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ABSTRACT 

A critical evaluation is made of the response to horizontal ground shaking of flexible 

cantilever retaining walls that are elastically constrained against rotation at their base. The 

retained medium is idealized as a uniform, linear, viscoelastic stratum of constant 

thickness and semiinfinite extent in the horizontal direction. The parameters varied 

include the flexibilities of the wall and its base, the properties of the retained medium, and 

the characteristics of the ground motion. In addition to long-period, effectively static 

excitations, both harmonic base motions and an actual earthquake record are considered. 

The response quantities examined include the displacements of the wall relative to the 

moving base, the wall pressures, and the associated shears and bending moments. The 

method of analysis employed is described only briefly, emphasis being placed on the 

presentation and interpretation of the comprehensive numerical solutions. It is shown that, 

for realistic wall flexibilities, the maximum wall forces are significantly lower than those 

obtained for fixed-based rigid walls and potentially of the same order of magnitude as 

those computed by the Mononobe-Okabe method. 
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EXECUTIVE SUMMARY 

The study reported here is the fifth in a series of investigations of the response to ground shaking of 

retaining walls and deeply embedded vertical cylindrical structures. The objectives of these studies 

have been to provide insights into the dynamic responses of these systems and to formulate rational 

but simple methods for their analysis and design. The previous studies were described in Brookhaven 

National Laboratory reports 52357,52372,52402 and 52444. 

Past analyses of the dynamic response of retaining walls may be classified into two groups: (1) elastic 

analyses, in which the wall is considered to be fixed against both deflection and rotation at the base 

and the backfill is presumed to respond as a linearly elastic or viscoelastic material; and (2) limit state 

analyses, in which the wall is considered to displace sufficiently at the base to mobilize the full 

shearing strength of the backfill. 

The wall pressures and associated forces computed by elastic analyses are from 2.5 to over 3 times as 

large as those determined by limit state analyses, and elastic solutions are generally deemed to be 

unduly conservative and inappropriate for use in design applications. In a recent contribution by the 

authors, it has been shown that, for walls that are rigid but elastically constrained against rotation at 

their base, both the magnitudes and distributions of the dynamic wall pressures and forces are quite 

sensitive to the flexibility of the base constraint and that, for realistic base flexibilities, these effects 

may be significantly lower than those computed for non-deflecting, rigid walls. Comparable results 

also are expected for walls that are themselves flexible. 

The purpose of this study is to make a critical evaluation of the magnitude and distribution of the 

dynamic displacements, pressures and forces induced by horizontal ground shaking in walls that are 

both flexible and elastically constrained against rotation at their base, and to assess the effects and 

relative importance of the numerous factors involved. The soil is presumed to act as a uniform 

viscoelastic stratum of constant thickness and infinite extent in the horizontal direction, and the bases 

of the wall and soil stratum are presumed to be excited by a space-invariant horizontal motion. 

The principal conclusions of the study may be summarized as follows: 

1. For the soil-wall system examined, both the magnitudes and distributions of the wall displace- 

ments, wall pressures and associated forces induced by horizontal ground shaking are quite sen- 
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2. 

3. 

4. 

5.  

6.  

7. 

sitive to the flexibilities of the wall and its base. Increasing either flexibility reduces the 

horizontal extensional stiffness of the retained medium relative to its shearing stiffness, and this 

reduction decreases the proportion of the soil inertia forces that gets transferred to the wall and, 

hence, the forces developed in it. 

For realistic wall flexibilities, the total wall force or base shear is one-half or less of that obtained 

for a fixed-based, rigid wall, and the corresponding reduction in the overturning base moment is 

even larger. With the information that has been presented, the precise dependence of these critical 

forces on the flexibilities of the wall and its base may be evaluated readily. 

When the dynamic amplification effects of the retained medium are neglected, the magnitude of 

the total wall force obtained for realistic wall flexibilities by the present method of analysis is in 

reasonable agreement with that computed by the limit-state, Mononobe-Okabe method which 

also disregards the dynamic amplifications. Additionally, the effective wall height, which is the 

height by which the total wall force must be multiplied to obtain the overturning base moment, 

may well be of the order of 40 percent or less of the actual wall height. These values are in close 

agreement with the 1/3 value involved in the original M-0 method, and substantially smaller 

than the 60 percent value recommended in the Seed-Whitman modification of the method. 

For systems excited by earthquake ground motions of the type recorded during the El Centro, 

California event, the dynamic amplification factor for total wall force for the most unfavorable 

combination of system parameters is likely to vary from 1.3 for fixed-based, rigid walls to 1.9 for 

walls of high flexibility. The effective wall height, on the other hand, is insensitive to the ground 

motion characteristics, and may be taken equal to that obtained for ‘statically excited’ systems. 

Even for the 1940 El Centro earthquake motion, the maximum wall displacement relative to the 

moving base for realistic systems is found to be less than the values of 0.1% to 0.4% of the wall 

height normally accepted as the minimum required to develop a limit state in the retained mate- 

rial. 

The comprehensive numerical solutions presented and their analysis provide not only valuable 

insights into the effects and relative importance of the numerous factors that influence the 

response of the systems examined, but also a sound framework for assessing the behavior of even 

more complex soil-wall systems. It is hoped that the information presented will also lead to a 

greater appreciation than appears to exist at present of the value of elastic methods of analysis for 

the problem examined. 

The effects of nonuniformity in the shear modulus of the retained medium and of separation at 

the wall-medium interface were examined briefly from a static point of view. The dynamic 

aspects of these issues require further study. 
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SECTION 1 

INTRODUCTION 

Despite the multitude of studies that have been carried out over the years, the dynamic response of 

cantilever retaining walls is far from being well understood. There is, in particular, a paucity of 

conclusive information that may be used in design applications. 

Past analyses of the dynamic response of such systems may be classified into two groups: (1) elastic 

analyses, in which the wall is considered to be fixed against both deflection and rotation at the base 

and the backfill is presumed to respond as a linearly elastic or viscoelastic material; and (2) limit state 

analyses, in which the wall is considered to displace sufficiently at the base to mobilize the full 

shearing strength of the backfill. 

Representative of the first group of studies are the contributions of Matuo and O h m  (1960), Wood 

(1973), and Veletsos and Younan (1994a, 1994b), and representative of the second group is the 

Mononobe-Okabe (M-0) approach (Mononobe and Matuo, 1929; Okabe 1924) and its variants (Seed 

and Whitman, 1970; Richards and Elms, 1979; Nadim and Whitman, 1983) which have found 

widespread acceptance in practice (e.g., ATC 1981). More detailed accounts of previous analytical 

and experimental studies on the subject matter have been presented by Nazarian and Hadjian (1979), 

Prakash (1981), Whitman (1991), and Veletsos and Younan (1995). 

The wall pressures and associated forces computed by elastic analyses are from 2.5 to over 3 times as 

large as those determined by the M-0  approach, and elastic solutions are generally deemed to be 

unduly conservative and inappropriate for use in design applications. There is, in fact, a widespread 

mistrust in elastic methods and a corresponding overconfidence in limit-state analyses, such as the 

venerable M-0 method, even for conditions for which the latter method is not applicable. However, 

excepting some recent exploratory studies (Finn et al., 1989; Siller et al., 1991; Sun and Lin, 1995), 

the existing elastic solutions are limited to non-deflecting, rigid walls, and do not provide for the 

important effect of wall flexibility. Furthermore, the limited numerical data presented by Sun and Lin 

(1995) are believed to be in error. 

In a recent contribution by the authors (Veletsos and Younan, 1994b), it has been shown that, for walls 

that are rigid but elastically constrained against rotation at their base, both the magnitudes and 
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distributions of the dynamic wall pressures and forces are quite sensitive to the flexibility of the base 

constraint and that, for realistic base flexibilities, these effects may be significantly lower than those 

computed for non-deflecting, rigid walls. Comparable results also are expected for walls that are 

themselves flexible. 

The purpose of this study is to make a critical evaluation of the magnitude and distribution of the 

dynamic displacements, pressures and forces induced by horizontal ground shaking in walls that are 

both flexible and elastically constrained against rotation at their base, and to assess the effects and 

relative importance of the numerous factors involved. The soil is presumed to act as a uniform 

viscoelastic stratum of constant thickness and infinite extent in the horizontal direction, and the bases 

of the wall and soil stratum are presumed to be excited by a space-invariant horizontal motion. The 

factors investigated include the characteristics of the ground motion, the properties of the stratum, and 

the flexibilities of the wall and of the rotational base constraint. Both harmonic and earthquake- 

induced ground motions are examined. Special attention is paid to the effects of long-period, 

effectively static excitations. A maximum response for the dynamically excited system is then 

expressed as the product of the corresponding long-period, static response and an appropriate 

amplification or deamplification factor. The method of analysis employed is described only briefly, the 

emphasis being on the presentation and interpretation of the comprehensive numerical solutions. 
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SECTION 2 

SYSTEM CONSIDERED 

The system examined is shown in Fig. 2.l(a). It consists of a semiinfinite, uniform layer of 

viscoelastic material of height H that is free at its upper surface, is bonded to a rigid base, and is 

retained along one of its vertical boundaries by a uniform, flexible cantilever wall that is elastically 

constrained against rotation at its base. The bases of both the wall and the soil stratum are presumed to 

experience a space-invariant horizontal motion, the acceleration of which at any time t is xg(t) and 

its maximum value is Xg. Material damping for the medium is considered to be of the constant 

hysteretic type. 

The properties of the soil stratum are defined by its mass density p , shear modulus of elasticity G , 

Poisson’s ratio v ,  and the material damping factor 6 ,  which is considered to be frequency- 

independent and the same for both shearing and axial deformations. The factor 6 is the same as the 

tan 6 factor used previously by the senior author and his associates in studies of foundation dynamics 

(e.g., Veletsos and Verbic, 1973; Veletsos and Dotson, 1988), and twice as large as the factor p 
employed by others in related studies (e.g., Roesset et al., 1973; Pais and Kausel, 1988). The 

properties of the wall are defined by its thickness t, , mass per unit of surface area p, , Young’s 

modulus of elasticity E,, Poisson’s ratio v, , and material damping factor 6, which is considered to 

be the same for both the wall in flexure and the rotational base constraint. The latter factor, like 6 ,  is 

twice as large as the corresponding percentage of critical damping. The stiffness of the rotational base 

constraint is denoted by Re. 

The wall displacements relative to the moving base and the resulting wall pressures and forces for the 

base-excited system can be shown to be identical to those for the force-excited system displayed in 

Fig. 2.l(b), for which the base is stationary and the stratum and wall are subjected to uniform lateral 

body forces of intensity -p x&t) and -p, xdt),  respectively. For excitations with dominant 

frequencies that are very low compared to the fundamental frequency of the stratum, the action of the 

force-excited system may be easier to visualize than that of the base-excited system. 



E 

w 
a;, 

wl 

Y 

- 
x 

E 

w 
0 

wl 

Y 

n 
crf 
v 

f- 
x 

U 

2-2 



SECTION 3 

METHOD OF ANALYSIS 

Fundamental to the analysis employed is the assumption that, under the horizontal excitation 

considered, no vertical normal stresses develop anywhere in the medium, i.e. oy = 0 .  It is further 

assumed that there is complete bonding between the wall and the retained medium, and that the 

horizontal variations of the vertical displacements of the medium are negligible so that the horizontal 

shearing stresses zXy can be expressed as z,,, = G * ( W a y ) ,  where u = the horizontal displacement 

of an arbitrary point of the medium relative to the moving base, G* = G(l  + i6) = the complex- 

valued shear modulus, and i = &i . The reliability of these assumptions has been confirmed for the 

limiting case of fixed-based rigid walls (Veletsos and Younan, 1994b) by comparing the results 

obtained by the present method and Wood’s ‘exact’ solution (1973). 

The instantaneous value of the displacement relative to the moving base of an arbitrary point of the 

wall, w(q, t )  , is expressed as a linear combination of a function that increases linearly from base to 

top and the natural modes of vibration of a uniform, flexural cantilever beam as 

J 

w(q, t) = q H e ( t )  + C $j (q) qjtt) 
j = 1  

in which q = y/H = a dimensionless vertical position coordinate; e(t) = the instantaneous value of 

the base rotation; $j(q) = the jth natural mode of vibration of the cantilever beam; qj(t) = a 

generalized coordinate defining the degree of participation of $j(q) at any time; and J = the total 

number of modes considered. 

The response of the system is evaluated first for a harmonic excitation. The response to an arbitrary 

ground motion is then deterrnined by Fourier transform techniques. 

The equations of motion for the system are obtained by repeated application of Lagrange’s equation 

(Clough and Penzien, 1994). For the evaluation of the generalized forces, the natural modes of 

vibration of the cantilever beam $j(q) are expressed as linear combinations of the corresponding 

modes of the retained medium when the latter is considered to act as an unconstrained cantilever 

shear-beam, i.e. as 



where cn = dimensionless participation factors defined by appropriate integrals of ej and W, ; n = the 

order of the shear-beam mode under consideration; and N = a sufficiently large integer. The details of 

the method of analysis for a system involving a fixed-based cantilever wall will be described 

elsewhere. The equations governing the response of the more general system examined here are 

summarized in the Appendix. 

3.1 Problem Parameters 

The primary parameters governing the response of the system are the relative flexibility of the wall 

and retained medium, defined by 

GH3 
d, = - 

DW 

and the relative flexibility of the rotational base constraint and retained medium, defined by 

The symbol D, in (3) represents the flexural rigidity per unit of length of the wall, given by 

T3 + 3  
Lj, c w  

D, = 
12( 1 - v,’) 

(3) 

(5) 

Also affecting the response are the characteristics of the base motion. For a harmonic excitation, the 

response is controlled by the frequency ratio o/ol, where o = the circular frequency of the base 

motion and of the resulting steady-state response, and o1 = the fundamental circular frequency of the 

stratum when it is considered to act as an unconstrained, vertical cantilever shear-beam. For an 

arbitrary transient excitation, the relevant stratum property is its fundamental cyclic frequency 

f ,  = o,/2n, or its corresponding period T, = l / f ,  = 2x/01. Additional parameters are Poisson’s 

ratio and damping factor for the soil, v and 6 ,  the material damping factor for the wall 6, ,  and the 

ratio of mass densities for the wall and the retained medium pw/pH. 

For the solutions presented in the following sections, the wall is considered to be massless (i.e., 

p, = 0); Poisson’s ratio for the soil is taken as v =1/3 ; and the damping factors for the soil and wall 

are taken as 6 = 0.1 and 6, = 0.04 , respectively (Le., as 5% and 2% of critical damping). The relative 

flexibility factors d, and de are varied over wide ranges, and so is the frequency ratio o/ol for 

harmonic motions, and the fundamental period of vibration of the stratum Tl for the earthquake 

ground motion. 

flexibility factors d, and de are varied over wide ranges, and so is the frequency ratio o/ol for 

harmonic motions, and the fundamental period of vibration of the stratum Tl for the earthquake 

ground motion. 
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SECTION 4 

STATIC RESPONSE 

It is desirable to begin by examining the responses obtained for excitations the dominant frequencies 

of which are extremely small compared to the fundamental frequency of the soil-wall system (i.e., for 

values of o/ol + 0 or f + 09 ). Such excitations and the resulting effects are referred to as ‘static’ 

and are identified with the subscript st. This term should not be confused with that normally used to 

represent the effects of gravity forces. In the equivalent, force-excited version of the problem referred 

to previously, the static excitation is represented by horizontal body forces of intensity -p X, for the 

retained medium and of - pW Xg for the wall. The maximum value of a dynamic effect for an arbitrary 

transient excitation is then expressed as the product of the corresponding static effect and an 

appropriate amplification or deamplification factor. 

4.1 Wall Pressures 

The heightwise variations of the ‘static’ wall pressures oJq) are displayed in Fig. 4.1 for systems 

with different flexibility factors d, and de.  Pressures are considered to be positive when they induce 

compression on the wall. The plots in part (a) of the figure are for fixed-based walls with different 

values of d,, whereas those in part (b) are for rotationally constrained rigid walls with different 

values of de. The walls in these and all solutions that follow are presumed to be massless, and 

Poisson’s ratio for the retained medium is taken as v = 1/3 . 

As might be expected, the wall pressures decrease with increasing d, or de, the reductions being 

quite substantial even for small values of the flexibility factors. Increasing the flexibility of the wall or 

its base reduces the horizontal extensional stiffness of the medium relative to its sheaxing stiffness, 

and this reduction, in turn, increases the proportion of the inertia forces transmitted by horizontal 

shearing action to the base and decreases the proportion transmitted to the wall. 

The flexibilities of the wall and its base also affect significantly the distribution of the wall pressures. 

For fixed-based rigid walls (d, = d, = 0 ), the pressures increase almost as a quarter-sine from zero at 

the base to a maximum at the top, whereas for the flexible walls, there is generally a sharp change in 

magnitude and a reversal in the sign of the pressure at the top. It follows that, whereas the pressure 

distribution for the fixed-based rigid wall is dominated by the contribution of the fundamental mode 

of vibration of the soil stratum, the distributions for the flexible walls are affected significantly by the 
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higher modes. 

4.2 Wall Forces 

Figure 4.2 shows the heightwise distributions of the static shear per unit of wall length, V,,(q) , and 

Fig. 4.3 shows the distributions of the corresponding bending moment, Mst(q). As before, the plots 

in parts (a) of the figures are for fixed-based, flexible walls, whereas those in part (b) are for walls that 

are rigid and elastically constrained against rotation at the base. These forces are computed by 

appropriate integrations of the wall pressures ost(q). Shears are normalized with respect to pX,H 

and moments with respect to pX,H . 

2 

3 

As would be expected from the information on wall pressures presented in Fig. 4.1, increasing the 

flexibility of either the wall or of the rotational base constraint decreases the magnitude of the wall 

forces, the reductions being considerably larger for bending moments than for shears and, in both 

instances, quite substantial even for relatively small values of d, or de . 

In Fig. 4.4, the normalized static values of the base shear and base moment, (V,),,/pX,H2 and 

(Mb),JpX,H3 , are plotted as a function of the wall flexibility factor d, for several values of the 

base flexibility factor de . For fixed-based rigid walls (d, = de = 0 ), the base shear and base moment 

have the well established values of 0.940pX,H2 and 0.563pX,H3, respectively (Veletsos and 

Younan, 1994b). The base shear is effectively equal to the inertia force acting on a rectangular body of 

soil of width 0.94H and height H, and the base moment is equal to the product of the total wall force 

or base shear and a height h = 0.6H, which will be referred to as the effective height. Incidentally, 

the latter value is close to the WIT value corresponding to a pressure distribution that increases as a 

quarter-sine from base to top. The latter distribution is obtained on assuming that the soil responds in 

its fundamental mode of vibration. Selected values of the normalized base shear are also listed in part 

(a) of Table 4.1. 

As an indication of the effect of wall flexibility on the response of a representative practical system, it 

is noted that for the relatively low values of d, = 5 and de = 1 , the base shear 

(Vb),, =0.496pX,H2. This value is only 53% of that obtained for a fixed-based rigid wall and 32% 

higher than the 0.375pX,H2 value computed by the limit-state, M-0 method of analysis (Seed and 

Whitman, 1970). For higher but still realistic values of the flexibility factors d, and de, the agreement 

in the results obtained by the present analysis and the M-0 method is even better. 

The values of the effective wall height h for systems with different combinations of the flexibility 

factors d, and de are plotted in Fig. 4.5 normalized with respect to the actual height H. Selected 

values are also listed in part (b) of Table 4.1. Note that for the values of d, = 5 and de = 1 

considered in the example referred to above, h = 0.403H, which is only 21% higher than the W3 

value associated with the original M-0 method of analysis and significantly lower than the 0.6H value 
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recommended in the Seed-Whitman modification of the method (1970). For larger values of d, and 

d, , the value of h, as demonstrated in Fig. 4.5, may well be less than W3. Similar low values of h/H 

have also been determined experimentally in the studies of rocking walls reported by Andersen et al. 

(1987) (see also Whitman, 1990). 

While the close agreement in the results obtained for the example considered by the present method 

and the M-0 method constitutes no proof of the validity of either approach, it does demonstrate that 

the analysis presented leads to results that are in the range of those deemed by many to be appropriate 

for design purposes, and that elastic methods deserve much greater credit and attention than they have 

been accorded so far. It should be added that in the evaluation of (V,),, no provision has been made 

for the dynamic amplification effects of the retained medium. However, the same is also true of the 

corresponding force computed by the M-0 approach. 

4.3 Wall Displacements 

It is also desirable to examine the magnitudes and distributions of the relative wall displacements 

w,,(q). Considered to be positive when directed away from the retained medium, these 

displacements are shown in Fig. 4.6, where the plots on the left refer to fixed-based flexible walls, and 

those on the right to elastically constrained rigid walls. As before, the walls are presumed to be 

massless, and Poisson’s ratio for the soil v = 1/3 .  The results are normalized with respect to 

XgH /v, , where v, = m p  = the shear-wave velocity of the soil medium. 
2 2  

An increase in either wall or base flexibility naturally increases the wall displacements, the percentage 

increases being largest for the smaller values of the flexibility factors d, and d, . The flexibility of the 

wall itself also affects the configuration of the resulting displacements. Included for purposes of 

comparison in dashed lines are the configurations computed on the assumption that the soil stratum 

acts as an unconstrained cantilever shear-beam. Note that, for large values of d, and de,  the wall 

displacements tend to those obtained for the shear-beam. Some of these trends can more clearly be 

seen in Fig. 4.7, in which the normalized values of the maximum or top wall displacement relative to 

the moving base, ( w,Jmax = wst (1 ) , are plotted as a function of the wall flexibility factor d, for 

several values of the base flexibility factor d, . 

It is generally accepted (Clough and Duncan, 1990) that the initiation of a failure plane or the 

development of a limit state in the retained material requires wall displacements of the order of 0.1% 

to 0.4% of the wall height. To assess the applicability of the elastic solutions presented here, it is 

desirable to compare the predictions of the present analysis with the above-referenced values. To this 

end, consider a system for which the wall flexibility factor has the moderately high value of d, = 20. 

For typical concrete walls, with E, = 3 x 106psi, v, = 0.17 and H/t, = 10, this value 

corresponds to a soil with a shear wave velocity v, = 150 d s e c  (492 Wsec). The normalized values 

of the maximum relative wall displacement in this case are in the range of 0.454 to 0.505. Using the 
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average value of 0.48, the displacement ratio wSt( 1)/H for a wall of height H = 5 m (16.4 ft) and a 

ground motion with a peak acceleration X, = 0.3g turns out to be 

Even with a dynamic amplification factor of 2.2, which as shown later represents an upper bound for 

realistic soils and an intense earthquake ground motion, the maximum value of the displacement ratio 

will be lower than the 0.1% to 0.4% range referred to above. For less intense ground motions and 

walls that are stiffer relative to the retained soil, this ratio would be even lower. 
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Table 4.1 : Normalized values of static base shear ( Vb)st and effective 

wall height h for different wall and base flexibilities 

(V = 1/3, p., = 0). 

0 

0.5 

1 .o 
2.0 

3 .O 

4.0 

5.0 
6.0 
8.0 

10.0 
15.0 

20.0 
30.0 
40.0 

0 

0.5 

1 .o 
2.0 

3.0 
4.0 
5.0 
6.0 
8.0 
10.0 
15.0 
20.0 
30.0 
40.0 

0.940 

0.883 
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0.590 
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0.510 
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0.53 1 
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0.496 
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0.47 1 
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0.360 
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0.48 1 
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0.436 
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Fig. 4.1 Distributions of Wall Pressure for Statically Excited Systems with Different Wall and Base Flexibilities 
(p, = 0, v = 1/3). 
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SECTION 5 

HARMONIC RESPONSE 

For the data presented so far, the dominant period of the excitation was considered to be long com- 

pared to the natural period of the retained material. In this section, the steady-state response of the 

system to a harmonic excitation of an arbitrary frequency is examined. 

In Fig. 5.1, the amplification factor for base shear in the wall, defined as the ratio of the maximum 

dynamic to the corresponding static values of the shear, is plotted as a function of the frequency ratio 

o/ol for several combinations of the flexibility factors d, and de . As before, the plots on the left 

are for fixed-based flexible walls, while those on the right are for rigid walls that are elastically con- 

strained against rotation at the base. In all cases, the walls are presumed to be massless and to have a 

damping factor 6 ,  = 0.04 (or 2% of the critical damping), and Poisson’s ratio and the damping factor 

for the retained medium are taken as v = 1/3 and 6 = 0.1 . 

It is observed that (1) the peak or resonant values of the amplification factors occur at exciting fre- 

quencies equal to the natural frequencies of the stratum, i.e., for o/ol = 1,3,5, . . . ; (2) the absolute 

maximum amplification factors are attained at the fundamental frequency of the stratum; and (3) the 

latter factors are quite sensitive to the relative flexibility factors d, and de .  For a fixed-based rigid 

wall (d, = de = 0), it is well known (Arias et al., 1981; Veletsos and Younan, 1994a) that the abso- 

lute maximum amplification factor for base shear is l/A, or 3.16 for the value of 6 = 0.1 consid- 

ered. By contrast, for flexible walls, this factor is substantially larger due to the reduced capacity of 

such walls to reflect and dissipate by radiation the waves impinging on them. As d, or de tends to 

infinity, the soil-wall system tends to respond as an unconstrained cantilever shear-beam, and the 

absolute maximum amplification factor tends to 1/6 = 10, the value applicable to a viscously 

damped single-degree-of-freedom oscillator. 

In Fig. 5.2, the absolute maximum amplification factors for base shear and top displacement of the 

wall relative to the moving base are plotted as a function of the wall flexibility factor d, for fixed val- 

ues of the base flexibility factor de .  It is observed that the amplification factors for base shear are 

somewhat lower than those for displacement. This is attributed to the fact that the static values of the 

base shear are influenced to a greater extent than those of displacement by the higher modes of vibra- 

tion. 
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SECTION 6 

TRANSIENT RESPONSE 

Figure 6.1 shows the amplification factors for maximum base shear in the walls of systems subjected 

to the first 6.3 sec of the N-S component of the 1940 El Centro, California earthquake ground motion 

record, the peak acceleration of which X, = 0.312g. As before, the walls in these solutions are pre- 

sumed to be massless, Poisson’s ratio for the retained medium is taken as v = 1/3 , and the damping 

factors for the wall and soil are taken as 6, = 0.04 and 6 = 0.10 (or 2% and 5% of critical damping, 

respectively). Both fixed-based flexible walls and elastically constrained rigid walls are considered. 

The results are plotted as a function of Tl = 4H/v,, the fundamental period of the soil stratum when 

it is considered to respond as an unconstrained cantilever shear-beam. As a measure of the values of 

Tl that may be encountered in practice, it is noted that for values of v, between 75 and 300 d s e c  

(246 and 984 fdsec) and values of H between 3 and 15 m (9.84 and 49.21 ft), the value of Tl falls in 

the range of 0.04 to 0.8 sec. 

The plots in Fig. 6.1 are similar to, but by no means the same as, the normalized response spectra for 

similarly excited, viscously damped single-degree-of-freedom systems. Specifically, for low-natural- 

period, stiff strata, the amplification factor is unity. With increasing TI or increasing flexibility of the 

stratum, the amplification factors increase, and after attaining nearly horizontal plateaus, they reach 

values that may be substantially less than unity. In all cases, the amplification factors for the flexible 

walls are substantially higher than for the corresponding rigid walls. A larger amplification factor, 

however, does not necessarily imply a higher response level. This can more clearly be seen in Fig. 6.2, 

in which the base shears for the systems examined in Fig. 6.1 are replotted normalized with respect to 

the common factor pX,H . 
2 

In part (a) of Fig. 6.3, the amplification factors for base shear in the period range from 

Tl = 0.1 to 0.5 sec for the conditions considered in Fig. 6.1 are plotted as a function of the flexibility 

factor d, for fixed values of d, . The period range considered corresponds to the highly amplified, 

nearly horizontal region of the plots in Fig. 6.1 and 6.2. Also shown in part (b) of Fig. 6.3 are the cor- 

responding factors for top relative wall displacement. It is observed that the factors for base shear 

range from 1.32 to 1.93, whereas those for top displacement range from 1.39 to 2.38. It should be 

recalled that these results are for a medium with a damping factor 6 = 0.10. An increase in damping 

will naturally further reduce the amplification factors. 
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The normalized values of the effective wall heights h for the seismically excited systems are finally 

plotted in Fig. 6.4 as a function of the fundamental period of the stratum TI. These heights are rela- 

tively insensitive to variations in TI, and may, for all practical purposes, be taken equal to those 

reported for the corresponding statically excited systems in Fig. 4.5 and part (b) of Table 4.1. 
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SECTION 7 

LIMITATIONS OF SOLUTIONS 

The information presented in the preceding sections is limited by the assumption of complete bonding 

between the wall and retained medium which makes possible the development of negative or tensile 

normal pressures on the wall. Of special interest in this regard are the tensile pressures developed near 

the top (see Fig. 4.1) when the pressures for the remainder of the wall, like those induced by gravity 

forces, are compressive. For ground-motion intensities for which the tensile pressures exceed the 

gravity-induced compressive pressures, the backfill will naturally separate from the wall, and this sep- 

aration will increase the wall shears and bending moments over the levels computed on the assump- 

tion of complete bonding. 

The information presented is also limited by the assumption of uniform properties for the retained 

medium. In reality, the shear modulus of the medium is likely to increase with depth, and this varia- 

tion will affect both the magnitudes and distributions of the wall pressures and associated forces. For a 

rigid wall that is rotationally constrained at the base and for a medium for which the shear modulus 

increases parabolically from zero at the top to a maximum at the base, it has been shown (Veletsos and 

Younan, 1994b) that the wall pressure induced by ground shaking vanishes at the top, and that the 

resulting wall forces are smaller than those obtained for a uniform medium with a shear modulus 

equal to the mean value of the varying modulus. Similar results also are expected for the more general 

system examined here. It is concluded that, being of opposite signs, the separation effects at the wall- 

medium interface and the effects of vertical variability in the shear modulus for the medium will tend 

to compensate each other. 

A measure of these effects is provided in Fig. 7.1, in which the static values of the base shear ( v b ) s t  

and base moment (Mb)st in rotationally constrained rigid walls are compared for the following three 

cases: (1) a uniform stratum with complete bonding to the wall, i.e., the conditions considered in the 

present study; (2) a uniform stratum with no tensile resistance at its interface with the wall; and (3) a 

fully bonded stratum for which the shear modulus G(q) increases from top to bottom according to 

where Go = its base or maximum value. The results are plotted as a function of the flexibility factor 

do ,  in which the shear modulus for the nonuniform medium is taken equal to its average value Gav . 
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In evaluating the separation effects at the wall-medium interface, the gravity-induced wall pressures 

are computed for a friction angle for the soil 0 = 30°, the pressures due to the ground shaking are 

computed for a maximum ground acceleration X, = 0.3g, and the dynamic tensile pressures near the 

top are neglected when they exceed the gravity-induced pressures. 

In addition to confirming the anticipated interrelationships, the information in Fig. 7.1 emphasizes the 

need for further studies regarding the effects of both debonding and nonuniformity in material proper- 

ties. 
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SECTION 8 

CONCLUSIONS 

Following are some of the more important conclusions of this study. 

1. For the soil-wall system examined, both the magnitudes and distributions of the wall displace- 

ments, wall pressures and associated forces induced by horizontal ground shaking are quite sen- 

sitive to the flexibilities of the wall and its base. Increasing either flexibility reduces the 

horizontal extensional stifmess of the retained medium relative to its shearing stiffness, and this 

reduction decreases the proportion of the soil inertia forces that gets transferred to the wall and, 

hence, the forces developed in it. 

2. 

3. 

4. 

5. 

For realistic wall flexibilities, the total wall force or base shear is one-half or less of that obtained 

for a fixed-based, rigid wall, and the corresponding reduction in the overturning base moment is 

even larger. With the information that has been presented, the precise dependence of these critical 

forces on the flexibilities of the wall and its base may be evaluated readily. 

When the dynamic amplification effects of the retained medium are neglected, the magnitude of 

the total wall force obtained for realistic wall flexibilities by the present method of analysis is in 

reasonable agreement with that computed by the limit-state, Mononobe-Okabe method which 

also disregards the dynamic amplifications. Additionally, the effective wall height, which is the 

height by which the total wall force must be multiplied to obtain the overturning base moment, 

may well be of the order of 40 percent or less of the actual wall height. These values are in close 

agreement with the l/3 value involved in the original M-0 method, and substantially smaller 

than the 60 percent value recommended in the Seed-Whitman modification of the method. 

For systems excited by earthquake ground motions of the type recorded during the El Centro, 

California event, the dynamic amplification factor for total wall force for the most unfavorable 

combination of system parameters is likely to vary from 1.3 for fixed-based, rigid walls to 1.9 for 

walls of high flexibility. The effective wall height, on the other hand, is insensitive to the ground 

motion characteristics, and may be taken equal to that obtained for ‘statically excited’ systems. 

Even for the 1940 El Centro earthquake motion, the maximum wall displacement relative to the 

moving base for realistic systems is found to be less than the values of 0.1 % to 0.4% of the wall 

height normally accepted as the minimum required to develop a limit state in the retained mate- 

rial. 
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6. The comprehensive numerical solutions presented and their analysis provide not only valuable 

insights into the effects and relative importance of the numerous factors that influence the 

response of the systems examined, but also a sound framework for assessing the behavior of even 

more complex soil-wall systems. It is hoped that the information presented will also lead to a 

greater appreciation than appears to exist at present of the value of elastic methods of analysis for 

the problem examined. 

7. The effects of nonuniformity in the shear modulus of the retained medium and of separation at 

the wall-medium interface were examined briefly from a static point of view. The dynamic 

aspects of these issues require further study. 
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SECTION 10 

APPENDIX: EQUATIONS OF MOTION 

Unlike the sign convention for wall pressures and displacements used in the body of this paper, the 

sign convention used in this Appendix is that used in theory of elasticity. Specifically, normal pres- 

sures are considered to be positive when tensile, and horizontal displacements are positive when 

directed along the positive x-axis. 

It is convenient to rewrite (1) in the form 

where Q0(q) = q and qO(t) = He(t).  For a harmonic base motion with an acceleration 

the generalized coordinates qj(t) are of the form 

qj(t) = Qjeiat 

where Qj are their amplitudes. The equations of motion for the system may then be written as 

(s - O ~ M ) Q  = - ~ X , H ~ A  

where M = a (J + 1 ) x (J + 1 ) mass matrix defined by 

M = pwH 

and S = a stiffness matrix of the same size. The latter matrix may conveniently be expressed as the 

sum of a diagonal matrix So, defined by 
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D,* so = - 
H3 

- bH 0 0 ... 0 
D, 

0 ?L; 0 ... 0 

0 0 g ... 0 

0 0 0 ... A; 

. . . . . . . . . . . . . . . 

where D,* = D,( 1 + is,) , and a fully populated matrix Si with elements 

The symbol (a, b) in (12) and (14) represents the integral over the interval [O,l] of the product of 

the bracketed functions, and the factor hj in (13) represents the coefficient in the expression for the 

jth circular natural frequency of the uniform cantilever beam 

Additionally, Q = the vector of the generalized coordinate amplitudes Qj , and A = the vector of the 

normalized exciting forces, the elements of which are 

The expressions for the integrals in (12), (14) and (16) are given later in this Appendix. The quantity 

K, in (14) and (16), which represents the complex-valued impedance or dynamic stiffness of the 

medium between the wall and the far field when they are both vibrating in the nth shear-beam mode 

yl,(q) , is given by (Veletsos and Younan, 1994b) 

where a, = the nth circular natural frequency of the shear-beam, defined by 

(2n - l)zV, - 
2 H  

0, = 

Finally, U, in (16) represents the amplitude of the nth term in a modal expansion of the displacement 

of the medium at the far field, and it is given by 
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With the vector Q determined from the solution of the system of algebraic equations (1 l), the general- 

ized coordinates qj are determined from (lo), the relative wall displacements are determined from (1) 

or (8),  and the wall pressures are computed from 

Finally, the shear and bending moment at the wall base are computed either by appropriate integra- 

tions of the pressures and inertia forces acting on the wall as 

V,(t) = H(G, 1) - pwHxg(t) - pwH (W, 1) 

J 

- p,XgHeiot + m2pwH (Qj 2 1) Qj eiWt 
j = O  

J 

- pwXgH2eiot + a2pwH2 ( Qj , q) Qj eiWt 
c 

j = O  

or by appropriate differentiations of the wall displacement as 

Df I I I  = 2D: - C a . h ? Q . e  iot  
3 J J  J 

V,(t) = -- H3 I,=o 
H j = 1  

where a dot superscript denotes differentiation with respect to t while a prime superscript denotes dif- 

ferentiation with respect to q . The former expressions converge more rapidly than the latter and were 

used in the numerical evaluations. The base moment can also be determined from 

Mb(t) = R; w’lq=o = R*Q e 0 eiot (25) 

where Re* = Re( 1 + is,). The rate of convergence of this expression is the same as that of (22). 

Good convergence is normally achieved with as few as five beam modes or a total of six terms in (8). 

The natural modes of the fixed-based cantilever beam, Qj(q) for j 2 1 , are given by 

10-3 



@j(q) = coshhjq - cos3Ljq - aj( sinhhjq - sinhjq) 

where 

sinhhj - sinhj 
aj  - coshhj + coshj 

- 

and the expressions for the various integrals in the equations presented are 

2 1  
(Vny 1) = E pn - 1)  

( j = o  0.5 

2 a j  

‘j 

- 

( j = o  1 /3 

j = O  
- 4 (-l)n+l 

7c2 (2n- 1>2 

2hj&*[ hj - ( - l ) j + n  aj&n 3 
i # O  

(33) 

where E, = (2n - 1).n/2. The integrals in (31) and (32) for j # 0 are given in Felgar (1950), while all 

the other were derived from basic principles. 
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