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The dynamic response of cross-ply laminated shallow shells is investigated using the third- 
order shear deformation shell theory of Reddy [J. Appl. Mech. 41, 47 (1984) ]. The theory 
accounts for cubic variation of the in-plane displacements through the thickness and does not 
require shear correction coefficients. The state-space approach is used to develop the analytical 
solutions of simply supported, cross-ply shells using the classical, first-order, and higher-order 
theories. The use of the separation of variables technique for the higher-order theory is also 
presented. Numerical results of the higher-order theory for center deflection and normal 
stresses of spherical shells under various loadings are compared with those obtained using the 
classical and first-order [or Sanders, Q. Appl. Math. 21, 21-36 (1963) ] shell theories. 

PACS numbers' 43.40.At, 43.40.Ey 

INTRODUCTION 

Analytical description of laminated composite shells is 
often based on the classical laminate shell theory, which is an 
extension of the Love-Kirchhoff (or the first-approxima- 
tion) shell theory to composite shells. In the classical shell 
theory, the transverse strains are neglected under the as- 
sumption that the straight lines normal to the middle surface 
are rigid (i.e., do not deform). The neglect of transverse 
shear strains in composite laminates could lead to underesti- 
mation of deflections and overestimation of natural frequen- 
cies and critical buckling loads because of the low transverse 
shear modulus compared to the in-plane Young's moduli. l 

Refined theories are those in which the transverse 

strains are accounted for. Often these theories are developed 
from an assumed displacement field. The expansion of dis- 
placements as a linear combination of various powers of the 
thickness coordinate and undetermined functions of shell 

surface coordinates was suggested by Basset. 2 Hildebrand et 
al. 3 used a linear expansion of the displacements to develop a 
shear deformation shell theory (see also Sanders 4). Whitney 
and Sun 5'6 developed a refined shell theory in which the dis- 
placements in the surface of the shell are expanded as linear 
functions of the thickness coordinate and the transverse dis- 
placement is expanded as a quadratic function of the thick- 
ness coordinate. Reddy 7 and Reddy and Liu 8 presented a 
third-order theory in which the surface displacements are 
expanded up to the cubic term in thickness coordinate, while 
the transverse deflection is assumed to be constant through 
the thickness. The nine undetermined functions are reduced 

to five by imposing stress-free boundary conditions on the 
transverse shear stresses on the bounding surfaces of the 
shell. The theory does not require any shear correction coef- 
ficients, which are used in the first-order shell theories. 

The objective of the present study is to investigate the 
transient behavior of laminated, cross-ply, composite shell 
panels using the third-order Shell theory 8 and to compare 
the results with those obtained using the classical and first- 
order shell theories. Analytical solutions of the theories are 

obtained using the method of state-space technique, and sep- 
aration of variables approach 9-11 for higher-order theory. 

I. HIGHER-ORDER SHEAR DEFORMATION THEORY 

(HSDT) 

The third-order theory used in the present study is based 
on the following displacement field (see Reddy and LiuS) ß 

3h 2 --•l - •11 ' al 

3h 2 --•b2 ' , 
(1) 

W=W, 

where (•,•,ff•) are the displacements along the orthogonal 
curvilinear coordinates such that the •1 and •e 2 curves are 
lines of principal curvature on the midsurface • = 0, and • 
curves are straight lines perpendicular to the surface • = 0, 
(u,v,w) are the displacements of a point on the middle sur- 
face, and •b• and •b2 are the rotations at • = 0 of normals to 
the midsurface with respect to the •e 2 and •1 axes, respective- 
ly. The parameters R 1 and R2 denote the values of the princi- 
pal radii of curvature of the middle surface, and a I and a2 are 
the surface matrices defined in Refs. 1 and 8. All displace- 
ment components (U,U,W,•I,•2) are functions of (ffl,ff2) and 
time t. 

Substituting Eq. (1) into the strain-displacement rela- 
tions of a shell referred to an orthogonal curvilinear coordi- 
nate system, we obtain 

= + + ), 

+ 

where 
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•u w 

(3) 

Here, xi denote the Cartesian coordinates (dx i =otidgi , 
i = 1,2), and C l = 4/h 2 and c2 = c 1/3. 

The stress-strain relations for the k th lamina are given 
by 

0.1 

0' 2 

0'6 

0'4 

0.s ok) 

/ /') (k) (k) (k) •: II Q Q o .o 12 16 •1 
22 Q 0 0 26 E 2 

= Q(• o o 66 •6 , 

•symm. r• (•) 0 •4 
• 44 

(4) 

where Q •) are the material constants of the k th lamina in 
the laminate coordinate system. 

Using Hamilton's principle, the equations of motion ap- 
propriate for the displacement field ( 1 ) and the constitutive 
equations (4) are derived in Reft 8 as 

•x• 
bm6 
C•X 1 
C•QI 
C•X 1 

= + + + ' 

(8%8%) - c• &• + ax• ' 
OMi OM 6 Q1 + ClK1- C2 + + rn Ox • • Ox2 \ Sx • Ox2 / • 

= La + 743,- 
•x• 

(5) 

OM6 3 OM2 -- Q2 -3- c•K2 - c2 -3- -3- m2 
Ox • Ox 2 \ cgx • 

=/• +/•3• -/; 
where superposed dots denote differentiation with respect to 
time, (g•,g2) and (rn •,m 2 ) are the body forces and moments, 
respectively, q is the distributed transverse load, and Ni, Mi, 
etc., are the stress resultants 

N ••k (k) 3 (Ni'Mi'Pi) = Z 0.i (1,g',½)dg' (i-- 1,2,6), 
k=l k--1 

(Q•,Ki) = • 0.(•)(1,•'2)d• ', (6) =1 k--1 

(Q2,K2) = • 0'(4. '":) ( 
k=l k--1 

The inertias Ii and I • (i = 1,2,3,4,5 ) are defined by the equa- 
tions 

I1 = Ii + ( 2/R 1 ) 12, 

12 = 12 + ( 1/R l ) 13 -- c214 -- ( c2/R 1 ) I•, 
13 = C214 + ( c2/R 1 ) I5' 

L = & - 2cd• + c• 

& = cd• - c• 

(Ii,I2,&,&,Is,I7) 

= • p(•) ( 1,•',• 2,• 3,• 4,• 6) d•, (7) =1 k--1 

and I• are the same as L except that R i is replaced by R 2. 
The resultants are related to the total strains by 

(id- 1,2,6), 

(j= 4,5), 

where aij , Bij , etc., are the laminate stiffnesses; 

(A o,Bo,Do,E•,Fo,Hu ) 

=1 k--1 

for i, j = 1,2,4,5,6. 

(8) 

(9) 

(10) 

II. FIRST-ORDER SHEAR DEFORMATION (FSDT) AND 
CLASSICAL (CST) THEORIES 

For the sake of completeness and comparison, the equa- 
tions of motion of the classical and first-order shell theories 

(see Reft 1 ) are recorded here. 
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A. Classical theory 

8N----L -t- 8N6 + g • = I• ii -- 12 8ib 
3x• 3x2 3x• ' 
•N6 ½ •N2 + g2 = I• - I 2 8• 
Ox•- Ox2 •2' 
• 2M 1 } • 2M 6 + • 2M 2 N• N2 + q 

The resultants Ni, M• are given in Eqs. (6) and ( 8 ) with 
&• = F o = 0, where the displacement hnctions • and •2 
in this case are to be replaced by the expressions 

6•W 
•b i : (i = 1,2). (12) 

OX• 

Note that in the present study the rotary inertia terms are 
included even in the classical theory. 

B. First-order theory 

+ = L + 

R• R 2 
• -t- q = I•/b, 

Q, q- m, = I2ii + I•,, 

(13) 

Q2 + m2 = 12b + I3•2' 

The resultants (Ni,Mi), can be expressed in terms of the 
strains in Eq. ( 3 ) by Eq. (8) with Eij = Fi• = 0. The resul- 
tant shear forces Q• and Q2 are given by 

Ow v .) Q2: K 42A44 •2 q- Ox 2 R2 
(14) 

where K 42 , K 2• are the shear correction factors. 
Note that the equations of motion of the first-order the- 

ory can be deduced from those of the third-order theory by 
• and •/ setting K•, K2, P•, P2, and P6 to zero in Eq. (5) and tci 

to zero in Eq. (3). Similarly, the classical theory can be ob- 
tained from the first-order theory by using Eq. (12). 

III. SOLUTION PROCEDURES 

Exact solutions for the dynamic response of the partial 
equations (5), ( 11 ), and (13) exist for simply supported 
( SS ) shallow shell panels (see Refs. 11-13 ). The lamination 
scheme is of antisymmetric or symmetric cross-ply type 
where the following stiffnesses are zero: 

Ai6 = Bi6 = Di6 •- Ei6 : Fi6 :Hi6:0 ( i•- 1,2), 

A45 = D45: F45 -- 0. (15) 

The simply supported boundary conditions are assumed to 
be of the form: 

at x• = 0,a 

0 = W = N 1 = M• = 0•2 = P• = 0 
v = w = N• =M• = •b2 = 0 
v = w = N• = M• = 0 

at x2 = 0,b 

u=w=N2=M2=q•l =P2=O 
u=w=N2=M2=q•l=O 
u = w : N2 = M2 = O 

HSDT, 

FSDT, 

CST; 

HSDT, 

FSDT, 

CST; 

(16) 

(17) 

where a and b denote the lengths along the x 1 and x2 direc- 
tions, respectively. 

A. State-space approach 

Following the state space technique, •4'•5 we assume the 
following solution form that satisfies the boundary condi- 
tions in Eqs. (16) and ( 17): 

u(x,,x2,t) = • Smn (t)fl(X,,X2), 
m,n= 1 

V(XI'X2't) = Z [/mn (t)f2(xI,X2), 

w(x,,x2,t) = • Wmn (t)f3(x,,x2), 
m,n•--- l 

= Xmn (t)A 
m,n: 1 

•2(x,,x2,t) = • Ymn (t)•(X•,X2), (18a) 
m,n= 1 

where 

A (x •,x2) = cos ax• sin fix2, 

A(x•,x2) = sin ax• cos fix2, (18b) 

• (x•,x2) = sin ax• sin fix2, a = m•/a, • = n•/b. 

The representation given for u, v, and w in Eqs. (18) is also 
valid for CST. 

Substituting Eqs. (18) into Eqs. (5), ( 11 ), and (13) 
results in the following set of equations 

Om. Vm. rm. 
[MI 'Wm. + [C] Item, = Qmn 

2mn mmn 
for the HSDT and FSDT, and 

[MI '•/m• +[CI Vm• = 
ø[•m. ['Vm. Qm. 

for any m,n, 

(19) 

for any m,n, 

(20) 

for the CST. 

Here, Qm, denotes the coefficient in the double Fourier 
expansion of the transverse load, 
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q(xl,x2, t) = • Qmn (t)f3(xl,x2), (21) 

and [ C] and [M] are the stiffness and mass matrices, respec- 
tively. The explicit form of [C] and [M] is different for 
HSDT and FSDT (see Ref. 8). 

The linear systems of ordinary differential equations in 
Eqs. (19) and (20) can be solved using the state variables 
technique. According to this method we define the state vec- 
tor Z(t) by 

Zl=Wmn, Z2=Omn, Z3=Vmn, Z4=•/rrnn, 
Zs=Wmn, Z6=Wmn, Z7=Xmn, Zs=Xmn, 
Z9 = Ymn, Zlo,= ]rmn, (22) 

for the HSDT and FSDT, and 

Zl=g., Z3=Vm., 
z4=<., Z6=Wm., 

for the CST. 

Equations (19) and (20) can be written in the form: 

Z=AZq-B, (24) 
where 

a • 

i; 1 0 0 0 0 0 0 0 11 0 L12 0 L13 0 Ll4 0 Ll5 
0 0 0 1 0 0 0 0 0 

Lel 0 L2e 0 L23 0 L24 0 Le5 
0 0 0 0 0 1 0 0 0 

L31 0 L32 0 L33 0 L34 0 L35 
0 0 0 0 0 0 0 1 0 

L41 0 L42 0 L43 0 L44 0 L45 
0 0 0 0 0 0 0 0 0 

L51 0 L52 0 L53 0 L54 0 L55 

0t 

o 

o 

o 

o 

o ' 

o 

o 

1 

o 

(25) 

B = (O,bll,O,b21,O,b31,O, b41,O, bs! ) T• 
for the HSDT and FSDT, and 

a • 

! 0 1 0 0 0 0! 

Lii 0 L,e 0 L,3 0 
0 0 0 1 0 0 

Lel 0 Lea 0 Le3 0 
0 0 0 0 0 1 

L31 0 L3e 0 L33 0 i 

B = (O,bll,O, b2i,O,b3i) T, 
where 

[L]-- -- [m]-'[C] 
and 

b = [M] -1 

o 

o 

for the FSDT and HSDT, and 

(26) 

(27) 

(28) 

(29) 

(30) 

0 

b=[M] -1 Q0• , (31) 
for the CST. It should be noted that while the form of Eqs. 
(19), (25), (26), and (30) is the same for the FSDT and 
HSDT, the values of the variables in these equations are dif- 
ferent for these two theories. 

The solution to Eq. (24) is given by 

Z(t) -- eA(t--tø)Z(to) q- e•(t-•)B(r)dr, (32) 

where to is the initial time and Z(to) is the initial input vec- 
tor. The operator e A(t- •) can be expressed in terms of the 
matrix of eigenvectors [R] and distinct eigenvalues A i asso- 
ciated with the matrix A as 

(t-- r) 

e/l(t - r): [R ] eX' 0 ß 

ß 

o 

[R ]--1, 
A,,( t -- e r) 

(33) 

where n = 10 for the HSDT and FSDT and n = 6 for the 

CST. 

B. Separation of variables technique 

This method was used frequently in the literature to de- 
termine solutions to CST and FSDT. In this paper, only the 
HSDT will be treated. Assume a solution to Eq. (5) in the 
form 

ll(Xl'X2't) = Z Wren (Xl'X2) rmn (t), 

O(Xl'X2't) = Z Vmn (Xl'X2) rmn (t), 

W(X"X2't) = Z Wren (Xl'X2) rmn (t), (34) 

•l(Xl,X2,t) = • l•}lmn (Xl,X2) Wren (t), 

•2(x,,x2,t) -- • •2mn (Xl,X2) rmn (t), 

where ( Umn, Vm,•, Wmn,•4n,•b=m,• ) are the principal modes of 
the laminated shell while Tm• (t) is the unknown function of 
time t. 

For the case of free vibration, the generalized coodinates 
rmn (t) and the principal modes associated with the homo- 
geneous system of governing equations (5) and fulfilling the 
SS edge conditions defined in (16) and (17) may be ex- 
pressed as 

Tm,(t) ito t = e mn • 

Umn =arnnfl(Xl,X2), 

Wren -- Cron f3 (Xl,X2) 

(]• 2rn n = Emnf 2 ( x l ,x 2 ) , 

Vmn : Bmnf2(xl,x2) , 

•lmn : Dmnf l (Xl,X2), 
(35) 
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where (Amn ,Bran ,Cron ,Dmn ,Emn ) are arbitrary constants. Substitution of Eqs. (34) and ( 35 ) into the equations of motion ( 5 ) 
yields a set of homogeneous equations that may be solved for the natural frequencies of vibration. 

The orthogonality condition of the principal modes can be established with the result 

b -- •gmn esr -•- ?•1 Eton 'Jr- I•2mn --I; •X2 •Xl •Xl Omn -- Ors) 7'Umn + I2•mn -- I3 

_, , ( .... )] _, orton O•n • Iig 1617 02gmn 02Wren gs r ß •2emn • I4•mn -- I 5 •X l • I3 •g 2 • •5 •X 2 mn • • •X• • •X• 

( _ + •Vm, +I•--I; 3X• ' •s• dx•dx•=O. (36) 
The distributed loads are now expanded in a series of the principal modes: 

• ( - • - 3Wm,) (37a) gl= • f•, ( t) ]• Um, • I2•mn -- I3 •X l ' , m,•= 1 

( _ ge= • fm,(t) •'• Vm, +I• --I; , (37b) m,n • I •X2 

q= • fmn(t) •3 3Umn 3•n +I; +•; +I•Wm, .... • , (37c) 

• (•2 --1 -- aWmn) (37d) ml= • fmn(t) Umn +&•mn--I5 •X• ' m,•= I 
, 

( _ m2 = • fm, (t) • Vm, + I;•, -- I; . . (37e) m,n • I •X2 

The generalized forces fm, (t) are determined by making use of the orthogonality condition in Eq. (36). Multiplying Eq. 
(37a) by Um,, Eq. (37b) by Vm,, Eq. (37c) by Wm,, Eq. (37d) by •,, and Eq. (37e) by •,, and adding the results, 
integrating over the plane area, and taking into account Eq. (36) leads to the result 

fm (t)= $g$g(g, Um,, + g, Vm. + qWm. + m• + m2•,)dx• dx2 (38) 
n mm n 

where 

Nmn -- ?l U 2mn -Jr- 2•2•) lmn Umn -- I 3 •Xl 
- , c?Vm. -, + I• c?q•m" Wren -3-73 gmn 

- c9W -, )2 c9W .2 ]dXl dx2. 
Substituting Eqs. (34) into equations of motion (5), taking into account Eqs. (37), gives 

• T•. =œ•., '•m. + COrn. 
for any (m,n and zero initial conditions. The solution to Eq. (40) is given by 

Tm. (•) = ! œm. (•')si" COrn. (• •-)d•-. 

c•Wm, Vm. + •3 C?Um. Wm. 
ax• 

aWm. Urn. +7; v • +27',•.Vm. 7' mn 2 • 3 

16I• (3•Wm, a•Wmn,) Wmn 
(39) 

(40) 

(41) 

For sinusoidal spatial distribution of lead, q(x,y,t) = qof3(xl,X2)F(t), (m = n = 1 ), the formal solution to the unknown 
functions may be expressed as 

' F(•') sin CO m. ( k ) ( t -- •') d•', (42) 

where 
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Jrnn (k) ---- 71A 2ran (k) --[- 2•2Amn (k)Dmn (k) - 2•3•ZAmn (k) q- •B2mn (k) q- 2•Bmn (k)Emn (k) 

-- 2•13Bmn (k) -- 2•5aDmn (k) -- 2•13Emn (k) + I1 + (4/3h 2):I7(a • +13 •) -{- •4D2mn (k) -b •;•E2mn (k). 

Note that the solution in Eq. (42) is normalized with respect 
to C,•n (k), the coefficients in the expansion of W. 

IV. NUMERICAL RESULTS 

The two analytical solution procedures presented in the 
preceding sections yield the same solutions, although the 
space-state approach is more general. It is used to numerical- 
ly evaluate the transient response of cross-ply shells. The 
following material properties of a lamina in its principal ma- 
terial coordinates are used: 

E 1 = 19.2 X 10 6 psi, E2 = 1.56 X 10 6 psi, 
G12 = G13 = 0.82X 106 psi, G23 = 0.523X 106 psi, 

%2 =0.24. 

The transverse deflection presented in the figures is evaluat- 
ed at (x,y,z) = (a/2,b/2,z). The stresses are nondimension- 
alized as follows: 

0.1 ( a/2,b /2,h /2 ) 
qo 

0.2 ( a/2,b /2,h /2 ) 
0.2 • , 

qo 

•4 = 0'4 (a/2'0'0) . 
qo 

In all calculations, unless stated otherwise, the following val- 
ues are used (see Fig. 1 ). 

qo = 2000 psi, tl = 0.003 s, 
lb-s • 

p=0.00012• a=b=20 in. h=2 in., in.4 ' , 

R 1 = R2 = 5a (spherical shells). 

In all cases, sinusoidal distribution of loading in spatial do- 
main and sine and triangular pulses in time domain are used. 

Isin(•rt/tl), O•<t•<t I (for sinusoidalloading), F(t) = [0, t> t I 

--t/tl, 0<t<tl F(t) = 0, t> tl (for triangular loading). 
For the first-order theory (FSDT), the shear correction co- 

2 = 5/6. efficients are taken to be K • -- K s 
The variation of center deflection with time for antisym- 

FIG. 1. Geometry and coordinate system of a double curved shell panel. 

(43) 
I 

metric cross-ply (0/90) and symmetric cross-ply (0/90/0) 
laminated spherical caps are shown in Figs. 2 and 3, respec- 
tively, for triangular and sinusoidal time variation of the sin- 
usoidally distributed load. It is interesting to note that the 
response due to the triangular loading has larger amplitude 
than that due to the sinusoidal loading (both in time). 
Further, the amplitudes are smaller for symmetric cross-ply 
than for antisymmetric cross-ply laminates. It is also noted 
that the first-order and third-order theories predict almost 
the same response, while the classical theory differs both in 
amplitude and phase. 

Similar results are presented for the normal stresses 5l 

0.70 
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-0.35 
0 

1/i 
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Time (s) 

0.45 

0.33 

0.21 

w 

(in.) 

0.09 
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-O-15 
0 

- (b) 

// 
P ......... I ......... I ......... I ......... I ......... l 

O.0OI 0.002 0.003 0.004 0.005 

Time(s) 

FIG. 2. Variation of the center deflection as a function of time, for two- 
layered (00/90 ø) shells and two types of pulses (a) triangular (b) sine 
(--HSDT,. ß ß FSDT, ---CST). 
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FIG. 3. Variation of the center deflection as a function of time, for three-layered (00/900/0 ø) she]is and two types of pulses (a) triangular (b) sine 
(--HSDT, ".FSDT, ---CST). 
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FIG. 5. Variation of the normal stress (•,_) as a function of time for two-layered (00/90 ø) shells and two types of pulses (a) triangular (b) sine 
(--HSDT, '.. FSDT, ---CST). 
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FIG. 6. Variation of the transverse shear stress (•'4) as a function of time, for homogeneous shells and two types of pulses (a) triangular (b) sine 
(--HSDT, .-. FSDT). 
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FIG. 7. Variation of the center deflection as a function of time, for two-layered (00/90 ø) spherical shells for two types of pulses (a) triangular (b) sine 
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FIG. 8. Variation of the center deflection as a function of time, for three-layered (0'/90'/0') spherical shells for two types of pulses (a) triangular (b) sine 
(--R -- 5a, ...R -- 10a, ---R -- oo ). 
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and 52, and transverse shear stress 54 in Figs. 4-6, respec- 
tively. Unlike the displacements, the stresses obtained using 
the three theories differ from each other, although the first- 
order and third-order theories are relatively close for 51 and 
52. The transverse shear stress predicted by the first-order 
theory differs significantly from that predicted by the third- 
order theory. 

The effect of the shallowness of the shell on the center 

deflection of antisymmetric and symmetric cross-ply spheri- 
cal caps is investigated, and the results are presented in Figs. 
7 and 8. All of the results are obtained using the higher-order 
theory. It is clear that the plate is relatively flexible when 
compared to the shell, as can be seen from the plots. 

v. CLOSURE 

The third-order shell theory of laminated composite 
shells is used to investigate the transient response of laminat- 
ed spherical caps under a sinusoidally distributed transverse 
load that varies in time either as a triangular or sinusoidal 
load. Analytical solutions to simply supported laminated 
shells are developed using the state-space approach and sep- 
aration of variables technique. The results are compared 
with those, also obtained in the present study, of the first- 
order and classical shell theories. In general, the classical 
shell theory predicts deflections and stresses significantly 
different from those of the third-order theory. The third- 
order theory and first-order theory results are very close to 
each other. However, the third-order theory does not require 
the use of shear correction factors. 
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