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ABSTRACT 

Making use of an extension of a recently proposed, relatively simple, approximate method of analysis, 

a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a 

uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal 

direction. Both cantilever and top-supported walls are examined. Following a detailed description of 

the method and of its rate of convergence, comprehensive numerical solutions are presented that 

elucidate the action of the system and the effects of the various parameters involved. The parameters 

varied include the flexibility of the wall, the condition of top support, and the characteristics of the 

ground motion. The effects of both harmonic base motions and an actual earthquake record are 

examined. Special attention is paid to the effects of long-period, effectively static excitations. A 

maximum dynamic response is then expressed as the product of the corresponding static response and 

an appropriate amplification or deamplification factor. The response quantities examined include the 

displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall 

force, base shear and base moment. 
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EXECUTIVE SUMMARY 

The study reported here is the sixth in a series of investigations of the response to ground shaking of 

retaining walls and deeply embedded vertical cylindrical structures. The objectives of these studies 

have been to provide insights into the dynamic responses of these systems and to formulate rational 

but simple methods for their analysis and design. The previous studies were described in Brookhaven 

National Laboratory reports 52357,52372,52402,52444 and 52502. 

Excepting limit-state analyses, in which the wall is considered to displace sufficiently at the base to 

mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of 

retaining walls dealt primarily with non-deflecting, rigid walls. In a recent contribution by the authors, 

it has been shown that, for walls that are rigid but elastically constrained against rotation at their base, 

both the magnitudes and distributions of the dynamic wall pressures and forces are quite sensitive to 

the flexibility of the base constraint and that, for realistic base flexibilities, these effects may be 

significantly lower than those computed for non-deflecting, rigid walls. Comparable effects also are 

expected for walls that are themselves flexible. 

. 

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to 

horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be 

evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on 

the magnitudes and distributions of the resulting wall pressures, forces and displacements. 

The retained stratum in the reported solutions is considered to be of constant thickness and infinite 

extent in the horizontal direction, and the walls are considered to be fixed against both deflection and 

rotation at the base and to be either free or simply supported at the top. The support points of the wall 

and the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In 

addition to the wall flexibility, the factors investigated include the properties of the stratum, and the 

characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are 

examined. Special attention is paid to the effects of long-period, effectively static excitations. A 

maximum response for the dynamically excited system is then expressed as the product of the 

corresponding long-period, static response and an appropriate amplification or deamplification factor. 

After describing the method of analysis and discussing the rates of convergence of the resulting 

solutions, comprehensive numerical data are presented which elucidate the underlying response 

mechanisms and the effects and relative importance of the parameters involved. 

xi 



The principal conclusions of the study may be summarized as follows: 

1. With the method of analysis and the numerical data presented, the dynamic response of the class 

2. 

3. 

4. 

5. 

of flexible retaining walls examined may be evaluated readily and with high degree of accuracy. 

The method, which makes use of Lagrange's equations of motion in combination with a recently 

proposed model for the action of soil-wall systems, is expected to prove of value in the analysis 

of a number of other problems as well. 

The magnitudes and distributions of the wall displacements, wall pressures and associated forces 

induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil- 

ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the 

retained medium relative to its shearing stiffness, and this reduction decreases the proportion of 

the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it. 

For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be 

less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base 

moment being even larger. Because of the greater effective stiffness of top-supported walls, the 

corresponding reductions for such walls are significantly smaller than for the cantilever systems. 

Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement 

relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the 

values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to 

develop a limit state in the backfill material. 

The comprehensive numerical solutions presented and their analysis provide not only valuable 

insights into the effects and relative importance of the numerous factors that influence the 

response of the systems examined, but also a sound framework for assessing the behavior of even 

more complex soil-wall systems. 
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SECTION 1 

INTRODUCTION 

Despite the multitude of studies that have been carried out over the years, the dynamic response of 

retaining walls is far from being well understood. There is, in particular, a paucity of conclusive 

information that may be used in design applications. 

Excepting limit-state in which the wall is considered to displace sufficiently at the base 

to mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of 

such systems dealt primarily with non-deflecting, rigid Only exploratory studies have been 

made of flexible cantilever  wall^,^*^ and the limited numerical data presented by Sun and Ling are 

believed to be in error. In particular, in their expressions for the pressures induced on rigid walls, the 

factor e3 should appear without the exponent. More detailed accounts of previous analytical and 

experimental studies of retaining walls have been presented by Nazarian and HadJan," Prakash,' 

Whitman,12 and Veletsos and Younan.13 

In a recent contribution by the authors,14 it has been shown that, for walls that are rigid but elastically 

constrained against rotation at their base, both the magnitudes and distributions of the dynamic wall 

pressures and forces are quite sensitive to the flexibility of the base constraint and that, for realistic 

base flexibilities, these effects may be significantly lower than those computed for non-deflecting, 

rigid walls. Comparable effects also are expected for walls that are themselves flexible. 

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to 

horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be 

evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on 

the magnitudes and distributions of the resulting wall pressures, forces and displacements. 

The retained stratum in the reported solutions is considered to be of constant thickness and infinite 

extent in the horizontal direction, and the walls are considered to be fixed against both deflection and 

rotation at the base and either free or simply supported at the top. The support points of the wall and 

the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In 

addition to the wall flexibility, the factors investigated include the properties of the stratum and the 

characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are 
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examined. Special attention is paid to the effects of long-period, effectively static excitations. A 

maximum response for the dynamically excited system is then expressed as the product of the 

corresponding long-period, static response and an appropriate amplification or deamplification factor. 

After describing the method of analysis and discussing the rates of convergence of the resulting 

solutions, comprehensive numerical data are presented which elucidate the underlying response 

mechanisms and the effects and relative importance of the parameters involved. 
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SECTION 2 

SYSTEM CONSIDERED 

The systems examined are shown in Figure 2.1. They consist of a sem.iinfinite, uniform layer of 

viscoelastic material that is free at its upper surface, is bonded to a non-deformable, rigid base, and is 

retained along one of its vertical boundaries by a uniform, flexible wall. The wall is considered to be 

fixed against both deflection and rotation at the base and to be either free or hinged at the top. The 

clamped-free and clamped-hinged systems are identified with the symbols C-F and C-H, respectively. 

The free boundary is representative of cantilever retaining walls, whereas the hinged or simply 

supported boundary is more nearly representative of the support condition for basement walls. The 

support points of the wall and the base of the soil stratum are presumed to experience a space- 

invariant horizontal motion, the acceleration of which at any time t is xg(t) = xg . Material damping 

for both the medium and the wall is considered to be of the constant hysteretic type. 

The properties of the soil stratum are defined by its mass density p , shear modulus of elasticity G , 

Poisson's ratio v , and material damping factor 6, which is considered to be the same for both 

shearing and axial deformations. The factor 6 is the same as the tan6 factor used by the second 

author and his associates in studies of foundation dynamics and soil-structure interaction15p16 and 

twice as large as the percentage of critical damping p used by other authors in related ~ t u d i e s . * ~ * ~ ~  

The properties of the wall are defined by its thickness t, , mass per unit of surface area p,, Young's 

modulus of elasticity E, , Poisson's ratio v, , and damping factor 6 ,  which, like 6 ,  is twice as large 

as the corresponding percentage of critical damping. 

. I  

The wall displacements relative to the moving base and the resulting wall pressures and forces for a 

base-excited system can be shown to be identical to those induced in a force-excited system for which 

the base is stationary and the stratum and wall are subjected to lateral body forces of intensity 

-p x&t) and -p, x&t), respectively. For excitations with dominant frequencies that are very low 

compared to the fundamental frequency of the stratum, the action of a force-excited system may be 

easier to visualize than that of the base-excited system. 
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SECTION 3 

METHOD OF ANALYSIS 

The method of analysis employed is an extension of that used in previous studies by the  author^.'^ 
Fundamental to this method is the assumption that, under the horizontal excitation considered, no 

vertical normal stresses develop anywhere in the medium, i.e. oy = 0. It is further assumed that there 

is complete bonding between the wall and the retained medium, and that the horizontal variations of 

the vertical displacements of the medium are negligible so that the horizontal shearing stresses zxy 

can be expressed as zxy = G* ( W a y )  , where u is the horizontal displacement of an arbitrary point of 

the medium relative to the moving base, G* = G( 1 + i s )  is the complex-valued shear modulus, and 

i = n .  

3.1 Problem Formulation 

The instantaneous value of the wall displacement relative to the moving base,w(q, t) , is expressed as 

a linear combination of the natural modes of vibration of an appropriately supported, uniform, flexural 

beam as 

where q = y/H is a dimensionless measure of the vertical distance y from the base; @j(q) is thejth 

natural mode of vibration of the beam; qj(t) is a generalized coordinate defining the degree of 

participation of thejth mode, $j(q) , at any time t; and J is the total number of modes considered. For 

a wall that is free at the top, $j(q) refers to thejth mode of a C-F beam, whereas for a wall that is 

simply supported at the top, it refers to the corresponding mode of a C-H beam. The expressions for 

these modes are given in the Appendix. 

The equations of motion for the system are obtained by repeated application of Lagrange's equation*' 

j = 1,2, ..., J (2) 

where T, is the kinetic energy of the wall; V, is its strain energy; Fj is the jth generalized force 

induced by the soil pressures on the wall; and a dot superscript denotes a differentiation with respect 

to time. The kinetic and strain energies are given by 
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1 
T, = 5 1 pwHf(xo+w)2dq 

0 
(3) 

in which xg is the instantaneous value of the ground velocity; w is the corresponding wall velocity 

relative to the moving base; a prime superscript denotes a differentiation with respect to q ; and 

D$ = D,( 1 + 3,) is the complex-valued flexural rigidity of the wall, with D, given by 

3 
E, tw 

12( 1 - v,) 
2 

D, = (5) 

On substituting equations (3) and (4) into equation (2) and making use of equation (l), Lagrange’s 

equations reduce to 

j = 1,2, ..., J 

in which (a, b) denotes the integral over the interval [O,l] of the product of the two bracketed 

functions. 

3.2 Evaluation of Generalized Forces 

The as yet undetermined generalized forces Fj are the coefficients in an expansion of the variation of 

the work done by the soil pressures, S W  , by variations in the generalized coordinates 6qj , i.e., 

J -  

SW = Fj6qj (7) 
j = l  

These forces are determined as follows. First, the normal pressures exerted by the soil ,on the wall, 

o(q, t) , are expressed as the sum of two components as 

where (T, represents the component associated with a non-deflecting rigid wall, and of represents the 

component associated with the wall flexibility. The work W may then be expressed as 

Inasmuch as the pressure component or is considered to pre-exist and is independent of the wall 

displacement, the factor 112 is not needed in front of the first term. The sign convention for pressures 

and displacements is that used in theory of elasticity. Specifically, displacements are considered to be 

positive when inward, i.e., when directed along the positive x-axis, and normal stresses are positive 

when tensile. On taking the variation of W , recalling that or is independent of w, and making use of 
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equation (8), the jth generalized force Fj is expressed as 

The stress components in the above expressions are evaluated by application of the model for the soil- 

wall system proposed earlier by the a~th0rs . l~  Shown in Figure 3.1, the wall in this model is 

considered to be connected by a set of springs and dashpots to a cantilever shear-beam having the 

properties of the retained medium. The shear-beam represents the action of the soil stratum at the far- 

field while the springs and dashpots, which have frequency-dependent properties, simulate the 

restraining action of the medium between the far field and the wall. Strictly speaking, the model is 

used to evaluate the response of the system to a harmonic excitation. The response to an arbitrary 

transient excitation is then determined by application of Fourier transform techniques. 

For a harmonic base motion with an acceleration 

x,(t> = X,eiUt 

in which X, is the acceleration amplitude and o is the circular frequency of the motion, the 

horizontal displacement of the shear-beam relative to the moving base at an arbitrary elevation and 

time, u,(q, t) may be expressed as 

N 

u,(T, t> = c u n v n ( q )  eiot 
n = l  

where v, is the nth natural mode of vibration of the shear-beam, given by 

U, and on are the corresponding participation factor and circular natural frequency, given by 

16 pXgH2 1 1 un = -- - 
3 

n G (2n - 113 1 - ( o / ~ , ) ~  + i6 

and 

(2n - 1)n VS - 
2 H  

0, = 

respectively, v, = is the shear-wave velocity for the medium, and N is a sufficiently large 

integer representing the total number of modes considered. If the displacement of the wall is 

expressed similarly in terms of the natural modes of the shear-beam as 
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N 

n = l  

where W, are participation factors that remain to be determined, then the total dynamic wall pressure 

o(q, t) may be computed from14 

The quantity K, in this expression represents the complex-valued impedance or dynamic stiffness of 

the spring-dashpot combination when both the shear-beam and the wall vibrate in the nth shear-beam 
mode vn(q) , and it is given by 14 

Incidentally, the sum of the terms in equation (17) involving the factors U, represents the pressure 

component or for a rigid wall, whereas the sum of the terms involving the factors Wn represents the 

pressure component of associated with the wall flexibility. 

It is important to note that the expansion defined by equation (16) is used only for the evaluation of the 

wall pressures, the wall displacements being determined from equation (1). This expansion is possible 

because the shear-beam modes constitute a complete set of functions in the interval [0,1] and may, 

therefore, be used as a basis for the representation of any function in that interval?' 

The participation factors W, in equation (16) are determined by expanding thejth mode of vibration 

of the wall Qj(q) in terms of the shear-beam modes yn(q). On making use of the orthogonality 

property of the latter, one obtains 

and on noting that for the harmonic response considered, the generalized coordinates qj are of the 

form 

equation (1) may be written as 

or as 
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where aj, is the Kronecker delta 

j # k  

j = k  

Finally, { Q} is the vector of the amplitudes of the genedized coordinates Qj , and {A} is a vector 

of normalized exciting forces with elements 

With the vector { Q} determined from the solution of the system of algebraic equations (28), the 

generalized coordinates qj  are determined from equation (20), the wall displacement are determined 

from equation (l), and the wall pressures are determined from equation (8) by making use of 

equations (24) and (25). The total dynamic wall force, P(t) and the moment of this force about the 

base, M(t) , are finally determined by appropriate integrations of the wall pressures and associated 

inertia forces. The results are 

J 

- ywXgHei"' + 02p,H c (Qj 7 1) Qj eiot 
j = 1  

J 
1 
2 w  

- -p X H2eio' + a2pwH2 c (Qj , q) Qj eiot 
j = l  

For a clamped-free wall, the force P(t) is clearly equal to the base shear in the wall, vb(t) , and the 

overturning base moment M(t) also equals the corresponding wall moment, Mb(t) . For the clamped- 

hinged wall, the base wall moment is determined by differentiation of the wall displacement, i.e., from 

and the corresponding base shear is computed by considering the equilibrium of moments about the 
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hinged support, i.e. from 

1 
V,(t) = P(t)-  - [M(t)-M,(t)J 

H (35) 

The latter expression converges faster than that obtained by triple differentiation of the wall 

displacement. Shears and moments are considered to be positive when induced by positive normal 

pressures. 

The beam modes $j(q) for the two sets of boundary conditions examined and the expressions for the 

various integrals of these modes in the equations presented are given in the Appendix. 

3.4 Problem Parameters 

The primary parameters affecting the response of the system are the relative flexibility of the wall and 

retained medium, defined by 

GH3 
d, = - 

DW 

the support condition of the wall at the top, and the characteristics of the base motion. For a harmonic 

excitation, the response is controlled by the frequency ratio o/ol , where o is the circular frequency 

of the base motion and of the resulting steady-state response, and o, is the fundamental circular 

natural frequency of the stratum when it is considered to act as an unconstrained, vertical cantilever 

shear-beam. For an arbitrary transient excitation, the relevant stratum property is its fundamental 

cyclic frequency f ,  = o,/27r , or its corresponding period TI = l / f ,  = 2n/o, ,  given by 

4H TI = - 
V, 

(37) 

Additional parameters are Poisson’s ratio and the damping factor for the soil, v and 6 , the damping 

factor for the wall 6 ,  , and the ratio of mass densities for the wall and the retained medium p,/pH . 

As a measure of the range of d, values that may be encountered in practice, consider a concrete wall 

with E, = 3 x 10 psi, v, =0.17 and a height-to-thickness ratio H/t, = 10 retaining a soil for 

which the unit weight y = pg = 100 lb/ft3. On noting that 

6 

2 G H  
d, = -= GH3 12(1 4,) - (-7 

DW E, tw 

and that G = pv,” , one finds that d, varies from 3.35 for a soil with v, = 200 Wsec to 30.2 for a 

soil with v, = 600 Wsec . ’ 

For the solutions presented in the following sections, the wall, unless otherwise indicated, is 

considered to be massless (Le., p, = 0); Poisson’s ratio for the soil is taken as v =1/3 ; and the 
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damping factors for the soil and wall are taken as li = 0.1 and ti, = 0.04 , respectively (i.e., as 5% and 

2% of critical damping). The frequency ratio o/ol for harmonic motions is varied over a wide range, 

and so is the natural period T, of the stratum for the earthquake ground motion. 
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SECTION 4 

STATIC RESPONSE 

It is desirable to begin by examining the responses obtained for excitations the dominant frequencies 

of which are extremely small compared to the fundamental natural frequency of the soil-wall system 

(i.e., for values of o/o, + 0 or f ,  + - ). Such excitations and the resulting effects are referred to as 

‘static’ and are identified with the subscript st. This term should not be confused with that normally 

used to represent the effects of gravity forces. In the equivalent, force-excited version of the problem 

referred to previously, the static excitation is represented by horizontal body forces of intensity -p X, 

for the retained medium and -p,Xg for the wall. A maximum dynamic effect for an arbitrary 

transient excitation is then expressed as the product of the corresponding static effect and an 

appropriate amplification or deamplification factor. 

4.1 Convergence of Solutions 

The accuracy of the solutions for the method of analysis presented clearly depends both on the 

number of flexural beam modes J and on the number of shear-beam modes N considered. Part (a) of 

Figure 4.1 shows the heightwise variations of the wall displacements computed for a cantilever (C-F) 

wall with d, = 20 for several different combinations of J and N, and part (b) shows the variations of 

the corresponding wall pressures. Displacements are normalized with respect to pX,H2/G and 

pressures with respect to pXgH . The wall in these solutions is presumed to be massless and Poisson’s 

ratio for the retained medium is taken as v = 1/3. Unless specifically otherwise indicated, the same 

conditions are presumed for all solutions that follow. 

It is clear from Figure 4.1 that the number of shear-beam modes required for convergence is 

considerably larger than that of the flexural beam modes. Additionally, this number is much larger for 

wall pressures than for displacements. Considering that the exact distribution of wall pressures, unlike 

that of displacements, is so much different from that obtained with J = N = 1 , this result should not be 

surprising. The precise definition of the actual, smoothly varying wall pressures for the conditions 

examined here requires no more than 3 beam modes and no less than 50 shear-beam modes. The 

solutions in the following sections were obtained with this, or a somewhat larger, number of modes. 

The upper part of Figure 4.2 shows the rates of convergence of the total wall force per unit of wall 

length, PSt , or base shear per unit of wall length, (V& , for cantilever (C-F) walls having several 

I 
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different values of the relative flexibility factor d, . A normalized measure of this force is plotted as a 

function of the number of flexural beam modes J and selected numbers of shear-beam modes. The 

corresponding information for the overturning base moment (Mb)st is displayed in the lower part of 

the figure. 

It is observed that the rates of convergence for these forces, particularly for the base moment, are 

much more rapid than for the wall pressures. Additionally, these rates decrease with increasing wall 

flexibility, and even for the largest values of d, considered, excellent results for both base shear and 

base moment are obtained with as few as 2 or 3 beam modes and 5 to 10 shear-beam modes. 

Although strictly applicable to cantilever walls, the indicated trends also hold for walls that are simply 

supported at the top. This is demonstrated in Figure 4.3, which shows the corresponding plots for the 

base shear and bise moment of top-constrained systems. 

The convergence rates in the foregoing discussion were for a long-period, effectively static excitation. 

For dynamic excitations of the type associated with earthquake-induced ground motions, the 

convergence rates would be expected to be even better as the responses are likely to be influenced less 

by the contributions of the higher modes of vibration than are the corresponding static responses. 

4.2 Wall Pressures 

Figure 4.4 shows the precise distributions of the wall pressures for systems with values of d, in the 

range between zero and 40. The plots on the left are for cantilever walls, whereas those on the right 

are for walls that are simply supported at the top. The other parameters for the systems examined are 

the same as those identified earlier. 

It is observed that both the magnitudes and distributions of the pressures are quite sensitive to the 

flexibility of the wall and substantially different for the two sets of support considered. Increasing the 

wall flexibility reduces the horizontal extensional stiffness of the medium relative to its shearing 

stiffness, and this reduction, in turn, increases the proportion of the inertia forces transmitted by 

horizontal shearing action to the base, and decreases the proportion transmitted to the wall. For rigid 

walls (d, = 0 ), the pressures increase almost & a quarter-sine from zero at the base to a maximum at 

the top, whereas for the flexible walls, there is a sharp change in the intensity of the pressure near the 

top, with the pressure increasing for the top-constrained system and decreasing and chadging signs for 

the cantilever system. 

4.3 WallForces 

In the upper part of Fi,oure 4.5, the static values of the total wall force, Pst , for both cantilever and top- 

supported walls are plotted as a function of the 'wall flexibility factor d, . As might have been 

anticipated from the information on wall pressures presented earlier, an increase in wall flexibility 
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reduces the wall force, the reduction being significantly larger for cantilever walls than for top- 

constrained walls. Considering that the effective flexibility of a cantilever wall of a specified value of 

d, is substantially larger than that of a top-constrained wall of the same d, value (for a pressure that 

increases as a quarter-sine from base to top, the ratio of the two flexibilities is 27), the latter trend 

should not be surprising. 

In the lower pait of Figure 4.5, the centroidal height, hSt , defined as the distance from the base to the 

point of application of the resultant wall force, is plotted normalized with respect to the height of the 

medium H for each of the two support conditions considered. Note that, whereas for cantilever walls, 

the hSt/H ratio decreases from 0.6 for a rigid wall to less than 0.3 for walls of high flexibility, for the 

top-constrained walls, it has practically the constant value of 0.6. 

For the cantilever walls, PSt also represents the 'static' value of the base shear in the wall (vb),, , and 

h,, also represents the height by which P,, must be multiplied to yield the 'static' value of the base 

wall moment (M&. These relationships do not, of course, hold true for top-constrained walls. In 

Figure 4.6, the base shear in the wall of such systems is plotted normalized with respect to the total 

wall force Pst , and the corresponding base moment is plotted normalized with respect to P,.H. 

Normalized values of Pst, (Vb),, and (Mb)st for both cantilever and top-supported walls are also 

listed in Table 4.1, along with the corresponding centroidal heights h,. . 

4.4 Wall Displacements 

In Figure 4.7, the displacement configurations for cantilever and top-constrained walls are plotted 

normalized to a unit peak value for values of the relative wall flexibility factor d, between zero and 

40. It is observed that, within this range of d, values, the displacement configurations, particularly 

those for the top-supported walls, are insensitive to the value of d, involved. As d, + 0 , the 

configurations naturally approach those obtained for a beam subjected to the pressures induced on a 

non-deflecting, rigid wall. 

The maximum values of the wall displacements may be expressed either in terms of the wall 

properties as 

or, more conveniently, in terms of the properties of the retained medium as 

where c and c2 are dimensionless coefficients that are functions of the flexibility factor d, , and are 
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interrelated by 

These coefficients are plotted in Figure 4.8 and are also listed in Table 4.1. It is noteworthy that the 

ratio of these coefficients for the cantilever and top-supported walls range from 25.6 for rigid walls 

(d, = 0) to 3.65 for walls with d, = 40. This large variation is due partly to the difference in the top 

support conditions and partly to the significantly different distributions of wall pressures in the two 

cases (see Figure 4.4). 

For some insight into the magnitude of the maximum displacements that may be encountered in 

practice, consider a concrete wall of height H = 15 ft and thickness t, = 1.5 ft retaining a medium 

with v, = 400 Wsec and subjected to a ground motion with X, = 0.3g , where g is the gravitational 

acceleration. With E, = 3 x 10 psi , v, = 0.17, and a unit weight for the soil of y = pg = 100 lb/ft?, 

d, is determined from equation (38) to be 13.4. This leads to c2 = 0.427 for the cantilever wall and to 

c2 = 0.063 for the top constrained wall. The corresponding maximum displacements, determined 

from equation (6), are 0.039% of the wall height for the cantilever wall and only 0.006% of the wall 

height for the top-constrained wall. Even with a dynamic amplification factor of 2.0 which, based on 

information presented in the following sections, represents a reasonable maximum for intense 

earthquake ground motions, these values are below the 0.1% to 0.4% range widely accepted as 

representing the displacement ratios required for the development of a limit state in the backfill 

material.2l 

6 
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Table 4.1 : Normalized 'static' values of total wall force Psf , centroidal height h,, base 

shear ( Vb)st base moment (k?b)sr and of displacement factors c1 and c2 for 

clamped-free (C-F) and clamped-hinged (C-H) walls. 

- - 
0 

1 

2 

3 

4 

5 

10 

15 

20 

25 

30 

35 

40 - 

Pst 

pXgH2 

C-F 

0.940 

0.838 

0.770 

0.721 

0.683 

0.653 

0.56 1 

0.51 1 

0.477 

0.45 1 

0.43 1 

0.413 

0.399 

C-H 

0.940 

0.93 1 

0.922 

0.914 

0.906 

0.898 

0.864 
0.834 

0.808 

0.785 

0.765 

0.747 

0.73 1 

hst - 
H 

C-F 

0.599 

0.553 

0.5 17 

0.488 

0.463 

0.443 

0.375 

0.336 

0.3 10 

0.292 

0.279 

0.268 

0.259 

C-H 

0.599 

0.600 

0.601 

0.602 

0.604 

0.605 

0.6 10 

0.615 

0.620 

0.624 

0.628 

0.63 1 

0.635 

('b)st 

Pst 

C-H* 

0.528 

0.526 

0.524 

0.522 

0.520 

0.5 18 

0.508 

0.499 

0.49 1 

0.483 

0.476 

0.470 

0.464 

C-H* 

0.127 

0.126 

0.125 

0.124 

0.123 

0.122 

0.118 
0.1 14 

0.1 10 

0.107 

0.104 

0.101 

0.099 

* For C-F walls, ( Vb)st = Pst and (Mb)st  = Pst hs, 
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Displacement Factors 

C1 c2 
I 

C-F C-H C-F 

0.1572 

0.1394 

0.1254 

0.1 140 

0.1047 

0.0968 

0.07 1 1 

0.0568 

0.0477 

0.0414 

0.0367 

0.033 1 

0.0303 

0.00614 0.0000 

0.00609 0.1 169 

0.00604 0.193 1 

0.00598 0.2465 

0.00593 0.2859 

0.00588 0.3161 

0.00564 0.3991 
0.00542 0.4355 

0.00521 0.455 1 

0.00502 0.4669 

0.00485 0.4745 

0.00468 0.4796 

0.00453 0.4832 

C-H 

0.0000 

0.0057 

0.01 11 

0.0 164 

0.0215 

0.0264 

0.0487 
0.0678 

0.0842 

0.0986 

0.1113 

0.1225 

0.1325 
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Figure 4.1 Convergence of wall displacements and pressures for statically excited systems with C-F walls; d, = 20, pbv = 0, v = 1/3. 
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Figure 4.2 Convergence of base shear and base moment in wall of statically excited systems; 

C-F walls of different flexibilities, CL, = 0, v = 1/3. 
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statically excited systems; C-H walls of different flexibilities, CL, = 0, v = 1/3. 
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SECTION 5 

HARMONIC RESPONSE 

For the results presented so far, the dominant period of the excitation was considered to be long com- 

pared to the natural period of the retained material. In this section, the steady-state response of the 

system to a harmonic excitation of an arbitrary frequency is examined. 

In the left part of Figure 5.1, the real-valued amplitude or maximum value of the total wall force per 

unit of length, P,,, , for harmonically excited systems with a cantilever wall are plotted as a function 

of the frequency ratio o / q  for several values of the flexibility factor d,. The results, which for the 

cantilever system considered also define the amplitude of the base shear per unit of wall length, 

(Vb)max, are normalized with respect to the common factor pX,H2. As before, Poisson's ratio and 

the damping factor for the retained medium are taken as v = 1/3 and 6 = 0.1 , with the damping fac- 

tor for the wall as 6, = 0.04 (or 2% of critical damping). 

As would be anticipated from the information for statically excited systems presented in the upper 

part of Figure 7, an increase in wall flexibility reduces the resulting wall force. However, the reduction 

is by no means uniform over the full range of frequencies. In particular, the reduction is substantially 

smaller at and near resonance than under static conditions of loading. 

The interrelationship of the dynamic and 'static' forces may better be appreciated from the right-hand 

plots of Figure 5.1, in which the ratio of the maximum values of the two forces (the amplification fac- 

tor, AF) is plotted as a function of the frequency ratio for the same three values of the flexibility factor 

d, - 

It is observed that: (a) the peak or resonant values of the amplification factors occur at exciting fre- 

quencies equal to the natural frequencies of the stratum, i.e., when o/ol = 1,3,5, ... ; (b) the abso- 

lute maximum amplification factors are attained at the fundamental frequency of the stratum; and (c) 

the latter factors are quite sensitive to the relative flexibility factor d, . For a rigid wall (d, = 0), it is 

well l ~ n o w n ~ , ~  that the absolute maximum amplification factor is l/&, or 3.16 for the value of 

6 = 0.1 considered. By contrast, for flexible walls, this factor is larger due to the reduced capacity of 

such walls to reflect and dissipate by radiation the waves impinging on them. As d, tends to infinity, 

the soil-wall system tends to respond as an unconstrained cantilever shear-beam, and the absolute 
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maximum amplification factor tends to 1/6 = 10 , the value applicable to a viscously damped single- 

degree-of-freedom oscillator. 

In Figure 5.2, the absolute maximum values of the amplification factors for cantilever and top-con- 

strained walls are compared over the complete range of d, values examined. It is observed that the 

results for the top-constrained wall are significantly lower than for the cantilever wall. As previously 

indicated, this is due to the fact that, for a specified, finite value of the relative flexibility factor d, , the 

effective stiffness of the top-constrained system is higher than that of the cantilever. 
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Figure 5.2 Maximum amplification factor for total force in wall of harmonically excited systems 

with different wall flexibilities; CL, = 0,6, = 0.04, v = 1/3,6 = 0.01. 
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SECTION 6 

TRANSIENT WSPONSE 

Figure 6.1 shows normalized values of the absolute maximum wall force per unit of length, lPmaxl , 

for systems subjected to the first 6.3 sec of the N-S component of the 1940 El Centro, California 

earthquake record, the peak acceleration of which is X, = 0.312g. The plots on the left are for canti- 

lever walls, while those on the right are for top-constrained walls. The system parameters are the same 

as those for the harmonically excited systems examined in the preceding sections and are also identi- 

fied on the figure heading. The results are plotted as a function of T, = 2n/o,  = 4H/v, , the funda- 

mental natural period of the soil stratum when it is considered to respond as an unconstrained 

cantilever shear-beam. As a measure of the range of T, values that may be encountered in practice, it 

is noted that for values of v, between 250 and 1000 ft/sec and values of H between 10 and 50 ft, the 

value of T, falls in the range of 0.04 to 0.8 sec. 

The plots in Figure 6.1 are similar to, but by no means the same as, the response spectra for similarly 

excited, viscously damped single-degree-of-freedom systems. Specifically, for low-natural period, 

stiff strata, the wall force is the same as that obtained under static conditions of loading. With increas- 

ing T, or increasing flexibility of the stratum, the force levels increase, and after attaining nearly hor- 

izontal plateaus, they reach values that may well be less than the low-period, static values. For reasons 

already explained for statically and harmonically excited systems, the reduction in the force level 

achieved with a specified value of the relative wall flexibility factor d, is smaller for top-constrained 

walls than for cantilever walls. 

The interrelationship of the maximum dynamic and long-period, static wall forces can better be seen 

in Figure 6.2, in which the information already displayed in Figure 6.1 is replotted in the form of 

amplification factors. 

In Figure 6.3, the average values of the amplification factors for total wall force in the period range 

from T, = 0.1 to 0.5 sec are replotted as a function of the flexibility factor d,. The period range 

considered corresponds to the highly amplified, nearly horizontal region of the plots in Figures 6.1 

and 6.2. It is observed that, for the cantilever walls, these factors range from 1.32 to 1.89, whereas for 

the top-supported walls, they range from 1.32 to 1.51. It should be recalled that these results are for a 

medium with a damping factor 6 = 0.1 (5% of critical damping). An increase in soil damping will 
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naturally further reduce the amplification factors. 

The normalized values of the centroidal heights h for the seismically excited systems are finally plot- 

ted in Figure 6.4 as a function of the fundamental period of the stratum T, . These heights, which for 

cantilever walls represent the heights by which the maximum wall force must be multiplied to yield 

the overturning base moment, are relatively insensitive to variations in T, , and may, for all practical 

purposes, be taken equal to those reported in Figure 4.5 and Table 4.1 for the corresponding statically 

excited systems. The same can also be shown to be true of the normalized values of base shear and 

base moment, (Vb)max/Pmax and (Mb)max/PmaxH 

, 

6-2 



2 

8 
f3 

* 
c 

0 
Y 

8 

e 

L 
n 

u? 
0 

6-3 

0 

cu 

7- 

0 
Q) 
rA 
n 

* 
l& 

0 

cu 
0 

0 

cu 

v 

0 

% 

7 

0 

cu 
0 

0 

c - Y 

M 
r= 
Q) 
c( 

-! 
W 



0 

n 
erl 
W 

cu 

6-4 

0 

7 

0 

0 

0 

- 
W 

8 
a, 

0 
u 

3 
3 

3f.Q 
c 0- 

Y 
\D 



2.0 

1.6 

0.4 

0 
0 

Figure 6.3 

C-F Walls 

C-H walls 

10 20 30 
dw 

40 

Average amplification factors for total wall force of systems subjected to El Centro 

earthquake record; 

range TI = 0.1 to 0.5 sec. 

= 0,6, = 0.04, v = 113,s = 0.01; AF averaged over period 

6-5 



I I I I I I I I I 

co 
0 

(0 

0 
T 
0 

c\! 
0 

0 

6-6 



SECTION 7 

EFFECT OF WALL INERTIA 

For the systems considered so far, the wall mass was presumed to be negligible compared to the mass 

of the retained medium. The inertia of the wall has a twofold effect: (a) it modifies (generally 

decreases) the wall pressures induced by the retained medium; and (b) it induces additional forces on 

the wall. The net effect, which is generally an increase in the magnitude of the wall forces, may be 

evaluated exactly from the information presented, but the following simpler, approximate procedure 

would be adequate for all practical purposes. 

The maximum force per unit of wall length for a wall with mass, Piax , may be related to that of the 

massless wall, P,,, , by 

in which mwe represents the effective mass per unit of wall length, and the amplification factor AF 

may be taken equal to that for the massless wall. The value of mwe , normalized with respect to the 

corresponding wall mas m, = pwH, is plotted as a function of the relative flexibility factor d, in 

Figure 17. Both cantilever and top-constrained systems are considered. For rigid walls, the ratio is nat- 

urally unity, but for flexible walls, particularly for the more compliant cantilever systems, the effective 

mass is substantially smaller than the actual mass. 

With the maximum force for a wall with mass determined, the corresponding base moment and end 

reactions may be determined by considering the latter forces to bear the same relationship to the wall 

force as those applicable to massless walls. This is tantamount to taking the centroidal height h and 

the ratios of (vb)max/Pmax and (Mb)max/PmaxH for the wall with mass equal to those for a mass- 

less wall. 
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Figure 7.1 Effective wall mass for statically excited systems with different wall flexibilities; v = 1/3. 
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SECTION 8 

CONCLUSIONS 

Following are some of the more important conclusions of this study. . 

1. 

2. 

3. 

4. 

5. 

With the method of analysis and the numerical data presented, the dynamic response of the class 

of flexible retaining walls examined may be evaluated readily and with high degree of accuracy. 

The method, which makes use of Lagrange's equations of motion in combination with a recently 

proposed model for the action of soil-wall systems, is expected to prove of value in the analysis 

of a number of other problems as well. 

The magnitudes and distributions of the wall displacements, wall pressures and associated forces 

induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil- 

ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the 

retained medium relative to its shearing stiffness, and this reduction decreases the proportion of 

the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it. 

For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be 

less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base 

moment being even larger. Because of the greater effective stiffness of top-supported walls, the 

corresponding reductions for such walls are significantly smaller than for the cantilever systems. 

Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement 

relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the 

values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to 

develop a limit state in the backfill material. 

The comprehensive numerical solutions presented and their analysis provide not only valuable 

insights into the effects and relative importance of the numerous factors that influence the 

response of the systems examined, but also a sound framework for assessing the behavior of even 

more complex soil-wall systems. 
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SECTION 10 

APPENDIX. NATURAL MODES AND INNER PRODUCTSS 

The jth natural mode of vibration of the beam or wall without the retained medium is given by 

@j(q) = coshhjq - cosl jq  - aj [ sinhhjq - sinhjq J (43) 

in which hj and aj are dimensionless factors that depend on the end support conditions. Thejth 

circular natural frequency of the wall, cow, , is related to Aj by 

The first five values of hj and aj for the two sets of boundary conditions considered here are given in 

Young and F e l g d 2  and are reproduced in Table 1 1.1. 

The inner products or integrals in the various expressions presented in the body of this paper are as 

follows: 

2aj c-F - 
hi 
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2hj&Jhj - (-l)”+j a j q  
4 4  

C-F 
hj - E ,  

C-H: - 

in which E, = (2n - l)n/2. Equations (46)-(49) are given in Felgd3, while the rest were derived 

from basic principles. 



Table 10.1 Dimensionless factors Xj and ai in expressions for natural modes of 

vibration of clamped-free (C-F) and clamped-hinged (C-H) flexural beams 

C-F Beams C-H Beams 

hi aj x j  ai 

Order of 
Mode j 

1 1.8751 0410 0.7340 9550 3.9266 0230 1.0007 7730 

2 

3 

4 

4.6940 9 1 13 1.01 84 6644 7.0685 8275 1.0000 0144 

7.8547 5743 0.9992 2450 10.2101 7613 1.0000 0000 

10.9955 4074 1.0000 3355 13.3517 6878 1.0000 0000 

5 I 14.1371 6839 I 0.9999 9855 I 16.4933 6143 I 1.00000000 
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SECTION 11 

NOTATION 

The following symbols are used in this report: 

i 

J 
j 

K" 

elements of {A} 

vector of normalized exciting forces 

dimensionless factors in expressions for maximum wall displacement 

relative wall flexibility factor defined by equation (36) 

flexural rigidity per unit of wall length, defined by equation (5) 

complex-valued flexural rigidity of wall [= Dw( 1 + is,) 3 
Young's modulus of elasticity for wall 

fundamental cyclic frequency of retained medium when it is assumed to respond as an 

unconstrained cantilever shear-beam 

generalized force 

acceleration due to gravity 

shear modulus of elasticity for retained material 

complex-valued shear modulus for retained material [= G( 1 + is) ] 
centroidal height, defined as distance from base to point of application for dynamic wall 

force P 

integer defining order of beam mode under consideration 

integer defining total number of beam modes considered 

dynamic impedance of spring-dashpot combination when both the wall and the retained 

medium at the far-field vibrate in the nth natural mode of a uniform, cantilever shear-beam 

elements of [MI 

mass per unit length of wall 

effective mass per unit length of wall 

mass matrix 

instantaneous value of overturning base moment per unit of wall length induced by force P 

bending moment at base of wall 

integer defining order of shear-beam mode under consideration 

integer defining total number of shear-beam modes considered 

instantaneous value of total dynamic force per unit of wall length 

generalized coordinate 

amplitude ofjth generalized coordinate 

vector of amplitudes of generalized coordinates 

[= Fl 1 
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T W 

U 

xg 

x, 

6 

w 

o n  

elements of 

stifmess matrix 

thickness of wall 

fundamental natural period of retained medium when it is considered to respond as an 

unconstrained cantilever shear-beam 

kinetic energy of wall 

horizontal displacement of an arbitrary point of medium relative to moving base 

horizontal displacement of base-excited shear-beam relative to moving base 

participation factor in expression for displacement of shear-beam 

horizontal position coordinate 

vertical position coordinate 

shear-wave velocity for retained material 

instantaneous value of dynamic base shear in wall 

strain energy of wall 

wall displacement relative to moving base 

participation factor in expression of dynamic displacement of wall 

work done by wall pressures 

instantaneous value of ground acceleration 

maximum ground acceleration 

dimensionless factor in expression ofjth natural mode of vibration of a uniform beam; listed 

in Table 10.1 

material damping factor for retained material 

Kronecker delta 

material damping factor for wall 

dimensionless factor [= (2n - 1)x/2] 

dimensionless vertical position coordinate [= y/H ] 

dimensionless factor in expressions forjth mode and associated frequency of a uniform flex- 

ural beam; listed in Table 10.1 

mass per unit area of retaining wall 

Poisson's ratio for retained material 

mass density for retained material 

dynamic normal wall pressure 

component of 6 due to wall flexibility 

component of (T for a non-deflecting rigid wall 

vertical normal stress 

horizontal shearing stress in x-y plane 

jth natural mode of vibration of a uniform flexural beam 

nth natural mode of vibration of retained medium when assumed to act as an unconstrained, 

cantilever shear-beam 

circular frequency of excitation and of resulting steady-state response 

nth circular naturaI frequency of retained material when considered to respond as an uncon- 

strained, cantilever shear-beam 

jth circular natural frequency of uniform flexural beam 
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