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A mathematical model to compute the dynamic response of
asymmetric shear wall-frame building structures is presented. The
rformulation is developed in detail for the case of one axis of
symmetry. Also, the method is derived for the case of relatively
uniform stiffining element with respect to height and it is based on the
continuous approach. Tha lateral load resisting elements, as elastic

continua, are combined by using the eguilibrium and compatibility
conditions to yield a coupled set of partial differential equations.
Eigenva1ugs.and eigenvectors are determined using numerical procedures
and results are presented to show the natural periods and mode sﬁapes
_ for several practical structures. The total dynamic résponse of ' /
~such structures subjected to earthquake ground motions is determined
and results are presented for excitation due to several different
earthquakes. The response results are compared with those obtained
by using a static analysis with the objective of evaluating the
adequacy of such static']oading provisions and developing guidelines
to define situations for which'a detailed dynamic response computation

is required.
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CHAPTER I
4 INTRODUCTION

1. Interaction of Shear Walls and Frames in Multistory Structures

The interaction of shear walls with frames in multistory
structures has been studied in recent years and several methods of
analysis have been proposed. This interaction is a special case of
indeterminancy, in which two basically different components are t;éd
together to produce one structure. As buildings increase in height,
it becomes more important to ensure adequate lateral stiffness to
resist loads which may arise due to wind, seismic or blast effects.
If the frame alone is considered to take the full lateral load, it
would develop moments in columns and beaifs to resist the total shear
at each storey and as a result it would deflect as in Figure 1-a.

If a shear wall, on the other hand, is considered to resist all the
lateral loads, it would develop moments at each floor equal to the
overturning moment at that level and it would deflect as in Figure 1-b.
By comgaring these two figures, it can be seen that a rigid frame
deflects predominantly in a shear mode and a shear wall deflects pre-
dominantly in a bending mode. If a shear wall and a frame interact in
a building, each one will try to obstruct the other from taking its
natural free deflected shape, and as a result a redistribution of
forces between the two would be expected. As shown in Figure 1-c

the frame will restrain or pull the shear wall back in the upper
stories, while in the lower regions the opposite will occur. A

1
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1-a-Free Frame 1-b-Free Wall 1-c-Combined Frame & Wall

FIGURE 1 TYPICAL DEFLECTED SHAPES
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considerable amount of research work has been published on this
interaction of shear walls with frames and the static and dynamic
analysis of this particular class of building structures have been

widely treated in recent years.

2. Review of Methods of Analysis of Wall-Frame Building Structures

In 1972, a report describing the current numerical methods
of three-dimensional analysis of tall buildings under the action of
static horizontal loads was presented by Stamato (26). The various
methods of three-dimensional analysis may be classified according to
two different criteria. The first refers to the stiffness of the floor
slabs and the second deals with the treatment by continuous or
discrete methods. In the first classification criterion, the majority
of the current methods assume the floor slabs as being completely :
flexible transversally and infinitely rigid in their own planes. The
other methods  consider the actual values of the floor stiffness by
finite element techniques. For the second classification criterion,
in the continuous methods the horizontal elements which connect the
vertical resistant elements are substituted by a continuous medium
of equivalent stiffness distributed along the height of the building.
These methods lead to a system of differential equations which, after
being integrated, supply the displacements and internal forces in the
whole structure. In the discrete methods the matrix techniques are
used and these methods lead to a system of many Tinear equations which,
after being solved, supply the displacements and internal forces in

the whole structure.




The dynamic analysis is treated as an extension of static
analysis.

The formulation of the static problem being determined, that
of the dynamic problem can be obtained by including the inertial forces
of the building structure. The governing equation of motion is used
to determine the dynamic properties of the entire structure. These
dynamic properties are the natural frequencies of vibration and the
corresponding mode shapes.

Using the stiffness matrix method, Clough, King and Wilson (4)
presented an efficient digital computer method for structural analysis
of large multistorey buildings laid out in a rectangular grid pattern
containing shear walls and frames and subjected to both vertical and
tateral loading. It is assumed that floor slabs are rigid in their
own planes. The method is based on the development of a‘tri—diagonél
stiffness matrix of each frame in the building, its reduction by
recursion relationships to the lateral frame stiffness, and finally
the superéosition of the lateral frame stiffnesses to obtain the total
building stiffness. This method can be extended for dynamic analysis
of this type of structure.

In the analysis by Rosman (23), the continuous method is
used and the floors are assumed to be infinitely rigid in their own
planes, as compared to the walls and frames, while they are sufficiently
flexible out of their planes. The different vertical settlements of
walls and frames do not affect the internal forces due to the lateral
loading and the axial deformations of the columns have no influence

on the load distribufion. Solutions are obtained when the walls and



frames are in different planes or in the same plane using approximate
method or by exact integration of the differential equations.

Adopting Rosman's way of analysing a shear wall-frame structure
as a combination of flexural and shear cantilever beams, Heidebrecht
and Stafford Smith (12) presented a simple hand method for analysis
of uniform wall-frame structures. In this method, a fourth-order
differential equation is derived with the lateral deflection of the
structure as the unknown. The solution of the differential equation
yields the lateral deflection and hence the force components. The
three common types of loadings are considered and design curves for
deflection, moment, shearing force and horizontal interaction force are
included. The method is extended for dynamic analysis and the basic
mathematical model of the shear-flexure beam is used to determine the
dynamic properties of such tall building structures. ¢

Gluck (8) presented a three-dimensional continuous method
for structures consisting of simple or coupled, prismatic or non-
prismatic, shear walls and frames arranged asymmetrically in the floor
plan. Based on the compatibility and equilibrium conditions, a set
of coupled differential equations is derived with the translational
and tg;ationa] displacement functions as the unknowns. This analysis,
howeseg, does not include the effect of axial Jeformations of the walls
and columns. The method is extended for dynamic ana]ys%s (1) and the
problem is reduced to an eigenvalue problem of order 12 independent of
the number of stories. Allowing different foundation conditions, the

method is worked out for full restraint of the structure at the base



or a rigid raft foundation on an elastic subgrade; the normal modes
are determined for each case.

The analysis of the elastic earthquake response of non-
symmetric multistory structures is presented by Mendelson and Baruch (19).
The analysis is based on the continuous connection method, using
the normal modes of the structure and taking into consideration the
partial restraint of the structure in the subgrade. The method
consists, in principle, in resolving the structure into fwo subsystems:
the shear walls, which are cantilevers fixed in the base, and the
frames and connecting beams, whose shear resistance is proportional
to the first derivative of the displacement. The displacements and
internal férces are obtained as continuous functions along the

vertical axis.

~

Using the same continuous approach, Stamato and Mancini (27)
have presented a three-dimensional interaction of walls and frames.
The unknowns of this analysis are the lateral displacements in the’
X and Y directions and the rotational deformation about the Z axis.
Rutenberg and Heidebrecht (24) reduced this problem to relatively
simple hénd method for the static analysis of uniform asymmetric
flexural wall-frame structures subjected to lateral loads. This
static analysis is extended and an approximate method for evaluation
of the dynamic properties of such structures is proposed by Rutenberg,
Tso and Heidebrecht (25). An exact solution is first given for the
case in which the coefficient matrix of the dynamic equi1ibrium$

equations satisfies c&rtain conditions. Using perturbation analysis,

the method is then applied to the more general case in which these

.
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conditions are only approximately satisfied.

The dynamic analysis of assymmetric wall-frame buﬁ]dings has
been developed by Heidebrecht (14) and an approximate method for
the computation of coupled dynamic frequencies and mode shapes for

uniform tall building structures is described<

3. Scope of Present Study

{
The purpose of this thesis is to develop a mathematical model

to compute the dynamic response of asymmetric shear wall-frame

building structures. This particular class of building structure
includes those whose lateral load resisting system is made up of an
asymmetrically arranged grouping of flexural type (shear walls) and
shear type (frames) elements. These elements may be located in any
asymmetric fashion, but fﬁr the purpose of comparison with normal

static planar loading procedures, the method is developed in detail

for the case of one axis of symmetry. Also, the method is derived

for the case of relatively uniform stiffining elements with respect to
height and it is based on the continuous approach. Each element is
modelled as an elastic continuum, i.e. either as a shear or flexural
beam. The elements are combined by using the equitibrium and
compatibility conditions to yield a coupled set of partial differential
equations. Eigenvalues and eigenvectors can be determined using
nu;erica1 procedures. Results are presented to show the natural periods
and mode shapes for several practical structures. A numerical integration
procedure is used to determine the total dynamic response of such

-

. structures subjected to earthquake ground motions and results are

-
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presented for excitation due to several different earthqugzes. The
response results are analysed to consider the influence of the
flexural-torsional coupling on the dynamic amplification of the various
response parameters. Results are also compared with those obtained

by using a statfc analysis with the objective of evaluating the
adequacy of such static loading provisions and developing guidelines

to define situations for which a detailed dynamic response computation

is required.
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CHAPTER 11
DYNAMIC ANALYSIS OF ASYMMETRIC
WALL-FRAME STRUCTURES

1. Introduction

The dynamic analysis of multistory structures has been widely
treated in recent years. Heidebrecht (14) has presented a method for
the dynamic analysis of uniform tall building structures containing both
flexural and shear type resisting elements. This method permits the
determination of the coupled dynamic properties by hand computation using
either slide rule or deésk calculator.

. In this chapter, a study of the coupled dynamic behaviour of

a wall-frame structure is presented. The continuous method is used
for analysis. The governing equations of motion with appropriate boundary
conditions are given. An exact treatment for determining natural
frequencies and coupled flexural-torsional modes of vibration for a
two-dimensional wall-frame structure is presented. A special case of
a single wall-frame systémsis studied.

The dynamic analysis of the wall-frame system depends upon the
following assumptions:’

(i) The floors act as rigid diaphragms in their own planes.

(i)  The lateral load resisting elements have the same relative cross- <
sectional position at all floor levels.

(i1i) The vertical forces acting on the lateral load resisting elements

9




e e T —

10

are negligible.
(iv) A1l the lateral load resisting elements are ejther flexural

or shear type elements.
(v) The geometric properties of the lateral load resisting elements

are vertically uniform for the entire height of the building.
(vi) The structure is fully restrained at the base.

Figure 2 shows the coordinate system for a typical cross section

of the structure. The X-Y coordinate system coincides in direction
with the principal axes of the structural components. The coordinate

7 axis, positive upwards, is located at the centre of mass.

2. Equation of Motion of Asymmetric Wall-Frame Structures

The differential equations for the statical equilibrium of

a shear wall 7 whose centroid is located at the coordinate

position (%Xi , eYi) are given by
W (z) = EL . gg—’;— (2.1a)
Wy (z) = E1,, g—;-? (2.1b)
Wy (z) = EI . g—;i - GJ; g;:i (2.1¢)

in which e and Wy, are the lateral loads applied to the unit

height of wall in the X and Y directions respectively, W is
the external applied torsional moment per unit height of wall, E@%i
and EI,. are the flexural stiffnesses in the ¥ and Y directions
respectively, EIwi is the warping torsional stiffness, GJ; is

the St. Venant torsional stiffness, ‘Xi and Yi are the lateral
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displacements im the ¥ and Y directions respectively, ei is the
rotational deformation, and Z 1is the height above the foundation.
Similarly the differential equations for the statical

equilibrium of a frame j whose centroid is located at the coordinate

position (?¥j s ayj) are given by
da¥ ;

-6a,, —iL
Xj dz?
dacy.

- — .
Gij 172 (2.2b)

]

5 (2) (2.2a)

i

w Z)

Yq (

(z) = -¢J 485 (2.2¢)
“6; T age ‘

in which c?qyj and G;iyj are the shear stiffnesses in the X and
Y directions respectively, and the other quantities are as defined
for equations (2.1).

Let ¥ (z), Y (2), and 6 (2) be the displacements of the

centre of mass axis at height 2. Compatibility conditions require

that the displacements of any element X Jocated at the coordinate

position (xK s yK) be given by .
X, (z) = x(2) - yKé (z) (2.3a)
Y (z) = ¥(z) + xKE (z) (2.3b)
i 8 (z) = 6(2) (2.3c)
’ Let W, (z) , wy,(z) and Wy (z) be the distributed

loads applied to the entire structure at the centre of mass axis.

Equilibrium conditions require that



W, (2)

vy (2)

~

in which m and n

13

m n
= LWy (z) + § wXJ.(z) (2.4a)
1=1 J=1
m n
= '§ Wy (z) + .§ Wy ; (2) (2.4b)
=1 J=1
Tow. (2) + I ow, (2)
= I w,. (2 + W, .
=1 j=1 %
b ( (2)
bk Lo g vy (20 = ey vy z\]
n
+ JE] [anij (z) an jo(Z)] (2.4¢)

are the total number of

walls and frames

respectively. Substituting equations (2.1), (2.2) and (2.3) into
equations (2.4) yields
= d7 ¥ — d'8 — 40
WX (2) E'IX PR - 5 Hz - ey EIX 2;“ + ayG y g‘z—z
(2.5a)
d*y — 3%y — d'6 — 4%8
7 &£ - gAY+ e EILS= - q Ga, L
(2.5b)
_ = d'8 — 4% — 4% I
Wy (2) = EI o GJ T " °r EL, T + a, G4, Y
= d'Y — d*¥
+ ey EIYZZ—Z—T' - aXGAdez
(2.5¢)
in which
—— _ m — _ m
ET, = -§ EI, . ET, = -§ El,. (2.6a)
=] =1
GA .'5 GA T (2.6b)
A = G4, . = GA,. .
X 7= XJ Y 7=1 Yj
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m m
.E] e ¢ EIYL iET eyi E{Yt
eX = -————‘L --————-——-<_—- e\y = — (2'6C)
EI, FI,
3 GA n
e A 7 I ay.GA, .
g 7 ay . =1 777 (2.6d)
GAY A
. A
BT = ¢ [Ef .+ o, BI.. + . EL..] (2.6e)
w Loy M ¥i “lyi yi xi :
N =1
7 . 2 y 1+ % [67.] (2.6f)
GJ -J_E] [GJJ ay GAYJ- ayJ.GAXJ. s GJ, .

To formulate the equations of motion of the structure, the
dynamic problem is treated as a,static probiem with the inertial forces
added to the elastic forces of the structure. The inertial forces
of translation in the X and Y directions and rotation about the

centre of mass are given by

- %X
We (2, ¢) = -p4 122 (2.7a)
- %y
Wy (2, t) = -p4a 57 (2.7b)
Wy (2, t) = -pI 2% (2.7¢)
R m 3t? ‘

3

in which p4 1is the mass per unit height, plﬁi is the mass moment
of inertia per unit height, and ¢ s the time coordinate. Sub-

stituting equatfons (2.7) into equations (2.5) yields

= X — 3% — 39 — 529 52X
—— - — - —_— —— = - ———
B &5, - 6 oy ey BIy S5 + ayGhy =5, pA ~
(2.8a)
7 Y ar 2%y 346 = 226 377
Er, &L - ga, X 88 98 o, 9L
Y 34 Y 472 eXEIYaz" aXGYa 2 pABtz ’
(2.8b)

[P UUIPRUE
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wazh 27 2 Y =X 5z Y X322
— 'y — 3%y 920
+ — ~ —_— =z - —_—
%(EIYBZ“ aXGAy8Z2 pfmat2
(2.8c)

These equations represent the free vibrations of a three-dimensional
wall-frame structure. This set of equations and the boundary con-
ditions of the problem determine the transverse cgup]ed“f]exural—
torsional visrations of the strucutre. In the particular case

with the X -axis as the axis of symmetry, the eccentricities in
Y-direction vanish and the problem converts to that of a two-

dimensional wall-frame structure.

3. Exact Treatment for Natural Frequencies and Mode Shapes

for a 2-Dimensional WaTl-Frame Structure

A 2-dimensional analysis is presented for the case of a floor
section with the Xx-axis as thg}@xis of symmetry. This analysis gives
a complete understanding offthe interaction between various structural
elements as well as the effect of coupling between the Y and 6

motions. In this particular case the differential equations take

the form

f:fx-z-‘z’-ff - azxg—f . -pA—:g (2.92)
Efy%;z- ﬂy%”emﬁy%’ amEZY%-;%= —pAz—i—g (2.9b)
ﬁ—w%-‘;—g-— GJ%E%+@MEI_Y§-;—§—— am@fygg‘—‘ -pImgit% (2.9c¢)
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in which
ey *© 0 a, = 0 (2.10a)
& = e a = a (2.10b)
< v

From the above set of equations, it is obvious that x(z,¢) is
ﬁncoup]ed whereas Y¥(z,¢) and 6(z,t) are coupled. In the present
study, only the coupled Y - 6 vibrations are investigated'since the
X ~vibration is the case of a shear-flexure member deforming in
combined shear or bending configurations; the concept is similar to
that used by several previous investigators (22, 25).

Figure 3 shows the coordinate system for a typical cross-
section of a 2-dimensional wall-frame structure with point & as
centre of mass, point ¥ as centroid of walls and point F as
centroid of frames. In this case, the centroid of walls ¥ being
located to the right of M gives positive wall eccentricity e,
and the centroid of frames F being located to the left of ¥ gives
negative frame eccentricity a,.

Rearranging the two coupled equations (2.9b) and (2.9¢c) yields

'Y 32y en 3%(rd) Gy, 3%(rf) _ 1 9%F
"T"“z—“{*“ﬁl s - Mgz DL - L 9 d (2.11a)
Ry .Y/ Y4 LY b® §q2
3" (r6 » 32(rb en 3"Y a. . 9%y 1 3%(rb
UG . g BBy T fme 2T L L1 22) (5 4y
3z Y 32 3 ot
in which N o
CA, = EL
R S (2.122)
ET, EI EI,
pl
S 2120
b EI, ET
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Using a matrix form of presentation for equations (2.11),

one obtains

1w - k] o+ w1 - (o) (2.13)
in which
Ry B S R S AT ¢ R ey
3" \ ro az? rb ot rd
(2.14a)
1 em h
[x,] = Y
€ 1
r
— a -
a? -—Z— a? !
k1 = . \ (2.14)
m
i __r__aZ BZJ
117 0
(x,1 =
0 -
(32'J 4

The solution to equation (2.13) may conveniently be assumed to be of

the form

{v(z,t)} = ¥ (o (2)) sinwt ‘ (2.15)
n=1 " n

in which W, is the nth frequency of the coupled flexural-torsional
modes of deformation and ¢n (z) s the mode shape function for

the same mode of vibration. Substituting equation (2.15) into equation

Y et Lo EEaiteKions e Kol

e <
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(2.13) yields an ordinary differential equation for the nth mode
of vibration
L}
CA RO EAESE 72 I C 5 LI 0 I 35 SEET (1) (2.16)
1 n 2 n n -3 n )

The mode shape function {¢n} in equation (2.16) is assumed to be

= () en? (2.17)"

~
. aYn .
in which {<b z) < } = { } (2.18)
q)en “on

and {Cn} is a constant vector. Substituting equation (2.17) into

equation (2.16) yields

b - 2 - 2 =
[[K]] A (x,1] % w? [Kaj] {Cn} {0} (2.19)
Substituting equations (2.14b) and (2.18) into equation (2.19) yields
— wz . . - .
Y- aZaz - 2 —m ot - g2 )2 Cyn
n n b2 n r
2
fﬂ )\ll - a___’z’_ a2 A2 Al‘ - 82 Az _ m_ﬁ Cen O A
r'n r n n n e? k
_ 4 J
(2.20)

The characteristic equation governing the non-trivial solution to the
above homogeneous set of equations is a fourth order polynomial in

A; and it is expressed by equating the determinant of the matrix

of coefficients of ¥ and on. to zero. The four£h order poly-

nomial equation in A; is

8 L] 2 -
Ay At AN AL AN A = 0 (2.21)

Je RSt 7
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in which
- em
A - [ - (e (2.22a)
e
A, = (2 1) gz (2.22b)
r
4 = 2[-2 (fﬂ)22 - w2 I (2.22c)
3—aL8—ra w 7 > .22¢C
2 2 ‘
= 2| a” . BY
Au W [ ; + 2 :] (2.22d)
o~
A, = -072;2 (2.228)

It can be shown (10) that two of these roots will be
positive and two will be negative. Consequently, the mode shapes of
equation (2.17) can be written as a combination of hyperbolic and
trigonometric functions of the parameter An . Each shape function
requires eight independent constants and equation (2.20) governs the
relationship between the mode shapes. These constants are to be
determined from the boundary conditions. It can be shown (12, 13) that
the boundary conditions governing the behaviour of the structure are
given by

(a) at the base of the structure, 2z =0

(i) ¥ (0,t) =0 (2.23a)
»8(0,t) = 0 (2.23b)
(11) %—g— (0,t) = 0 (2.23¢c)
%‘3 (0,t) = 0 (2.23d)

(b) at the top of the structure, 2 = H#
(i) ¥r (#,£) = 0 (2.23e)

i
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) =
nge (#,t) = 0 , (2.23f)
.. g_j f_ry_aré 2 3Y
(11) - 57 (H.’t) » 323 ( :t) + a 7 (H:t)
v Img2 38 (4 4y 2 g (2.23q)
r Z ? )
-i(yt)-fﬂﬂ(yt).yazﬂ(yt)
573 2 T 5g3 4 97 ?

a
ma2 3 (g gy =0 (2.23n)

Referring to equations (2.14), (2.15) and (2.18) the above boundary

conditions may be written for the nth mode of vibration as,

(a) at z =0

¢y, (0) =0 (2.24a)
9o, (0) =0 (2.24b)
Byn (0) = 0 (2.24¢)
Zz
dd)en
37 (0) =0 _ (2.24d)
(b) at z=4
d*by, () = 0
—;5;51 (2.24e)
*don (#) = 0
e (7] (2.28¢)
3 <
D (1) e Pdon () | o Bt (), G o Bon (1)
73 r 473 dz r dz
(2.24q)
S Lo (1) _em D (1), g2 Bon () , I o Bem (1) _
dz? r g az r %

(2.24h)

Lk emvian e e L
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It should be noted that the mode shapes are for one particular frequency
w cofresponding to one particular mode n.
Assume A (¢ = 1,2,...,8) are the roots of the fourth order
polynomial equation in A; for a known value W then equation (2.17)

can be replaced by

_ Api 2
6y - oy . (2.252)
=1
or
) 8 Cy. A .2
n = 5 Int 2 nt (2.25b)
Son i=1 Coni

The sixteen unknowns, ¢, . ,

Yt Cons (¢ =1,2,...,8) 1in equation

.(2.25b) can be reduced to eight unknowns by considering the relation- ;

ship between ¢, . and cg . in equation (2.20)

242 2712
e, . o~ . - w°/b
Oni - . X?l‘L )‘m n/
[+ * 4
e e .
m Am - % a2,
r r.
e i
m A, %m a®A?
- Nt - nt
= - = R, (2.26)
AY, - B2, - w2/02 nt
ni ni n

Substituting equation (2.25b) into equations (2.24) yields

8
o or ® 0 < (2.27a)
8 v

i§1 cg; =0 (2.27b)
8

i§1 Copi » Ay =0 (2.27¢)
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8
L Cour v Ay T 0 (2.27d)
72=1
8 H
Loy s AL eknt = 0 (2.27e)
i=1
8 H
I ocy. . AZ. ) eA"‘ =0 (2.27F)
1:=" nt 1
8 e a
3 Em 3 2 mo 2
iE'I[- ®¥ni )‘m " ont Am oo CYni “ni r & oni }‘m]
.H
eA"L =0 o (2.279)
é An
3y _m 3 2 “m 2
ifl[‘ Coni xni r ‘i Aml tOB ey Mgt r & i )‘niJ
‘H
eknz =0 (2.27n)

Substituting equation (2.26) into equations (2.27) and using a matrix

form of presentation yields equation (2.28) (See next page).

Equation (2.28) is more general than that derived'by Heidebrecht
and Raina (10) to develop the frequency analysis of shear walls, using
a continuous thin-walled beam model. The above equation represents
a set of eight linear homogeneous equations which may also be written

in brief as

[:Dn[m; v Az (i = 1,2,...,8)i] {th} ={0} (2.29)

where {cyﬁ} js the column vector containing the unknown coefficients
. (£ =1,2,...,8), n is the frequency number and [D] is the

matrix of equation (2.28). A nontrivial solution for equation (2.29)
can only be obtained if the determinant of the matrix [D] is zero. Thus

| D, [wy s 2, (6=1,2,...,8)] ] =0 (2.30)

nt

e




1 1 1 ] 1 1 ] 1 -T
’an an Rna Rnu Rﬁs Rns Rn7 Rna
knz an Ana >*ru. xns Ans n Ana
Rnllnx an)‘nz Rnskns nuknu Rnskns Rns)‘na - Rn7>‘n7 Rnekne
)\2 e)‘an )\2 e)‘nzﬁ )\2 )\n3H )\2 eknz.H }\2 e)\nsﬂ )\2 e)‘nsH )\2 ek'n7H )\2 eA'nBH
ni n2 n3 Ny ns 76 n? ns
3 R s " H J:i H
2 >\711 2 >“nz 2 Ms 2 )‘nu 2 )\ns 2 Ans 2 A71? 2 )\ns
Rnxkn e Rﬁzlnze Rnslnae Rnulnue Rnsxnse Rnexnse ankn7e Rnexnee
My 8 AnaH Aol Ao H ‘s MeH L Mol
U%le Unze unse Uﬁué Uﬁse Uﬁse 0576 Uhae
B H R H H H y24 H
14 eln1 Vv exnz v e;\n3 14 exn“ 1 elns v ekﬂG v eln7 v axn8
ni n2 ns ny ns ne n? ne
Ry -
= 2 2 a_ﬂ 3 em
Upg = Mgy (e +0® S0R ) - A0 0+ 2R )
2 2 9m 3 e
Vﬁi = Am’. (8 Rni ta z’) Aml (Rni +'€?)

T T
cYnl 0
Yna 0
aYns 0

Ctnvi 2|0
®yns 0
Yne 0
Yna 0

Cyne 0

(2.28)

(2.28a)

(2.28b)

v



- e S e

25

The determination of the exact natural frequency and mode shape -

for each individual mode requires a complex trial and error procedure.
The first step is to assume a frequency w . Using equations (2.22)

for the known properties of the structure and the assumed frequency,

the five coefficients of the fourth order polynomial equation in

X; are calculated

The corresponding Aai (7 = 1,2,...,8) being obtained from equation
(2.21), the second step is to calculate the elements of the matrix

[Da] . If ]Dal = 0, the assumed frequency w = is a natural frequency
for the structure. If lDal > 0, the direct search method is used to
determine the natural frequency with a permissible error of 0.001
rad./sec. For a particular natural frequency ® and the corresponding

parameters A . (z =1,2,...,8), the coefficients ¢ > = 1,2,...,8)

Ynt (z
are determined from equation (2.28). The flexural and torsional
components ¢Yn(z) and ¢en(z) of the corresponding mode shape are
calculated from equations (2.25) and (2.26). A computer program
based on the previously described procedure of analysis is developed.
This program can treat any 2-dimensional building made up of frames

and walls. Application of the mathematical model is shown in the

following example structures.

Example Structure I

The floor plan given in Figure 4 is that for a sixteen storey
building first analysed by Mendelson (18). The storey height is

3m (9.84 ft.) the geometrical properties of the members are given

| TN (R
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/
ETy; ETys 29, &y ®xi 7yi
Units| ¢.m? K. ft? t.m? K.ft? t.m" K. ft* t.m? K. ft? m ft m £t
Wall 10° 10° 108 108 19° 10° 10° 10° 1 1 1 1
W, 7.34 173.68 | 1.15 27.27 4.50 1.146 | 19.73 0.467 -8.31{-27.27 | 0.00 | 0.00
v, 7.38 | 173.68 | 1.5 | 27.27 | 4.50 | 1.146 | 19.73 | 0.467 | -1.59| -5.21 | 0.00 | 0.00
Table 1.2 - Physfca1 and Geometrical Properties of Walls -

Example Structure I
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Example Structure I

il L Lt

B P

GAYJ' GAXj GJJ an a

Units t 4 t X t.m? K. ft? m ft m ft
Frame 103 103 10° 10° 10° 108 1 1 1 1

F] 0.00 0.00 4.36 9.59 0.00 0.00 0.00 0.00 -5.85 -19.19

F2 0.00 0.00 4.36 9.59 0.00 0.00 0.00 0.00 +5.85 +19.19

F3 5.09 11.20 0.00 0.00 0.00 0.00 | -7.85 -25.75 0.00 0.00

F4 5.09 11.20 0.00 0.00 0.00 0.00 | +7.85 +25.75 0.060 0.00

F5 O.dO 0.00 | 395.00 869.00 2.40 56.80 | -4.95 -16.24 +1.90 +6.23

F6 0.00 0.00 395.001 869.00 2.40 56.80 | +4.95 +16.24 -1.90 -6.23

Table 1.b - Physical and Geometrical Properties of Frames -

82
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in Tables 1.a and 1.b.

29

Taking the Z-axis at centre of mass gives e = -4.95m (16.24 ft)

m

and a = 0.0. The basic parameters associated with the dynamic pro-

perties of the structure are

[

pA

oI

= 14,68 x 10° ¢t.m

= 534.60 x 105 +¢.m

= 10.18 x 10° .
= 8633.00 x 10°  t.m

= 6.26 t.sec?/m?

= 208.70 t.sec?

(347.45 x 10° K.ft?)

(136.13 x 10° & ft*)

( 22.40 x 10° X.-

)

(204.33 x 10° X. ft?)

(1.28 K.sec?/ft?)
(459.14 K.sec?)

Table 2 shows the coupled natural periods computed by the proposed

trial and error procedure presented in this section, using a digital

computer.

This table shows also the results given in reference (18).

By comparing these results it can be seen that this proposed method

yields results which compare very well with those obtained by

Mendelson.

Figure 5 shows the coupled fldkural-torsional mode shapes for the

first six normal modes. Denoting the top displacement of the edge of

the structure due to the Y motion by GY , that due to the 6 motion

by 69

and computing the ratio Geléy one can obtain the predominant

- motion for each mode of vibration and at which degree that one is

predominant. Table 3 shows the ratio 69/6Y for the first six normal

modes and the predominant motion for each one.

From this table one

can conclude that the first mode is approximately pure bending

&



Natural Periods

(Seconds)

Mode
1 2 3 4 5 6
Author's
Results 2.219 0.828 0.465 0.245 0.200 0.132
Mendelson's
Results(18) 2.220 0.827 0.465 0.245 0.200 _—
Table 2 - Natural Periods of Vibration in Exampie Structure I
Comparison of Results
Mode 1 2 3 4 5 6
S / GY 0.110 2.886 0.763 0.537 4.593 0.797
Predominant in{ Bending|; Torsion] Bending| Bending| Torsion| Bending

Table 3

The Predominant Motion for each Mode of Vibration -

Example Structure I

0¢
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(diifii::;z/jf 11%) and the fifth mode is approximately pure torsion
(differomeeof 22%). '

Example Structure Il

The building whose floor plan is given in Figure 6
[i; = -15.24 m(-50.0ft)] as well as three buildings in which the7
core is located at 5c = 0.0, -7.62 m(-25.0ft), -22.86 m(-75.0 ft);
was first analysed by Rutenberg, Tso and Heidebrecht (25). This
building is 25 storeys high with storey height of 3.66 m(12 ft), unit
mass of 28.4 t.sec®/m* (5.8 K.sec?/ft?) and unit mass moment of
inertia of 6562.5 t.scc® (14418.8 K.sec ). The structural stiffness
properties for the core are given in Table 4.a, the shear stiffnesses
of the frames are given in Table 4.b in which the frame designated
F5 pertains to the case Ec = -22.86 m(—?Sft),the relevant column
data are given in Table 4.c and the basic parameters associated with
the dynamic properties of the four buildings are given in Table 4.d.
The different location of the core enables one to consider the effect
of core eccentricity on the behavior of the building.

Tables 5.a, 5.b, 5.c and 5.d show the coupled natural periods
obtained by the author's analysis. These tables show also the results
given in reference (25) for a lumped mass solution, those obtained
by the approximate hand method proposed in referencé (25) and those
obtained from the uncoupled approximate method. The uncoupled flexural

and torsional natural periods given in these tables are determined by

* (Ec , 0) are the coordinate position of the core

. A
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E'ch GJc EIwc
nits t.m? K.fe*|]  t.m® | K. ft? t.m* | k. ft*
\\\\\ 108 10° 10° 10° 10° 102
Core 89.57 2.12 14.69 0.35 1.1 0.28

Table 4.a - Stiffness Properties of the Core -
Example Structure II
GAYn’ GAXJ'

Units t K t K
Fram 103 10° 103 10°

F] 104.32 | 229.50 0.00 0.00

Fo 27.82| 61.20 0.00 0.00

F3 69.54 | 153.00 0.00 0.00

F4 0.00 0.00] 125.18 | 275.40

F5 0.00 0.00f 41.73 91.80

Fe 20.86 | 45.90( 0.00 0.00

Table 4.b - Shear Stiffnesses of the Frames -
Example Structure II
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~.  Units| ~* ft m* ft*
AN

Column 1073 107! 107° 107
1 28.12 32.55 28.12 32.55
2 15.84 18.34 23.41 27.10
3 18.75 21.70 8.34 9.65
4 10.54 12.20 6.95 8.04

Table 4.c - Geometrical Properties of the Columns -

Example Structure II

37
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z Ef& ET Ghy e, a,

Unitsf m ft t.m? K. ft? t.m" XK. ft" t | X t.m? K. ft? m ftl o m | £t
8\1dQ 1 T 108 10° 10° 102 | 10% 108 108 10° ] 1 ] ]

1 0.00 0.0 91.94 2.18 1.70 0.43 | 0.61(1.34 | 1.88 4.45 0.00{ 0.0} 0.00] 0.¢C

2 -7.62 -2§;0 91.94 2.18 6.91 1.76 | 0.61]1.34 | 1.85 4.38] -7.44|-24.4]1+0.61 +2.0

3 [-15.24 | -50.0 91.94 2.18 22.56 5.74 | 0.61(1.34 | 1.76 4.17{ -14.87/-48.8[+1.22] +4.0

4 -22.86 | -75.0 91.94 2.18 48.62 12.38 | 0.63]1.39 | 1.74 4,11} -22.321-73.2{+1.01| +3.3

Table 4.d The Basic Parameters associated with the Dynamic

Properties of the four Buildings - Example Structure II
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Natural Periods (Seconds) Predominant in
Bending| Torsion|{ Torsion{ Bending| Torsion{ Bending
Hode 1 2 3 4 5 6
Lumped Mass 2.166 2.135 0.709 | 0.658 0.423 0.339
uncoupled 412133 | 2.088 | 0.689 | 0.642 | 0.405 | 0.327
Table 5.a - Natural Periods of Vibration in Building 1 (Ec

Example Structure II - Comparison of Results
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Natural Periods (Seconds)

Mode 1 2 3 4 5 6

Author's
Results 2.193 2.015 0.712 0.609 0.417 0.306
Lumped Mass 2.238 2.048 0.733 0.624 0.436 0.319
Approximate )
hand method(25) 2.265 1.960 0.713 0.608 0.417 0.313
Uncoupled

2.133 2.025 0.651 0.642 0.366 0.327

Approximate method

Table 5.b - Natural Periods of Vibration in Building 2 [EC = ~7.62 m (-25.0ft)]

Example Structure II - Comparison of Results

op



Natural Periods (Seconds)

Mode ) 2 3 s | s 6
Author's |
Results 2.252 1.93 0.737 0.559 0.434 0.304
Lumped Mass 2.298 1.958 0.758 0.572 0.453 0.324
Approximate
hand method (25) 2.308 1.848 0.744 0.544 0.436 0.304
Uncoupled
Approximate method 2.133 1.936 0.642 0.589 0.304 0.327

Table 5.¢ - Natural Periods of Vibration in Building 3 [Ec = - 15.24 m(-50.0ft)]

Example Structure II - Comparison of Results
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Natural Periods

(Seconds)

Mode 1 2 3 4 5 6

\
Author's
Results 2.278 1.796 0.751 0.497 0.444 0.312
Lumped Mass 2.330 1.823 0.774 0.509 0.463 0.333
Approximate
hand method (25) 2.280 1.795 0.752 0.495 0.446 0.312
Uncoupled
Approximate method 2.101 1.810 0.635 0.520 0.247 0.324

Table 5.d¢ - Natural Periods of Vibration in Building 4 [Ec = -22.86 m(-75.0ft)]

Example Structure II - Comparison of Results
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assuming that the centroids of walls and frames coincide with the
centre of mass, i.e., e, = 0 and a = 0. For this special case, the
motion ¥s uncoupled and the values given in Table 5.a are in fact
the exact uncoupled natural periods.

Combining the natural periods of the four buildings obtained
by the author's analysis in one table, a complete understanding
of the effect of the core eccentricity on the dynamic behaviour of
the structure can be achieved. From Table 6.3 one can conclude
that the increase in the core eccentricity increases the natural
period of the odd modes and decreases that ofithe even modes while
Table 6.b shows that the ratio GS/GY varies in aq‘ggposite manner,
for this type of structures.

Figures 7-a, 7-b and 7-c show the coup]ed‘flexura]-torsional
mode shapes for the first six normal modes of buildings 2, 3 and 4

respectively.’

4. Special Case of a Single Wall-Frame System

The above section reﬁresents the dynamic analysis of-a
2-dimensional wa]]—frame structure. The two coupled equations of
motion and the eight bounq%ry conditions of the problem determine
the transverse coupled flexural-torsional vibrations of the structure.
In the particular case with one planar wall, the problem converts -
to a special problem’of a single wall-frame system.

Figure 8 shows the coordinate system for a typical cross-

section of the system with one planar wall at point W. For this

case
EIT = e* . El, = pr® ., EJ (2.31)




Natural Periods (Seconds)

Mode

B1d. 1 2 3 4 5 6
1 2.133 2.088 0.689 0.642 0.405 0.327
2 2.193 2.015 0.712 0.609 0.417 0.306
3 2.252 1.930 0.737 0.559 0.434 0.304
4 2.278 1.796 0.751 0.497 0.444 0.312
Table 6.a - Effect of Core Eccentricity on the Natural Periods -

Example Structure II

v



The ratio 66 / 61

Mode
B1d 1 2 3 4 5 6

0 0.781 2.431 1.611 1.075 2.44) 0.560
(Bending) | (Torsion) | (Torsion)| (Torsion)| (Torsion)| (Bending)

3 0.652 2.700 1.051 1.657 1.495 1.071
(Bending) | (Torsion) | (Torsion)! (Torsion)| (Torsion){ (Torsion)

4 0.605 3.057 D.826 1.963 1.345 0.874
(Bending) | (Torsion) | (Bending)|{ (Torsion)| (Torsion)| (Bending)

. Table 6.b - Effect of Core Eccentricity on the ratio 56 / ay

Example Structure II
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The two coupled equations of motion are

RN G A ) R AR K ) B 4
2" 3z? 324 r 322 b2 3t?
3*(rd) g2 2% (rb) , 3'Y _ 9m azﬁ N R Tl ¢4
32" 322 37" r 322 e? g2

56

Solving by the same procedure of the previous section, the homo-

geneous matrix equation governing the constants v and ¢
arranged as follows _
[¢]
AY <222 -2 LAY n 0
n b2 n r n
=
2
}\‘O__C_ZEGZAZ }\‘6_82A2_gln__ cen 0
g r n n n CZ__J\ ] L

is

(2.33)

The characteristic equation governing the non-trivial solution to the

above homogeneous set of equations is a third order polynomial in i

X; and it is written in the form

AQAS AN AN A =0 (2.34)
in which ' i
A= o (22 -0) - g2 (2.35)
and the other coefficients are as given in equations (2.22). In this %
case each shape function requires six independent constants. These i'
constants are to be determined from six boundary conditions. - The
only departure from the normal boundary conditions are the longitudinal L

displacement and the longitudinal strain at the base and at the top

of the wall respectively, because of the effect of the wall sectorial

coordinate.

freen)

A Nl |

§



is the sectorial coordinate, (x

57

The equalion governing the longitudinal displacement of the wall

is given by
ax 34 99
= - et L
b, (2,8) = 2, (2,t) - 5= (2,t) o, - == (Lt) y, - 55 (2,t) v,

(2.36)

in which b, is the 1ongitudinaﬁ displacement in wall w , Xy Yy

and Zw are the displacements of the wall in the X, Y and 2

directions respectively, 6, is the rotational deformation, w

W W

s yw) are the coordinate position

and 2 1is the height above the foundation. In the present case

since 2 (2) , XW(Z) and w

Y equal zero, equation (2.36) reduces to

W

2¥))

At the base of. the structure, longitudinal displacement in wall
W equals zero, yielding

Yy,

37 (0,t) = 0 (2.38)

Substitutfng equation (2.3b) into the above equation yields

7

3y 3(rb - .

7 (0,e) + 30 (0,¢) = 0 | (2.39)
The eqhation governing the longitudinal strain in the wall is given by
3z 3%x 3%y 329
" S - ¥ - ¥
e, (2,¢) = 55~ (2,t) 7 (2,t) ;- —= (2.8) g, g7 \Bt)uy,

(2.40)

in which €y is the longitudinal strain in wall ¥ and the other

quantities are as defined for equation (2,36). In this case equation

(2.40) reduces to | &
ZYW

972

€y (Z,t) = - (Z,t) Uy (2.4])

[

—
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At the top of the structure, longitudinal strain in wall ¥ equals

zero, yields

azyh’ [ 4
57 (H,t) =0 (2.42)
Substituting equation (2.3b) into the above equation, yields
. -
gzy (a,t) + 22(rb) (#,¢) = 0 (2.43)
az?

Equations (2.39) and (2.43) are the two combined boundary conditions

%

instead of four boundary conditions in the general case studied in
Section 3{ Egr the particular case’it can be shown that the boundary
conditions governing the mode shapes are given by

(a) at the base of the Structure, 2 = 0

(1) 7(0,¢t) =0 (2.44a)
»8{0,¢) = 0 (2.44b)
(i1) gg (0,¢) + 222 3”9 (0,2) = (2.44c)

(b) at the top of the structure, z = ¥
4 -
3%ré

(i) = (H,t) +>==1(#,t) =0 (2.444)
322

3 3 a
(41) -%—Z% (Bt - 228 (1) + o & (g,0) + T g2 28 are (#,¢) = 0

3z
(2.44e)
v 3318 2% are Gy, 3%
- === (4,t) - == (#,t) + B? (#,t) + == o® o= (H,t) = 0
aza 3Z3 r YA
(2.44f)
Referring to equations (2.14), (2.15) and (2.18) the above boundary

conditions may be written for the nth mode of vibration as,

T o 2 TTHARMELSTAES 12 i I AR ¢ s NN 54

R e S i D
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(a) at 2 =0
9y, (0) =0 (2.45a)
¢gy, (0) =0 (2.45b)
dbyy dbgy,
35—— (0) + az (O) = (2-45C)
(b) at z==n
d2¢Yn dz%n
H + —— (H) = 0 2.45d
o (#) o (#) ( )
d%¢y, d% dé dé
- 2 %n In Im 2 SOon -
e {#) o (H) + a® —2= (H) + —-a® == (#) = 0 (2.45e)

AT d3¢ do a, ., db
-bn - —_tn 2 on “m o2 In -
e (%) 7E (#) + 82—~ () + T of —= (H) = 0 (2.45f)

Putting the six boundary conditions in a matrix form similar to
equatfon (2.28), this equation (2.46) represents a set of six linear

homogeneous equations which may also be written in brief as

'[Fn[w: s kni (z = 1,2,...,6):[] {cYn} ={0} (2.47)

where’ {cYn} is the column vector containing the unknown coefficients
Cyni (¢ = 1,2,...,6), n is the frequency number and [F] is the matrix
of equation (2.46). A nontrivial solution for equatidh\(2.47) can

only be obtdined if the determinant of the matrix [F] is zero. Thus

PP w2, A . (¢= 1,2,...,6)1 ] =0 (2.48)

n n ni
The procedure for determining the natural frequencies and the coupled

flexural-torsional modes of vibration is similar to that of the general

case. 2
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kn1(1+ﬁhl) lnz(]+Rn2) An3(1+Rn3) knu(]+Rnu) Ans“H?n ) Ans(1+ﬁﬁs)
H H An H An H kn H Xn H
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N { Ay H Aol Mo H A, sE ApeH
7n1 2 3 L 5 6
Vhle Vﬁze Vﬁae ane Vhse nee
2 2 % 3
Uni " Jk‘n‘ll (a* + o —;-E%i) - >‘ml (1 + Rni)
= 2 2 fm. _ 3
Vﬁi Ani (8 Rﬁi Ta r) kni (Rni +1)

™ 7] -
Iy 0
cYnz 0
cYna - 0
Cynu 0
®Yns 0
cYns 0
. 4 Ld

(2.46)

(2.46a)

(2.46b)
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The above particular case is applicable for a general
asymmetric wall-frame structure in which the core is located at
large eccentricity from the centre of mass.

Building 4 [Ec = ~22.86 m(-75.0ft)] of Example Structure II
whose floor plan is given in Figure 6 is solved by the particular
method and the coupted natural periods computed are given in Table 7.
In addition to these approximate natural periods, Table 7 shows the
exact results already given in Table 5.d. By comparing these results
it can be seen that this particular analysis yields results which
compare very well with those obtained from the general analysis for
this kind of buildingé with large core eccentricity. This agreement
is due to the negligible warping torsional stiffness of the core
E@nc with respect to the total warping torsional stiffness of the
structure Ef& . For this case the flexural radius of gyration »r

is approximately equal to the wall eccentricity e

o - FY va
e ] o KA AR W 208 B
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Natural Periods

(Seconds)

-

Mode 1 2 3 4 5 6

Exact Method

(8 boundary Conditions)| 2.278 1.796 0.751 0.497 0.444 0.312
Approximate Method

(6 boundary Conditions){ 2.336 1.796 0.774 0.497 0.462 0.331
Difference . +2.5% 0.0% +3.0% 0.0% +4.0% +6.0%

-~
Difference Approximate Period - Exact Period 100%
Exact Period
Table 7 - Comparison of Exact and Approximate Natural Periods for l

R
- u
W o et

Building 4[5c = -22.86 m(-75.0ft)] - Example Structure II

o
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CHAPTER T11
RESPONSE ANALYSIS

1. Introduction

It was shown in Section 3 of Chapter Il that for a 2-dimensional
wall-frame structure with X-axis as the axis of symmetny,lthe dis-
placements $(z,¢) and é(z,t) are coupled with each other whereas
the displacement X(Z,t) is uncoupled; where X(z,t) and ¥(Z,t)
are the translational displacements of the centre of mass in X and Y
directions and 68(z,¢) is the rotation of the structure about the
centre of mass. In this chapter, the flexural and torsional components
¢yn(z) and ¢en(z) of the corresponding mode shape being calculated,
the two coupled displacements Y(:,¢) and 6(Z,¢) can be found for
any ground motion excitation applied to the structure. When finding
the response of phe structure under the influence of such base motion,
orthogonality of modes of vibraéion is used in the analysis. This
orthogonality normality relationship, as derived by Raina (22) for
coupled N- 6 modes in the thin-walled model. is derived in the mor
general case of wall-frame structure for coupled Y - 6 modes. The
centre of mass response due to a sinusoidal base motion is studied and

generalized to that due to seismic ground motion.

’

2. Treatment for Normalized Mode Shapes

The coupled linear, homogeneous differential equations governing

the entire structure can be written in the form

63
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w3 { D {1 . [0 (3.1)
3 r5 rt 0 )
in which
At 2 9° €m 3" Ay, 32
a2t T yr EE A Y2
[X] = 0 (3.2)
N MG SR GO AP o
ro 3zt r 322 az" az?
and [K3] is as defined in equation (2.14b); v = 527/3t% and
rd = 32p0/5t?
.
Rewriting equation (2.15) in a convenient foﬁﬁ'glves
¥(z t)} .Y (b, (8)
’ = v n .
{I’é(z,t) n=1 { (1)6 (Z)} S1n (Unt (3.3)
n
Substitution of equation (3.3) into equation (3.1) yields for the
nth modé of vibration -
¢ ¢
- w? [x,] {q)y"} + [x] {q)y”} - {0} (3.4)
on on 0
d)Ym

Premultiplication of equation (3.4) by { .} » the transpose of

%m

¢
{ ¢Ym:} , and subsequent integration along the structure from Z = 0
om

to H yields

H

()" (i) = - 4 0 o ()
0 ,%m ¢9n " 0 ¢6m ¢8n

(3.5)

Interchanging the indices m and n in equation (3.5) gives
H

H .
2) () s () e
[x] dz = w? [x,]
. Oj { q)()n %m " J q)Gn Om

0
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Denoting the left hand side integrals of equations (3.5) and (3.6)
«by I ~and I, respectively, and subtracting equation (3.6) from

equation (3.5) yields

H
ro T ¢
(w? - wi) f n (x ] M\ g = 1 -1 (3.7)
n 0 (bOn 3 ¢Om ! 2
Substitution of equation (3.2) and simplification of 7, and 7,
yields
i 4 d?¢ d d%e
I = ¢ d d)YVL _ az n + ill ¢O7Z . z/_fl (12 079 +
! 0 Ym A\ gzt dz? T gz rogz?
4 dZ 4 dz
¢8 (i’l @X& . 02 fYﬂ + d"bg,, e fﬂrz)J 47
mo\r gz r dz dz* dz
(3.8)
7 = H d“‘by d2¢y e du‘i’e a d2¢9
2 - ¢,Y7’Z m ~ az ____m_ + _m m _ __7_77_ (12 _____ﬁl +
0 dz* dz2 r 4zt r dz?
2
0 (fr_n_ d*dym . d"¢ym + d*dgn - @ dz%m) a7
bn r gz r g4z dz* dz?
(3.9)

Successive integration by parts of I, and application of the

homogeneous boundary conditions given by the equations (2.23) yields

H Y
S J[(PYn (d . a? Poyn  om Lhon ZdZ%m) ¥

. -
0

dz* dz? ro g r ¢ a7

r gzt r dz? daz* dz?
(3.10)

Subtracting equation (3.9) from equation (3.10) it is seen that

e d“¢ d? d* d?
%, (_ﬂ _2m o dm 2 Sym + Lom . g2 %m)] iz

o 3 RN RAE " PASUMIR Mt e -

-

P Ay
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I, -~ I =0 (3.11)
Substituting equation (3.11) into equation (3.7) gives .
H ¢Y T cpy
2 _ 2 n m = 3.12
o J) e (e e

Since w; # w; for m # n, soO

H ¢ d |
J{ ¢Yn} [x,] {q)y’"} dz = 0 3 m#n (3.13)
0 on om

The above equation is the orthogonality condition for the non-degenerate

modes of vibration.

Multiplying the vector of shape functions ¢Yn and ¢6n by a constant

Q, yields another vector function given by

%

where the constang&v is chosen such that

1v ;l ' :

¢
Y" az (3.15)
0 ¢6n ¢Bn

Substituting equation (3.14) into equat1on (3.15) gives

Yn ! [x.] {¢Yn} a7 (3.16)
¢6n 3 ¢en :

¢
n
The vector function N is the orthonormal eigen-vector for the
¢
on

N~

1
ek

. o

n® mode of vibration. Equation (3.15) gives the normality condition

S oty
¥

g ot G Sy B
GG AT
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th

for the n mode. Substitution of equation (2.14b) and simplification

of equation (3.15) gives the normality condition in the form

H N 2 N 2
¢ ¢
J (Yn) + (Bn) az = 1 (3.17)
b? e?
0
Similarily, the normalization factor Qs may be given as
- 1
@, =
H 2 2
¢ ¢
f(_g% . ___Qn_) 7 (3.18)
b e?
0

Substituting equation (3.18) into equation (3.14) gives the pormalized

th

flexural-torsional mode shape for the n mode of vibration.

3. Centre of Mass Response due to a Sinusoidal Base Motion

Equation (3.1) represents the case of free vibration of the
structure. This equation is similar in shape with that of the two
degree of freedom system, in which [X,] represents the Tumped mass
matrix and [X] represents the stiffness matrix.

Assuming the lateral displacement applied to the base of the *

structure to be given by

Y = ¥, sinQt (3.19)

where YO is the amplitude of the motion and § 1is the excitation
frequency in radians / second. It can be shown (22) that the

global displacements of the centre of mass at any time are given by

. G a L
¥(z,t) - ¥(z,t) Y,sin Qt

76(2, t) r8(z, t) 0
n n.,

(3.20)

N

| B
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G

in which o are the global displacements of the centre of

" g

79

rD

L
mass at any time and \k are the local displacements of the
n

centre of mass with reference to the 0xZ plane passing through
the x~axis of the base of the structure at any time.

As the strains are caused only by the local displacements it is of
I/

v
i

major interest to investigate {\

(oo} BT

r
n

Substitution of equation (3.20) into equation (3.1) yields

L L

. o

T 7S B SRS 3 BV AL W € N D
rf Q -

n n

[x,]

Dz e

r

in which [Ka] and [X] are as defined in equations (2.14b) and
(3.2), respectively. This is the non-homogeneous differential equation
of motion governing the case of a sinusoidal base motion applied to

the base of the structure, for mode .

The initial conditions of the motion are given by

G e .
= P G
{(z,o) i} 0 , z(z,o) 3 Y, (3.22)
r6(z,0) 0 rd(z,0) 0
n n
2\ L
Therefore, the initial conditons for the local displacements Pg
n

are obtained by substituting equation (3.22) into equation (3.20) which

gives

- L _.. L
#(z.0) o #(z,0) _ )0 (3.23)
;

(z,0) o [ ) #b(z,0) 0

- St ot ¢ W W i AR
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For the sake of convenience the superscript L, refering to the
local axis, is dropped in the following analysis.
The solution to equation (3.21) may conveniently be assumed

to be of the form

N
= : 7y n N (3.24)
PO(Z)t)) n=1 d)en(z)/

*

in which T (t) determines the variation with time (¢) for the nth

mode of vibration satisfying the initial conditions given in equation
p ,

N
(3.23), g ¢%n(z) determines the variation with height (Z) for this
k ¢’8n(Z)
mode of vibration satisfying the boundary conditions given in equations,

(2.23). Rearranging the right hand side of equation (3.21) by in-

serting equation (2.14b) in it, substituting equation (3.24) into
h

equation (3.21) and writing the resulting equation for the mt mode
of vibration gives
N N ( )
¢, (2) . ¢ Z
[x,] Ym Bo(e) + k)¢ T () =
3 oz ) o, (2))
Om 6m 0 'l
Yo Q¢ sin Qt X
0
(3.25)

Inserting equation (3.4) into-equation (3.25), yields

oY o jl
[x,] VP () o+ w [K,] ik r () = ¥, @ sin b
¢9’” ¢9m lo

(3.26)

2.,
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N T

¢
ﬁm , integrating along

, (bOm
the building height from O to # and using the orthogonality-normality

Premultiplying equation (3.26) by

relationship given by equation (3.15) yields
H

N T
pu 2 - 2 i o ¢ l,_\ -
o) + w1 (t) Y, sinqt J ﬁmf R (3.27)
0 (;)Om 0 ,I

Rewriting the above equation in a convenient form gives

. 2 Y = v 4

T (t) 4 we T (t) pooosinoqt (3.28)
in which the modal participation factor is given by

H
Fo= v oo Eld el (3.29)
om 0 NS ¢] - .

0"

Equation (3.28) is of exactly the same form as that governing a single
®

degree of freedom system without damping, Introducing the viscous

damping, this equation is written as

'T'm (£) + 2zw i’m (¢) + w; 7 (t)= F_ sinat (3.30)

in which ¢ 1is the damping factor.

Solution of equation (3.30) is given by the following equation

= o Wt ; ; -
r (¢) = e (Am cos wy t+B sinwg t) +G sin (ot wm) (3.31)

in which
Wy =W e ;2—_~ (3.32)
b= tent 2 (3.33)
m wZ_QZ :

[



n

Fom

;- e = (3.34)
m \/sz - Q%)+ (21;wm n)?

m

Am and Bm are consgants to be determined from the initial conditions
of the motion given in equation (3.23).
Neglecting the transient comfonent of equation (3.31) and

substituting into equation (3.24), the response corresponding to the

mth mode of steady forced vibrations can be written in the form
N
.? , ¢ ¢.Ym .
- = 7 sin (¢t - ¥ ) i (3.39)
rd m i ¢ .
m Bm

The above equation is more general than that derived by Raina (22)

D ST ARG . A Mt Wedeans o

to determine the shear centre response of a thin Qa]]ed shear wall
model. g E

It was mentioned in Section 3 of Chapter II that the natural
f}equencies and the corresponding coupled flexural- torsional mode
shapes can be determined by a trial and error procedure using a digital
computer. Once these dynamic properties are ¢omputed for the structure,
the normalized coupled f]exura1f?orsiona1 mode shapei can he calculated
and the modal participation factor for a given sinusoidal base motion
can be obtained. The response is determined for each mode individually
using equation (3.35). The total response is calculated using

equation (3.24).

-

4. Centre of Mass Response due to Seismic Ground Motion

In the previous section, the response was determined for a
special case of base motion in which the structure Was subjected to a

-
\
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lateral displacement pulse of sinusoidal character, In the general
case, presented in this section, the base acceleration is an arbitrary
function of time. For the mth mode of vibration, the equation of
motion governing this case of seismic ground motion applied to the

entire structure can.be written in the form

1 o | ¥ kM a fmat G 2 ¥ .
2 \ N VAR © et T e Y gp2 !
1 u €m 3% Im 5 3% 4 , a2 .
o L Cm Mo 32 3T g2 30
Z) ) m | T T T g2 YA 222 rd |~

in which Acc () is the applied base acceleration.

The abpve equation is a generalization of equation (3.21). Assuming

the solution to equation (3.36) is the same as to equation (3.21) and
following the same procedure given in the previous section, the modal
participation factor for this general case can be obtained and the

generalization of equation (3.28) can be written in the form
- . , _ |
T (¢) + 2w, T (¢) + w2 T (¢) P Acc (¢) | (3.37)

in which Pbm is the modal participation factor and is given by
H

N
= 2
P [ 4, /521 dz (3.38)
0
Equation (3.28), in which the loading function is expressed
in relatively simple mathematical term (sinuspida] function), is solved

by rigorous solution. As the type of loading being a general function,

equation (3.37), a numerical integration approach is needed. As the
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name implies a numerical integration procedure is one in which the
differential equations of motion of the system are integrated over finite
time steps. By a suitable choice of the integration procedure and

length of the tima steps, good accuracy can be obtained.

Equation (3.37), which is treated as a single degree of freedom
equation of motion, is solved step by step, starting at zero time, where
the displacement and velocity are known from the initial conditions given
in equation (3.23). The time scale is divided into discrete intervals
At in which the variations of acceleration and velocity are assumed to
be 1inear (7). This time interval should not be greater than one-tenth
of the natural period of the last mode taken into consideration in the
modal analysis of the structure. The equations governing the numerical

integration procedure as shown in reference (7), are given by

b - Hz-ﬂ - - 7

i+ At (T‘L"'I Ti) . Ti (3.393)
% = -%— (f -7 ) - } (3.39b)
i+1 » At i+1 7 1 '

+1

— ’ch] .o+ T. - Acc.
1 1 1
s (3.39C)
in which 7, 7 and 7 are the displacement, velocity and acceieration,
respectively, for a single degree of freedom system, w is the natural
frequency of the system, ¢ is the fraction of critical damping and

Acc (t) is the applied acceleration function to the system.
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Knowing the displacement, velocity and acceleration at any time
t as well as the applied acceleration function at the next time
(t + at) enable one to compute displacement at the time (¢t + at).
As To and fo are known from the initial conditions, 55 can be
determined from equation (3.37). Then, the procedure is to determine
7, from equation (3.39¢), Tl froﬁ equation (3.39a) and 51 from
equation (3.39b) and the Ea]cu]ationg then continue in identical
manner. ’

The temporal variation function Tm (t), of the coupled dis~-
placements, being determined by the previous numerical integration

th

procedure, the response corresponding to the m mode due to a given

seismic ground motion can be written in the form

3 N
Y ¢ .
_ = 7 (¢){ M (3.40)
6 m m N \
¢em

.and the total response can be obtained using equation (3.24).

From the above procedure, it~can be seen that _the total response
is a function of two parameters (Z,¢); in equation (3.24), the separation
of variables gives a complete understanding of the response variation
individually with each parameter. Also, the variation of the modal
participation factor enablesone to determine the number of modes which must
be taken into conside§ation in the response analysjs.

Thus, it is of major interest to study the\Variation of the
modal participation factOﬁ with the modes of vibra@ion for differeﬁt

building structures. For Example Structure I, shown in Figure 4,
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in which the non-dimensional parameters o# = 1.264 and 6;; = 6.099,
the modal participation factor MPF is obtained and given in Table 8. .
This table shows also the natural ;;riods NP of the structure, the
ratio between each natural period and the previous one and finally

the ratio 8, / 8y for each mode of vibration. For Example Structure II,
shown in Figure 6, the modal participation factor MPF is given in

Tables 9 (i),(ii) and (iii) forthe éifferent core location which gives
different values of the non-dimensional parameter gH and as a result
a2ifé?ent dynamic properties of the structure. From these tables one

can conclude that the modal participation factor is function of the

ratio between two successive natural periods and of tﬁe non-dimensional
parameters oH and BH whjch express the ratio of the frames to the
walls in the building. It is clear also that the ratio &, / ¢,

which express the degree of coupling between the two motions is a

function also of the ratio between two successive natural perjods. It

© Faun

should be pointed out that the torsional to bending natural period
ratio is an important parameter to determine the degree of coupling

as well as the variation of the modal participation factor.

v

L F T A A .

T ]

|
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4 Mode 1 2 3 4 ) 5 - 6

MPF 100 2.93 50.43 Y. 3.76 30.21 12.35
\ .

55 / GY 0.110 2.886 0.763 0.537 4,593 0.797
NP (Sec.) 2.219 0.828 0.465 0.245 0.200 0.132
NP . / NP. 0.373 0.562 0.527 0.816 0.660

] 1+1 1

Table 8 -~ Variatiop of the MPF with the Modes of Vibration -
¥ Example Structure [
- ad = 1.264 gH = 6.099
gl ?W. T RN e Ty R TR A

274



Mode 1 2 3 4 5 &
MPF 100 53.41 ¢ 27.29 32.47 14.68 21.98
§, / &, 0.781 2.431 1.611 1.075 2.441 0.560
NP (Sec.) 2.193 2.015 0.712 0.609 0.417 0.306
NP{+] / NPi 0.919 ) 0.354 0.855 0.686 0.733

Table 9 () -~ Variation of the MPF with the Modes of Vibration -

Building 2 of Example Structure II

o = 7.45

BH

= 14.96

LL



Mode 1 - 2 3 4 5 6
MPF 100 45.17 31.92 24.22 19.47 10.79
S/ 8, 0‘.652 2.700 1.057 1.657 1.495 1.071
NP (Sec.) 2.252 1.93 0.737 0.559 0.434 0.304
NPiH / NP 0.857 0.382 0.759 0.776 0.701

Table 9(ii)-

Building 3 of Example Structure II

D wH = 7.

45

g7 = 8.08

Variation of the MPF with the Modes of Vibration -

8.



P
'Made 1 2 3 4 » 5 6
MPF 100 39.68 33.46 18.28 22.17 13.36
5 / by 0.605 3.057 0.826 1.963 1.345 0.874
NP (Sec.) 2.278 1.795 0.751 0.497 0.444 0.312
NP, / NP 0.783 0.418 0.661 0.893 0.704

<

¥

Table 9 (§ii) -

aH = 7.58

Y

BH = 5.46

Variation of the MPF qjth the Modes of Vibration -
Building 4 of Example Structure 11

6L
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- CHAPTER IV

RESPONSE PARAMETERS FOR ASYMMETRIC WALL-FRAME
STRUCTURES SUBJECTED TO SEISMIC GROUND MOTIONS

1. Introduction

In Section 4 of Chapter 111, the two coupled displacements
¥(2,¢t) and 6(z,t) were determined due to seismic ground motion. These
coupled displacements are for a 2-dimensional wall-frame structure with
the X-axis as the axis of symmetry.

In this Chapter, using these parameters for deflection in Y-
direction and rotation about Z-direction, the other response parameters
for -asymmetric wall-frame structures can be determined. These response
parameters are the bending moment, shearing force, bimoment and torsion
in the wall system, shearing force and torsion in the frame system,
obtained at the centroids of shear walls, and frames, respectively.

An example wall-frame structure is solved for different earthquake
records using theynumerical integration procedure discussed previously
and a complete time history response for the various parameters at the
top and the bottom of the structure is shown. Whenever possible, the
calculated values of the response paramete}s are compared with the 1975

National Building Code of Canada (21) requirements to evaluate the

- adequacy of such static loading provisions and to develop guide lines

to define situations for which a detailed dynamic response computation

is required.

80
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2. Response Parameters

The response parameters associated with the dynamic analysis of
the wall-frame structures are divided in two groups. The first,
applicable to the system of walls, is obtained at their centroid and
the parameters are the bending moment, shearing force, bimoment and
torsion. The second, applicable to the system of frames, is
obtained at their centroid and the parameters are the shearing force
and torsion.

The differential equations for the stress resultants applicable

to the system of walls are given by

. dyy
M, = ET
W Yy dz2

(4.1a)

ady
= T el
W EI_Y az3 (4“))

L
i

__ d%o,
W By 72 (4.1¢)

jue)
n
1

de,;

z GI; =7 (4.1d)
1

3
1"
<
~
L.‘
<+
N3

in which Y, and 6, are the two coupﬁed displacements of the centroid
of the walls, & is the bending moment, S5 is the shearing force, B
is the bimoment, T 1is the torsional moment and the subscript #
refers to the flexural type resisting elements.
The two coupled displacements Y, and ew can be determined

W
from equations (2.3b) and (2.3c). Thus

Y, = y + emé (4.2a)

et AR AV S AR g o



e e T TSR A FE T

82

0, = 0 (4.2b)

Substituting equations (4.2) into equations (4.1) yields

. 7 4F == d2®
M, = EI, ¥ voe, EI, g (4.3a)
= 4% — 4%
5, = -k, 7 e, B, d—;; (4.3b)
B.. = -ET 428 (4.3¢)
W w CZZZ .
. = 4’8 — 4B
T, = -ET, poc v GJ, o (4.3d)
in which
e —— m h
GJ, = ifl [GJi] (4.4)

The differential equations for the stress resultants applicable

to the system of framesPare given by

__ dy
S, = GAy, o - (4.5a)
" 2 2 4ty
L = z (GJJ. + G ; cij ¥ ay GAXJ.)a-Z—— (4.5b)

J=
in which %, and GF

are the two coupled displacements of the centroid
of the frames and the subscript F refers to the shear type resisting

elements. The two coupled displacements Y, and e[, can be determined

F
from equations (2.3b) and 2.3c). Thus

Yo = Y o+ a, 0 (4.6a)

6, = 0 (4.6b)

e g
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Substituting equations (4.6) into equations (4.5) yields

o« . o 4 — db

op F GAYZZ—Z- + amG y'd—z- (4.7&)

- a7 48

T G o (4.7b)
in which

—GTJ—‘;(GJ+QGA+ZG) (4.8a)

SRR TR T T & ‘
and

= G, Gy (4.8b)

The two groups of equations (4.3) and (4.7) represent the

response parameters applicable to the wall-frame structure in addition

to the two coupled displacements (¥ -

6) determined by equation
(3.23) in the previous Chapter. These are the representative parameters
needed for a complete understanding of the coupled response of a 2-

dimensional wall-frame structure.

Due to a sinusoidal base motion, the stress resultants applicable

to the wall-frame system can be determined by substituting equationxﬁ

(3.35) into equations (4.3) and {4.7). The resulting equations are

N N
s, (m0)], = BT, %, 0,0 + 2 E, L, (0,
[¢ sin (at -y )] (4.9)
= 4% U en == v
(5, @0, = UF, S, 0,0 - 2 B, L (01
[Gﬁ sin (Q; - wm)J (4.10)
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(B, (2,6)] = [-J: T 5;’,2 (¢;Vm)3 : [‘.7,,1, sin (e - v )] (4.11)
(7, )], = [- 177, 4 (o) + L, 4 uf:mn :

(e sin (@t -y )] (4.12)
[, (0] - 0, £y + 2, L (o))

[c sin (o -9)]  (4.13)
1, (2,0)] = [2%, £ (5,01 [c, sin (2t -y )] (4.14)

th mode of vibration.

in which the subscript m refers to the m
The generalization of the above equations gives the stress

resultants due to a seismic ground motion. The resulting equations are

— d? u m == d° v :
b, (2,6)], = LBI, o) (8y) + 2 8Ty (e )] L I, (¢)]  (4.15)
— & N e __ 33 N
[s, (2,8, = [-FTy oy (oy,) - 0 BTy T (0,00 < [7, ()] (4.76)
I o R T
(5, (2,8)], = [- 3BT, 55 (9501 - 7, ()] (4.17)
S Elm o)y s lgm Ly,
[r, (me)], = -y BT, o og,) + 5 G g (0,01 + [T, (£)] (4.78)
— q . F T — d
[s, (2,t)], = [GA, 7 (¢, ) + A, = (9,)] - [7 ()] (4.19)
1= d "
(7, (2,8)), = [L G = (6501 - [T (¢)] (4.20)

v
in which T (t) 1is the temporal variation function of the displacements

th

for the m mode of vibration already determined using the numerical



inteqgration procedure diccusced in Section 4 of Chapter 111,
The stress resultants obtafned from the above equations are
for the kmLh mode vitration. The total stresc resultants can be

determined by

", (7,t) = m=§',2,...[MW (z,n)]m ‘ (4.21)
“, ‘(Z,L) = rrF-?,Z',...[ﬁW (z,r/)]m (4.22)
5, (z,t) = mj,?"".[rfw (Z,L)]m (4.23)
T, (2,8) = m%,z,...[TV (z,2)] (4.24)
.CF\(Z,t) = rrF%,Z,...[SF (Z,t)]m (4.25)
Te (z,t) = m=12,2,...[TF (z,r,)]m (4.26)

For the walls, the critical response parameters are the top
displacements and the base stress resultants. For the frames, the top
d1;p1acements are critical and the maximum stress resultants occur at
certain height 2z which can be determined by a trial and error pro-
cedure. From equations (4.19) and (4.20) and the boundary coad1t1ons
given by equations (2.23) and (2.24), one can conclude that tge base
stress resultants of the frames vanish for any type of loading and at

any time ¢t.

L

.

~ Y N
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}

7
Thus, 1t 1< of major interest to determine the top. displacement
v{r,t), the top rotation H(#,t), the base moment ", (0,t), the
base shear %y (0,t), the baze bimoment B, (0,t), the base tor<ion
TW (0,t), their varifation with time, their maxima, and the corresponding
time t for each maximum parameter. v
Analysing the recpo;se results, one can conclude that the
eccentricity causes coupling of the-forces and displacements; when
the acceleration had only a Y-component, substantial forces and
dfsplacements were obtained in other directions as well. The degree
of coupling, between the rotation and the displacement, between the
torque and the shear and between the bimoment and the bending moment,
give a complete understanding of the Lpf]uence of the eccentricities
on the dynamic behaviour of the structure and the dynamic amplification
of the various response parameters.

3. Example Wall-Frame Structure Subjected to Different
Earthquake Records

The floor plan given in Figure 4, first analysed in Sectfon 3
of Chapter Il is that for a typical 2-dimensional wall-frame building
structure. The response to the #-E component of the EL CENTRO A
earthquake of May 18, 1940, Figure 9, acting along the y-axis of
this example structure {is calculated incorporating the first six
normal ;odes. The earthquake record fs normalized to gfve a max {mum
acceleratfon of 0.1 g. The damping is assumed Fo be equivalent “to 5%
of critical viscous damping. The representative parameters determined

are the top displacement Y(#,t), the top rotation #A(#,t), the base
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moment i, (0,t), the base shear > (0,t), the base bimoment 1, (0,t)
and the base torsion T, (0,t). These response diagrams, for the

first 15 seconds, are shown in figures 10-a, 10-b, 10-c, 10-d, 10-e

and 10-f, respectfve1y, From these diagrams one can obtain the maximum
response parameters and the corresponding time ¢t for each one. These
values are qiven in Table 10.

In order to check on the validity of the computer proqramme,
comparisons were made with maximum response parameters computed by the
root sum square technique; these comparisons are shown in Appendix 3.
Sfm11ar1y, the basfc example wall-frame structure 13 subjected to
three different earthquake records. fhese earthquakes are:

(1)‘ EL CENTRO, Component ¥-5, May 18, 1940 (Figure 11)
(11) TAFT, Component ¥21%, July 21, 1952 (Fiqure 12)
(111) _ SAN FRANCISCO, Component N10#, March 22, 1957 (F{gure”13)

Normalizing the earthquake records with a maximum acceleration
of 0.1 g and stum1ng a constant damping factor of 0.05, the response
1s computed fncorporating the first six ;orma] modes. The response
diagrams of the de§1qn seismic parameters are shown in Fiqures 14, 15
and 16 for the first 15 seconds of each earthquake record, respectively;
a comparison between their maxima due to ezch ground motion 1s given
in Table 11.

4. Ampljification Parameters

The maximum stress resultants assocfated with the equivalent
static analysis suggested by the 1975 National Building Code of Canada
(21), are the base- shear, the base overturning moment and the base
. torsfon. For the Example Structure I, shown in Figure 4, these para-

meters are computed assuming the structure is located in zone 3
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Response Parameter Maximum Value 1 Time & ec.)

Base Moment 4326
T m e e 12.00

Base Shear 226
-— 12.00

[+ (1) (497)

Base Bimoment 12690
- —— 12.00

[t.m* (k. ft?)] (300355)

Base Torsion 3135
R S 12.00

(t.m (K. ft)] . (22625)
Top Displacement 0.1539 .
: 11.88

[m (ft)] (0.5048)
Top Rotation 0.002836 11.80

[radians]

Table 10 - Max1mum Response Parameters due to the
W-£ Component of EL CENTRO Earthquake -
Example Structure 1
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EL CENTRO -5 TAFT N21F SAN FRANCISCO N10Z

Response ) v :
Parameter Max. Value Time(Sec.)| Max. Value Time(Sec.)] Max. Value Time(Sec.)
Base Moment 3065 552 | V78 | ;s 888 2.44
[t.m (X. ft)] (22119) (12473) | (6305)
Base Shear 168 5 59 116 7 68 50 2.08
[+ (x)] (370) (256) (111)
Base Bimoment 10016 5.52 7193 7 63 3145 2 48
[e.m? (k. ft?)] (237081) (170246) (74436)
Base Torsion 2464 5 52 1770 7 68 795 > 48
[tm (k. ft)] (17280) (12776) ( 5740)

ey
Top Displacement 0.0987 ‘ 0 0.0610 cea | 0-0288 3 40
[m (ft)] (0.3237) ' (0.2001) (0.0945) _
Top Rotation 0.00169 5,32 0.00109 6.68 0.00051 2.24
[radians]
Design Eccenticity  14.62 15.19 15.73 Il -
[m (ft)] (47.95) 5.52 (49.82) 7.68 (57.59) o

Table 11 - Maximum ResponsefParameters due to various Earthquake Records
applied to Example Structure I - Comparison of Results

LLL
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with factor A4 of 0.1 g, having an importance factor I of 1.0 anq a
foundation factor #of 1.0, and using the X factor for a wall-frame
system (¥ = 0.7). o

Comparison between the maximum response parameters due to
different earthquake records and the stress resultants based on the
equivalent static force approach is shown in Table 12. If a modest
value of ductility ratio u = 3 is assumed, one can reduce the base
ghear response to one third of its value, resulting in a smaller value than
that based on the equivalent static force approach. A ductility ratio
of 3 may be considered a moderate ductility value that can be expected
of a building designed based on a structural K factor of 0.7. There-
fore the equivalent static force approach appears to give a conservative
design value for the base shear and the base overturning moment.

It is of major interest to intérpret the 1975 NBC_code
provision with respect to torsion in buildings. For this example
structure, the core eccentricity being -4.95 m (-16.24 ft) with the
width of the building of 16.00 m (52.48 ft), the design eccentricity
g can be computed by one of the following equations, given in the

1975 NBC code, whichever provides the greater stresses

ey = 1.5 e, * 0.05 D, (4.27a)
e, = 0.5 e - 0.05 Dn (4.27b)

The maximum design eccentricity calculated is 8.225 m (26.98 ft).
Since the eccentricity e?ceeds a quarter of the width of the tuilding,

the 1975 NBC code provision suggests doubling the effects of torsion,
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resulting in an eccentricity of 16.45 m (53.96 ft). The comparison

between the design eccentricity computed by the code and the
dynamic design eccentricity shows that the code gives similar value

to the dynamic analysis after doubling the static effect of this
seismic paraneter.

The exact static analysis of the wall-frame structures is
developed by Mok (20) and an approximate one, suitable for hand
computation is presented by Rutenberq and Heidebrecht (24). Solving
the same problem statically by the method given in reference (24) for
a triangular distributed load resulting for a base shear equal to the
maximum dynamic one [fw (0,t)], the base stress resultants and
the top displacement and rotation of the structure are shown in
Table 13. This tab'e gives also the corresponding maximum dynamiﬁ
parameters due to different earthquake records qnd the magnification
(or reduction) factor for each parameter.

The comparison of the dynamically computed maximum displace-
ments and stressés with those computed statically from the National
Building Code of Canada or b} more exact static analysis (20,24),
¥)

_indicates that the static values of the bending parameters (Mp s

are conservative, whi]g\those of the torsion parameters (T 8) are

W )
underestimated. In other words, the static ana1y§§s is conservative
whenever torsion is not important, but cannot take into account the

magnification effect due to coupling between the Y and 6 motions

in asymmetric wall-frame building structures.



k"“w Dynamic Response Ana1y51s

Static Analysis

ggsggnte EL CENTRO/N-5 TAFT %217 SAN FRANCISCO 107 | of N3C code
rameter Max. yélue Max. Value . Max. VaTue 1975
: {
Base Shear 168 116 50 80
[t (5)] (370) (256) (an) (\76)
/
Base Moment 3065 1728 888 2228 (
‘\
[tom (K. ft)] (22119) (12473) (6406) (16077) N
Design Eccentricity 14.62 15.19 15.73 16.45
[m (ft)] (47.95) (49.82) (51.59) (53.96)

Table 12 - Comparison between the Dynam1c Response Analysis and the
Static Analysis of the 1975 NBC code - Example Structure I

b ek ST

021



RN Dynamic Response Analysis Static
\\\\ Analysis of
. EL CENTRO W-S TAFT »21F SAN FRANCISCO X10% \
\\\ Reference

Design S\ | Max. value |"MF(RF) | Max. Value MF(RF) | Max. Value | MF(RF) (24)
Parameter ~ .|

Base Shear 168 116 50 96

e} 1.0 e} Y.0 1.0
[e ()] (370) (256) (1) (21)
Base Moment 3065 X 1728 888 1 2183
‘ 0.80 0.65 — 0.7 e

(t.m (K. ft)] (22119) (12473) (6406) | (15752)

Base Torsion 2464 1770 795 i 475

2.95 3.07 3.18

[tom (k. ft)) (17780) (12776) (5740) ; (3427)

Top Displacement 0.0987 0.0610 0.0288 | 0.0800

[ (£t)] (0.3237) 0.70 V(2. 200) 0.63 f(0.0945) 0.68 15 2624)

Top Rotation 0.00169 . 2.09 10.00109 1.95 | 0.0005 2.10 | 0.00046
[radians] : ’ {

i »

Table 13 - Comparison between the Dynamic Response Analysis and the
Static Analysis of Reference (24) - Example Structure I

* MF : Magnification factor = (Dynamic Parameter / Static Parameter) x (Static Shear / Cynamic Shear)
RF : Reduction factor

-

¢t



CHAPTER V

CONCLUSIONS

A research programme has been set up to study the dynamic
response of asymmetric wall-frame buildirg structures. In this
prog;amme the walls are represented by flexural elements and the
frames are represented by shear elements. The analysis is based on
the continuous approach. The coupling effect of translational and
torsioral vibration is included, which has recently drawn a great
attention of the researchers. The study includes a d,mamic ané]ysis
to determine the exact dynamic properties of wall-frame building
structures as well as a response analysis to obtain a complete time
history resoonse due to Seismic Ground Motion and to compute the
maximum design seismic parameters of such structures. The results
of this investigation indicate that the following conclusions
and recommendations can be made.

1. The natural modes, due to the effect of coupling, consist of both
lateral and rotaticnal displacements. For some modes, the
deformation consists mainly of lateral displacements with a minor
component of rotation of the building. These modes are termed
flexural predominant modes. On the other hand, some modes consist
mainly of rotation and these modes are called torsional pre-

dominant modes.

122
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The change of shear and flexural eccentricity has major effect
on the coupled natural frequencies of predominant torsional
vibration in character and only minor effect on these of pre-
dominant flexural vibrafion in character. It is recommended
that the coupled periods be computed for all shear wall-frame
structures, even though they appear to be nearly symmetrical.
In buildings with small eccentricities the uncoupled periods

and mode.shapes can provide a good approximation.

The study of the natural periods of this type of buildings shows
that the formula for period determination ag suggested by the
1975 NBC code may lead to errors of 30% or more. A separate
calculation for the natural periods is necessary for this type

of buildings.

The building with large core eccentricity can be treated as §
single wall-frame system and the boundary conditions governing
its mode shapes are reduced from the 8 boundary conditions of
the genéra] case to the 6 boundary conditions of the particular
case of interaction of one planar wall with frames in a 2-
dimensional wall-frame problem. This treatment is due to the
negligible warping torsional stiffness of the core with respect

to that of the entire structure.

The non-dimensional parameters «f and BH which express the
ratio of the frames to the walls in the building, are significant
parameters governing the behaviour of the wall-frame structure

due to the Y and 9 motions, respectively. Buildings which
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have predominantly shear walls with little or no frame action
will have a low values of % and 77 and will behave
essentially as flexural memkers. As the proportion of frame
action increases, «f and 3 F increase, and the structure
behaves more as a shear member. Research on the effect of
these parameters on the degree of coupling between the ¥

and o motions is needed.

The dynamic response teing calculated for each mode individually,
the total dynamic response is obtained by direct summation of

the effect of the modes using equation (3.24). The variation

of the modal participactim factor with the modes of vibration
enablesone to determine the number of modes which must be taken
into consideration in the response analysis. It should be
pointed out that the torsional to bending natural period ratio

is an important parameter affecting the variation of the modal

participation factor. Research in this direction is needed.

The study on the dynamic respanse of this type of buildings
shows that the eccentricity causes coupling of the forces and
displacements; when the ground motion had only a Y-component,
the substantial forces and displacements were obtained in other
directions as well. The degree of coupling, between the
rotation and the displacement, between the torque and the shear
and between the bimoment and the bending moment, give a complete
understanding of the influence of the eccentricities on the

dynamictbehaviour of the structure.
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The comparison of the dynamically computed maximum displacements
and stresses with those computed statically from the National
Building Code of Canada 1975, indicates that the latter 13
conservative whenever torsion is not important, but cannot take
into account the magnification effect due to coupling between
the ¥ and 2 motions {n asymmetric wall-frame building
structures. Consequently, it is recommended that, in order to
ensure safety, that type of buildings in Canadian Zone 3, or its

equivalent elsewhere, be designed using the dynamic approach.

The method of analysis presented here for asymmetric wall-frame
structures are limited to unifsorm structures. However, in

actual tall buildings, the dimensional and structural properties
vary along the height. Therefore, this method should be extended
to cover non-uniform structures, such as by means of the transfer

matrix technique or by other means.

The results of this investigation are based on a very limited
set of data; the validity for more general situations will

require substantial application of fhis work to a large number

of structures and earthquakes.
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Programme 1

Programmé 2 :

Programme 3 :

Programme 4 :

WPPENDIX 1
List of F@RTRAN IV Computer Programmes Areer by

Dynamic Analysis of 2-Dimensional Wall-Frame Building
Structures (based on the continuous approach and
satisfies 8 boundary conditions).

Dynamic Analysis of Single Wall-Frame System (based on
the continuous approach and satisfies 6 boundary
conditions).

Response Analysis of 2-Dimensional Wall-Frame subjected
to Sinusoidal Base Motion (rigorous solution).

Response Analysis of 2-Dimensional Wall-Frame subjected
to Seismic Ground Motion (based on a numerical integration
technique). \

131

A

LNt Btk

Pr g s )



APPENDIX 2
LIST OF SYMBOLS |

shear component eccentricities

\

polyromial constant coefficients

arbitrary constants determined by the
initial conditions for mode m

applied ground acceleration function
Bimoment in the wall

parameters describing stiffness and mass

relationships in the ¥ and & directions,

respectively

mode shape multipliers for mode n
characteristic determinants for mode n
flexural component eccentricities
translational flexural stiffnesses

warping torsional stiffness

modal participation factors for mode m

translational shear stiffnesses

St. Venant torsional stiffnesses

th

amplitude of T (¢) for the m mode

of steady forced vibration
height of building

mode shape product integrals
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matrix form describing physical and
geometrical properties of the stiffning
elements.

bending moment in flexural and shear
components, respectively

normalization factor for the coupled shape

i th
functions ¢Yn and ¢0n’ for the n

mode of vibration

[Z7

flexural radius of gyration = VJET;

shearing force in flexural and shear
components, respectively

torsional moment in flexural and shear
components, respectively

-

function determining the temporal variation
of the response corresponding to the mth
mode of vibration

time variable in seconds

distributed applied lateral loads

distributed external applied torsional
moment

X and Y coordinates of element X
lateral displacements of element <

lateral displacements of centre of mass

"Tocation of the core from the centre of

mass in 2-dimensional wall-frame building

excitation displacements amplitude

vertical axis

parameters describing stiffness relationships
in the Y and o6 directions, respectively
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longitudinal deformation in the wall
time interval
longitudinal strain in the wall

mode shape characteristic parameter

flexural and torsional shape functions
for the nth mode of vibration, respectively

normalized shape functions for the n‘h
coupled mode of vibration, respectively

mass per unit height of the structure

mass moment of inertia per unit height
of the structure

fraction of critical damping

rotation of the floor cross-section
about the centre of mass

phase angle of the b

forced vibration

mode of steady
principal sectorial area of any point
on the cross-section of the wall

the nth natural frequency of the free
coupled vibration in radians per second

forcing frequency in radians per second
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APPENDIX 3

Response Comparison
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Response Parameter

Maximum Value due to

Response Spectr.um

Response Analysis

Response Spectrum

Response Analysis

Base Moment

4326

6290

[t.m &.fz)] (31218) (45388) 1.45
Base Shear 226 216 0.95
[t ()] (497) (475) ’
Base Bimcment 12690 16400 1.29
[t.m* (x.rt?)] (300355) . (388163)

Base Torsion * 277 281 1.0
(t.m (k. ft)] (1999) (2028) )
Top Displacement 0.1539 0.1594 1.03
[m (fp)ﬁ (0.5048) (0.5228) )
Top Rotation 0.002836 0.002400 0.85

[radians]

N

Table 14 - Comparison between the maximum response parameters obtained
from the Dynamic Response Analysis and those computed by the

Response Spectrum Technique.

By comparing these results it can be seen that the proposed method yields
results which compare very well with those obtained by the response

spectrum technique.

* The Base Torsion is computed at the centre of mass.




