(ω)

}mn
=
[
K(ω)

]mn{U(ω)
}mn (44)

In practice, the nodal force vector is known, and the displacement is unknown. From
Equation (44), the displacement is obtained.{

U(ω)
}mn

=
[
G(ω)

]mn{F(ω)
}mn (45)

in which
[
G(ω)

]mn is the inverse of
[
K(ω)

]mn.
For a certain wavenumber, κxm and κyn, the moving load can be achieved by using

Equation (40) and Equation (42) for the rectangular loads and the bell loads, respectively.
The corresponding nodal force vector can be obtained as follows:{

F(ω)
}mn

= f z(κxm, κyn, ω)E3 (46)

in which E3 is the load indication vector, in this case. The third component is one, and the
others are zero. According to the theory of SEM, the displacement response is obtained by
summing a finite number of wave modes with different discrete frequencies.

U(x, y, t) = Fzeiω0t∑
n

∑
m

r(κxm, κyn)
[
G(ω0 − κxmc)

]mnE3e−iκxm(x−ct)e−iκyny (47)

where the integer m ranges from −M to M, and integer n ranges from −N to N. In order to
ensure the accuracy of the solution, M and N should be large enough. The summation of M
and N wavenumbers can be carried out by use of the fast Fourier transform (FFT).

It should be noted that only the displacement on the same surface as the nodal
elevation can be obtained. If the concerned node lies between two layers, another layer
interface is required, passing this node.

3. Numerical Results and Analysis
3.1. Model Verification

Analytic closed form solutions are often used as a benchmark for testing the accu-
racy of other methods. In this section, the steady-state responses from the interior of a
uniform viscoelastic half-space, investigated by Hung and Yang [49], are compared with
the corresponding numerical results obtained by the approach proposed here. In Hung and
Yang [49], the Helmholtz potential, a triple Fourier transform, and its inverse, were used
to obtain the dynamic responses for different load cases. Taking the case of an elastically
distributed wheel load as an example, the viscoelastic half-space considered is assumed to
have an S-wave speed of cS = 100 m/s, a P-wave speed of cP = 173.2 m/s, a Rayleigh wave
speed of cR = 92 m/s, a Poisson’s ratio of ν = 0.25, a mass density of ρ = 2000 kg/m3, and
a damping ratio of η = 0.02. The numerical results were computed at an observation point
of (0, 0, 1), with the wheel load moving at four different speeds: c = 50 m/s, c = 90 m/s,
c = 150 m/s, and c = 200 m/s, and with a frequency of 10 Hz, as plotted in Figure 3. The
elastically moving wheel load in the transformed domain proposed in Hung and Yang [49]
would have the form of

f z =
4T

4 + κ4
xα4 δ(ω−ω0) (48)
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where the axle load was taken to be T = 10t and the characteristic length was α = 0.8 m. The
angular frequency was ω0 = 20π. By using Equation (47), the displacement of observation
point can be obtained. In the analysis, grids measuring 8192 × 8192 were applied, which
covers a range of −32 < κx < 32, and −32 < κy < 32.

Figure 3. Comparison between the results for the proposed method and those in Hung and Yang [49]:
(a) c = 50 m/s; (b) c = 90 m/s; (c) c = 150 m/s; (d) c = 200 m/s.

As indicated in Figure 3, where the instant t = 0 corresponds to the moment where the
center of the moving load passes through the origin, the two curves are exactly coincident,
and an excellent agreement is reached between the two solutions for the subsonic, transonic,
and supersonic cases. This confirms the viability and accuracy of our proposed approach.

3.2. Effect of Simplified Tire Contact Models

As previously mentioned, a uniformly distributed rectangular load is widely used
as the tire contact model in current research. However, in the transformed domain, a
rectangular load decays slowly and oscillates infinitely, as shown in Figure 4, which
requires the wavenumber range to be set large enough to guarantee its accuracy. It is
well known that the Gaussian shape function in the transformed domain is smoother, as
shown in Figure 5, which can be transformed more efficiently and conveniently. Therefore,
a procedure to convert the uniform rectangular load into an equivalent Gaussian load
is derived and validated in this section, which has the benefit of reducing the sampling
frequency in the FFT process and, thus, the number of sampling points.

The equivalent conversion rules mentioned above are illustrated in Figure 6. The
equivalent criterion is that the resultant force for the different load distributions should be
the same. There are three steps that need to be followed:

1. A uniformly distributed elliptic load in area G2 is set to have an equivalent area
to the uniformly distributed rectangular load in area G1. They should have the
same dimensional ratio, k, such that l2/l1 = k and b/a = k. This gives the follow-
ing relationship:

πab = 4l1l2, a =
2l1√

π
; b = k

2l1√
π

(49)
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2. The major axis, a, and minor axis, b, of the elliptic load area need to be set to be
the long side, L1, and the short side, L2, of a new uniform rectangular load area,
G3, respectively;

L1 = a =
2l1√

π
; L2 = b = k

2l1√
π

(50)

3. This assumes that the expectation and variance of this new rectangular load will be
equal to that of the Gaussian bell load in the x-axis and y-axis, respectively.

µ1 = 0, µ2 = 0, σ2
1 =

L2
1

3
=

4l2
1

3π
, σ2

2 =
L2

2
3

= k2 4l2
1

3π
(51)

Figure 4. Uniform rectangular load: (a) load distribution function, (b) Fourier transform.

Figure 5. Gaussian bell load: (a) load distribution function, (b) Fourier transform.

Figure 6. The equivalent conversion rules.

By using Equations (41) and (42), and considering Equations (49)–(51), the equiv-
alent Gaussian load of the uniform rectangular load is obtained, which can be used in
dynamic analysis.
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In this section, a study on the effect of load distribution on displacement and stress dis-
tribution is considered. Without a loss of generality, the steady-state responses of a uniform
viscoelastic half-space caused by a moving load are calculated with different load models.
The material properties were the same as in Section 3.1, and the load was taken to be moving
at a speed of c = 50 m/s. The other parameters in this study were set such that the resultant
force was 10 kN; the dimensional ratio was k = 0.6887 (as recommended in Huang [47]);
and the length and width of the uniform rectangular load area were l1 = 1.0854 m and
l2 = 0.7475 m, respectively. By applying Equations (49)–(51), the standard deviation for
the Gaussian bell load was obtained: σ1 = 0.7071 m and σ2 = 0.4870 m. The comparison of
displacement and stress at z = 0 m and z = 1 m for the rectangular load (RD) and Gaussian
bell load (GD) are shown in Figures 7 and 8, respectively.

Figure 7. Comparison of displacement for the RD and GD at (a) interface z = 0 m and (b) interface
z = 1 m.

Figure 8. Comparison of stress for the RD and GD at (a) interface z = 0 m and (b) interface z = 1 m.

As can be seen from Figure 7, the displacement caused by the rectangular load and
the equivalent Gaussian bell load was basically the same. It can also be seen from Figure 8a
that the stress at the surface was more affected by the kind of load distribution, though
both curves follow the same trend in terms of depth of increase, as can be seen in Figure 8b.
So, by following the above equivalent conversion rules, the equivalent load distribution
has little effect on the displacement. However, with regard to stress, the distribution
near the surface can be significantly influenced by adopting a more realistic tire contact
model. This also demonstrates the greater effectiveness of using a Gaussian bell load than
a simplified rectangular load. The Gaussian bell load is retained as the load model for the
remaining sections.

3.3. Parameter Analysis of Multi-Layered Road

An asphalt road can be idealized as a three-layered system. The top layer is the hot
mixed asphalt (HMA) layer; the middle is the base layer, and the bottom is the half-space.
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Within different design standards, the thickness of the asphalt layer and the base layer
are different. Therefore, the effects of the thickness of the HMA layer, base layer, and the
moving velocity on the displacement and stress response were investigated. Moreover, the
effects of the modulus ratio, as well as the horizontal and vertical modulus of the transverse
isotropy, were also studied.

Without losing generality, a three-layer, linear elastic road structure was taken as the
object of study. The relevant elastic material constants are shown in Figure 9, and the mass
density, ρ = 2000 kg/m3, and the damping ratio, η = 0.02, were adopted for every layer.
The reference loading conditions are described as follows: the standard deviation for the
Gaussian bell load was σ1 = σ2 = 0.7071 m; the lower speed was c = 50 m/s, and the higher
speed was c = 150 m/s; the loading frequency was f0 = 10Hz. For the whole parameter
sensitivity analysis, grids of 8192 × 8192 for κx and κy, which covered a range of [−32, 32],
were adopted.

Figure 9. Research models of the road structure.

3.3.1. Effects of the Thickness of the HMA Layer

With regard to the effects of the thickness of the HMA layer, only the thickness of
the HMA was allowed to vary, while the other parameters were kept constant. For a base
thickness of 100 mm and 600 mm, the thicknesses of the HMA were 50 mm, 100 mm,
200 mm, and 400 mm. The dynamic displacements in the z-axis direction of the surface
were plotted and are shown in Figure 10.

Figure 10 shows that the fluctuation frequency in front of the load is larger than it is
behind it, and a thinner HMA layer may lead to an increase in the fluctuation frequency in
front of the load. For both a thinner base and a thicker base, the displacement response of
the pavement decreases with the increase of the HMA layer thickness. Note that, in the
case of a high-speed moving load with a thinner base, the fluctuation frequency behind
the load increases as the HMA layer thickness decreases. It should also be noted that a
thinner HMA with a thickness of less than 100 mm can reduce the fluctuation in front of
the load, and a HMA layer with a thickness greater than 200 mm can significantly reduce
the drastic vibration behind the load. Generally, a 200 mm-thick HMA layer would appear
to be a better choice for reducing the displacement response, regardless of the speed of the
moving load.

By comparing Figure 10a,b with Figure 10c,d, it can be seen that a thicker base signifi-
cantly reduces the amplitude of the fluctuations for both low- and high-speed moving loads,
and also reduces the fluctuation in front of the load. In practice, the maximum displacement
is the most important design indicator. Therefore, the maximum displacement is compared
in Table 1. The results in Table 1 show that a reduction in the maximum displacement for a
base of 100 mm is greater than it is for a base of 600 mm when the thickness of the HMA
layer exceeds 200 mm.
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Figure 10. Effect of the HMA thickness on the vertical displacement fluctuation amplitude along the
x-axis, induced by a moving Gaussian load: (a) cases for a 100mm-thick base layer, with a speed
of c = 50 m/s; (b) cases for a 100 mm-thick base layer, with a speed of c = 150 m/s; (c) cases for a
600 mm-thick base layer, with a speed of c = 50 m/s; and (d) cases for a 600 mm-thick base layer, with
a speed of c = 150 m/s.

Table 1. Reduction in the maximum displacement for different variations in the HMA layer thickness.

HMA

c = 50 m/s c = 150 m/s

Base 100 mm Base 600 mm Base 100 mm Base 600 mm

Maximum
(mm) Reduction Maximum

(mm) Reduction Maximum
(mm) Reduction Maximum

(mm) Reduction

50 mm 0.06522 0.0% 0.02321 0.0% 0.06358 0.0% 0.02146 0.0%
100 mm 0.05853 ↓10.3% 0.0205 ↓11.7% 0.05787 ↓9.0% 0.01931 ↓10.0%
200 mm 0.04417 ↓32.3% 0.01679 ↓27.7% 0.03992 ↓37.2% 0.01627 ↓24.2%
400 mm 0.0243 ↓62.7% 0.01173 ↓49.5% 0.02227 ↓65.0% 0.01194 ↓44.4%

↓ indicates a reduction in the maximum displacement.

3.3.2. Effects of the Thickness of the Base Layer

The effects of the thickness of the base layer have been analyzed in sub-Section 3.3.1.
However, only two cases were compared, and the overall impression of the effects of
the thickness of the base layer is still not clear enough. For this purpose, analyses were
conducted for four base layer thicknesses: 100 mm, 200 mm, 400 mm, and 600 mm. The
thickness of the HMA layer was 50 mm and 200 mm to provide comprehensive results.
Except for the two parameters, all the other parameters for the layered system and the
moving loads were kept unchanged. The displacement of the road surface caused by the
moving load with a speed of c = 50m/s and c = 150m/s is presented in Figure 11.

Figure 11 shows that as the thickness of the base layer increases, the maximum
displacement amplitude decreases significantly. It can be seen that for both a thinner and
thicker HMA layer, a base layer with a thickness of 400 mm can reduce the vibration
behind the load significantly. In the case of a moving load with a lower speed of c = 50 m/s,
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except for the amplitudes, the road structures with thinner or thicker HMAs may display
the same kind of displacement fluctuation. In the case of a moving load with a higher
speed of c = 150 m/s, a thicker base results in a large displacement fluctuation before
the arrival of the moving load and then a slight fluctuation after it has passed. The
maximum displacement is presented in Table 2. It can be seen that a reduction in the
maximum displacement for HMA layers of 50 mm and 200 mm thicknesses is almost
the same. When the thickness of the HMA layer exceeds 400 mm, the reduction in the
maximum displacement for the former is slightly larger than it is for the latter. In general, a
400 mm-thick base layer appears to be appropriate for reducing the displacement response,
regardless of the speed of the moving load.

Figure 11. Effect of the base thickness on the vertical displacement fluctuation amplitude along the
x-axis, induced by a moving Gaussian load: (a) cases for a 50mm-thick HMA layer, with a speed
of c = 50 m/s; (b) cases for a 50 mm-thick HMA layer, with a speed of c = 150 m/s; (c) cases for a
200 mm-thick HMA layer, with a speed of c = 50 m/s; and (d) cases for a 200 mm-thick HMA layer,
with a speed of c = 150 m/s.

Table 2. Reduction in the maximum displacement for different variations in the base layer thickness.

Base

c = 50 m/s c = 150 m/s

HMA 50 mm HMA 200 mm HMA 50 mm HMA 200 mm

Maximum
(mm) Reduction Maximum

(mm) Reduction Maximum
(mm) Reduction Maximum

(mm) Reduction

100 mm 0.06522 0.0% 0.04417 0.0% 0.06358 0.0% 0.03992 0.0%
200 mm 0.05282 ↓19.0% 0.03565 ↓19.3% 0.05108 ↓19.7% 0.03132 ↓21.5%
400 mm 0.03397 ↓47.9% 0.0236 ↓46.6% 0.03014 ↓52.6% 0.02163 ↓45.8%
600 mm 0.02321 ↓64.4% 0.01679 ↓62.0% 0.02146 ↓66.2% 0.01627 ↓59.2%

↓ indicates a reduction in the maximum displacement.
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3.3.3. Stress, Velocity, and Acceleration Analysis

Generally, there are mutual interactions across a large number of the parameters,
and their effect depends not only on any one single parameter itself but also upon the
combination of all of the parameters. In this sub-section, the stress, velocity, and acceleration
are comprehensively studied and presented to give the overall impression of the effects of
the thickness of the HMA layer and base layer.

There are various cases for the different combinations of the thickness of the HMA
layer and the base layer, which are explained in Table 3. The effect of different proportions
of layer thickness on the stress amplitude along the z-axis is shown in Figure 12. It can be
seen that a larger total thickness in the various layers results in a smaller minimum value.
However, looking at the 50–600 and 200–400 mm cases, things are different. In spite of a
smaller total thickness, the latter case of 200–400 mm has a lower minimum value and a
faster rate of decrease than the former case. The 400–100 mm case has the fastest rate of
decrease but a similar result in the end. Likewise, the 200–200 mm case has a faster rate of
decrease than the 50–400 mm case. So, it can be inferred from this that the thickness of the
upper HMA layer has a greater influence on the stress along the z-axis than the base does.
For cases where the moving load has a higher speed of c = 150 m/s, the results for a depth
of more than 1 m show similar changes.

Table 3. Cases used for the analysis of the influence of variations in the layer thickness.

Case Type Thickness of HMA Layer (mm) Thickness of Base Layer (mm)

50–100 50 100
100–100 100 100
200–100 200 100
400–100 400 100
50–600 50 600

100–600 100 600
200–600 200 600
400–600 400 600
50–200 50 200
50–400 50 400

200–200 200 200
200–400 200 400

Figure 12. Effect of layer thickness on the vertical stress fluctuation amplitude along the z-axis,
induced by a moving Gaussian load with speeds of (a) c = 50 m/s and (b) c = 150 m/s.

The ground surface vibration velocity and the acceleration along the x-axis are pre-
sented in Figures 13 and 14, respectively. This result shows that the changes are the same as
they were for the stress under the ground. Note that a thicker overall layer can reduce the
degree of tremor. Comprehensive analysis of the results indicates that the 200–400 mm case
was the best at reducing dynamic vibration, regardless of the speed of the moving load.
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Figure 13. Effect of layer thickness on the vertical velocity fluctuation amplitude along the x-axis,
induced by a moving Gaussian load with speeds of (a) c = 50 m/s and (b) c = 150 m/s.

Figure 14. Effect of layer thickness on the vertical acceleration fluctuation amplitude along the x-axis,
induced by a moving Gaussian load with speeds of (a) c = 50 m/s and (b) c = 150 m/s.
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3.3.4. Effects of Modulus Ratio and Transverse Isotropy

In this section, the effects of material anisotropy on the dynamic response of the road
are studied. The modulus ration = Eh/Ev is usually an important character in representing
the character of the transverse isotropy for an elastic medium. Eh and Ev are Young’s
modulus in the horizontal direction and in the vertical direction, respectively. To illustrate
the influence of n on the HMA and base, the isotropic case from Section 3.3.1 is extended
to some transversely isotropic cases, as shown in Tables 4 and 5. Three modulus ratios, n,
for the HMA are considered: nHMA = 0.5, 0.75, and 1.0, respectively, for which the effect
of the base modulus ratio is also taken into consideration, with nBase being set to 0.5 and
1.0, respectively (see Wang et al. [50] for the rationality of the assumed values). For the
investigation into the influence of the vertical Young’s modulus, we kept the horizontal
Young’s modulus of the layers unchanged, and took different values of nHMA and nBase, as
shown in Table 4. Similarly, as shown in Table 5, the vertical Young’s modulus of the layers
was kept invariant, and the influence of the horizontal Young’s modulus was investigated
by varying nHMA and nBase. The other parameters are the same as those in Section 3.3.1,
and two load speeds, measuring c = 50 m/s and c = 150 m/s, were considered. The vertical
displacement along the x-axis at the road’s surface are presented in Figures 15 and 16, and
the vertical stress at the lower bound of the base layer are presented in Figures 17 and 18.

Table 4. Cases used for the analysis of the influence of the vertical Young’s modulus of trans-
verse isotropy.

Layers Eh(MPa) n = Eh/Ev νh = νv Gv(MPa) Thickness (mm)

HMA 3450 0.5/0.75/1.0 0.35 1277.8 200
Base 1000 0.5 or 1.0 0.30 384.6 400

Half-space 51.8 1.0 0.40 18.5

Table 5. Cases used for the analysis of the influence of the horizontal Young’s modulus of trans-
verse isotropy.

Layers n = Eh/Ev Ev(MPa) νh = νv Gv(MPa) Thickness (mm)

HMA 0.5/0.75/1.0 3450 0.35 1277.8 200
Base 0.5 or 1.0 1000 0.30 384.6 400

Half-space 1.0 51.8 0.40 18.5

It can be observed from Figure 15 that the modulus ratio, n, of the HMA and the base
has a noteworthy impact on the vertical displacement amplitude, in the case of a fixed
vertical modulus, Ev, for both c = 50 m/s and c = 150 m/s. The vertical displacement
decreases as the modulus ratio nHMA increases due to the increase in the horizontal Young’s
modulus, Eh, and a larger nBase for the base layer can significantly decrease the displacement
amplitude. In comparison, in the case of a fixed vertical modulus, Eh (Figure 16), the
modulus ratio, n, of the HMA and the base has a slight impact on the vertical displacement
for both c = 50 m/s and c = 150 m/s. It can still be seen that from the partially enlarged
view of the maximum displacement in Figure 16, the vertical displacement decreases as
the modulus ratio, nHMA, increases due to the decrease in the vertical Young’s modulus Ev.
For both cases (Figures 15 and 16), it can be found that with the increase in the modulus
ratio, nBase, of the base layer, the maximum value of vertical displacement increases.

With regards to stress, the distribution of vertical stress along the x direction at the
lower bound of the base layer is picked up, as indicated in Figures 17 and 18. It is obvious
that, in the case of the fixed vertical modulus (Figure 17), the vertical stress amplitude
decreases with the increase in either nHMA or nBase for both lower and higher speeds of the
moving load. The frequency of the vertical stress fluctuations decreases with an increase
in the modulus ratio, n. For a fixed horizontal modulus (Figure 18), the effect of the layer
modulus ratio, nHMA, on the stress amplitude is relatively slight, regardless of whether
the base has a small or a large nBase. However, it can still be observed that as the nHMA
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increases due to the decrease in the vertical Young’s modulus Ev, the maximum amplitude
of stress decreases. A larger vertical modulus, Ev, of the base can increase the vertical
stress amplitude at the base lower bound. In general, the horizontal Young’s modulus,
Eh, of the HAM and the base has a significant effect on the dynamic response of the road
than does the vertical Young’s modulus, Ev, and a larger Eh can reduce the amplitude of
both displacement and stress. A smaller vertical Young’s modulus, Ev, of the HMA layer
can help decrease the dynamic responses, while a base with a smaller Ev can increase the
displacement amplitude.

Figure 15. Effect of the layer modulus ratio,n = Eh/Ev, with a fixed vertical modulus on the vertical
displacement fluctuation amplitude along the x-axis, induced by a moving Gaussian load, with
speeds of (a) c = 50 m/s and (b) c = 150 m/s.

Figure 16. Cont.
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Figure 16. Effect of the layer modulus ratio, n = Eh/Ev, with a fixed horizontal modulus on the
vertical displacement fluctuation amplitude along the x-axis, induced by a moving Gaussian load,
with speeds of (a) c = 50 m/s and (b) c = 150 m/s.

Figure 17. Effect of the layer modulus ratio, n = Eh/Ev, with a fixed vertical modulus on the vertical
stress fluctuation amplitude at the lower bound of the base layer, induced by a moving Gaussian
load, with speeds of (a) c = 50 m/s and (b) c = 150 m/s.
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Figure 18. Effect of the layer modulus ratio, n = Eh/Ev, with a fixed horizontal modulus on the
vertical stress fluctuation amplitude at the lower bound of the base layer, induced by a moving
Gaussian load, with speeds (a) c = 50 m/s and (b) c = 150 m/s.

4. Conclusions

This paper presents a modified spectral element model suiigure for solving the dy-
namic response of a 3D, multilayered, elastic half-space regarding a moving load based
on a state transition matrix and a precise integration algorithm. Numerical examples
have confirmed the reliability and precision of the proposed procedure through a series of
comparisons between existing solutions for both subsonic and supersonic cases. The main
advantage of the proposed method is its robustness and versatility. It can be used to analyze
wave propagation in an isotropic- or anisotropic-layered half-space without additional
work. An equivalent conversion rule was used to simplify the uniform rectangular load
typically used in tire contact models to a Gaussian bell load, resulting in a reduction in
the number of sampling points in the FFT procedure. The numerical example shows the
accuracy of the equivalent conversion rule.

For a fixed modulus in both base and HMA layers, it was found that thicker HMA
and base layers can reduce the amplitude of the fluctuations in the response. As the HMA
thickness increases, the decrease ratio for the maximum displacement of the base layer, with
a thickness of 600 mm, is no more significant than it is for a base layer with a thickness of
100 mm. However, a thicker base layer can reduce the response noticeably if the thickness
of the HMA layer is less than 100 mm. The vertical stress along the z axis decreases more
rapidly if the thickness of the HMA layer increases. So, overall, the most effective way to
decrease the response is to increase the thickness of the HMA layer.
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With regards to the transverse isotropy, it was found that a larger horizontal Young’s
modulus, Eh, for either the HAM or base layer can help reduce the amplitude of the
displacement and stress. As the vertical Young’s modulus, Ev, of the HMA layer increases,
the maximum displacement at the road surface and the maximum stress at the lower bound
of the base increase. A base layer with a smaller Ev can decrease the maximum stress, and
can increase the maximum displacement. However, the horizontal Young’s modulus, Eh, of
the HAM or base layer has a significant effect on the dynamic response when compared to
the vertical Young’s modulus,Ev.

The results in this paper relate to a three-layer road structure that was subjected to a
single moving harmonic load. For other elastic multilayered systems with multiple moving
loads, obtaining the response will require the adoption of a similar approach and the
principle of superposition. The present solutions may be valuable for developing analytical
formulations for the analysis of problems involving an anisotropic multilayered medium.
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