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A b s t r a c t  
This paper discusses the dynamic response of  thin plates on the elastic foundations due 

to the moving loads by means of  the variational calculus. In the text we take the mass of  

moving loads into account, treat a series of  questions such as the forced oscillations, the 

influence surfaces of  the flexions and the influence surfaces of  the inner forces, resonance 

conditions and critical speed and so forth. 

I. I n t r o d u c t i o n  

The dynamic problems due to the moving loads, which takes the mass into consideration and 
which acts on the beam, were studied by R.Willis et al. [l-sl. In [6 - 8] the method of small parameters 
were applied. The dynamic questions for the plates and the shells caused by the moving loads were 
discussed by M.F. Dimentberg et al. I~- ~21, but they generally considered the moving loads as moving 
constant forces which are subjected on the plates or the shells and without taking the mass of the 
moving loads into account, reference[13] dissussed the approximate solutions of the forced 
vibrations of elastic shallow shell due to the moving mass. It is also necessary and are very important 
to take the mass of the moving loads into consideration for the studizs of the forced vibrations, 
resonance conditions and critical speed of structures. 

This paper will discuss the dynamic response of the plates on the elastic foundations due to the 
moving loads by means of the variational calgulus. 

II. F u n d a m e n t a l  E q u a t i o n s  

Now let us study the orthotropic elastic thin plate lying on the elastic foundations in moving 
state, its fundamental equations may be written in the variational fo rm ['6~1 as follows 

O ' •  + K a w - K , v ' w + K ,  ~ 
at 

I I { a,w .,., a,w . 

-Z }a  du=.O (3.1) 

This is a variational equation which contains a lateral flegions w m an unknown quantity. 
Where the coordinate axes xOifcoincide with the medium plane of the plate, the deflections w and 
the z-axis downward are considered as the positive, the Z is the intensity of  distributed lateral load, 
D s and D 2 are the flexural rigidity of the plates in the elastical principal d im~ons,  D 3 is the reduced 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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rigidity, furthermore, we have m~ 

.Eth 8 
D ~ =  12(1 - -~ t~D"  ' 

Egh $ Ds = Dt~, + 2Dj 

in which Da is the torsional rigidity of the thin plates in the elastical principal directions, h is the 
thickness oi ~the plates, where E~ and E 2 are the modulus of elasticity of the materials of the plates in 
tension or compression along the elastical principal directions, #i and /& are the shrinkage 
coefficients in transverse directions, and what is more m; 

Ds=lGh s, ~zEt=~tEt, Dd~2----Dt~t 

in which G is the modulus of elasticity in shear; t is the time, y andg  are density of the materials 
of the plates and the gravitational acceleration respectively; K~ and K 2 are the basic coefficients of 
elastical foundations in the elastic semi-space i'll, K 3 is a constant coefficient; c ~  is the variation 

of  the lateral deflections of thin plates. 
Let the thin plates be constant thie, kncss, rectange, its boundaries a re :x=0,  x-----a;y= 0 ,y=b .  

The integration of (2. i) is all over the region of the medium plane of the plate over, namely: 

O<~x~a, O~y~b 
Besides, all the bending inner forces may repressented by the flexural functions p21 as follows 

- / 8Zw  O"w \ �9 8 z w  8~w 

~tw # F Caw + / 2  Ds '~ OZw 1 
M,t=--2Ds ~-~- ,  V.==-Dt a-~-L-~ T ( -j~t --pz)-~-Vz ] (2 .2 )  

_ ara,w. / D8 Dt \ O ~ l  
, = - . ,  § - - - b T  

in which the M, and M w are the bending moments, M,w is the twisting moment, the V, and V~ are 
resultant lateral shearing forces. 

Because when a moving load is considered which takes the mass into consideration, and which 
is moving on the plate lying on the elastic foundations, the relationship between the load and the 
deflections will be nonlinear, therefore now our questions are nonlinear. For the sake of finding the 

solutions for the previous variational equations (2.1), we try to choose the functions in the following 
form t~ 

w(x,y, t )=A.,( t )X=(x)Y.(y) ,  Z(x,y,t)---B..(t)X~(x)Y,(y) (2 .3)  

whereX~(x)andY=(y)are characteristic functions of the beam as the functions of the vibratory 
mode of thin plates, it is well known they possess orthogonality, we should choose it in advance to 
satisfy the boundary conditions of rectangular plates alottg the x-and the b-directions respectively. 
A,=(t) and B ( t )  are the coefficients o f tM flexural functions H, and the intensity of the load Z which 

are expanded by the characteristic functions. The variations corressponding to the fiexural 
functions w are 

c~ffi X.;( x )Y.(v)cSA..  ( 2 . 4 )  

substitute (2.3) and (2.4) into (2.1) and observe that the variations c~Am. of  coefficients are 

arbitrary and independent, moreover the characteristic functions or the functions of  the vibratory 
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mode which possess the orthogonality may obtain the following differential equation 

~Lma(t) -I- 2 a d l . ( t )  -k c 0 . z . ~ .  (t)  = g B . .  ( t)  ( 2 . 5 )  

in which 

2a= ghK3, 2 = ~ 11 (2 .6)  com. ~,h I2 

04 04 . 04 �9 

a is the so-called coefficient of damping, co,n. is the eigenfrequency of free vibrations for thin 

plates in the case of no damping. Equation (2.5) is a linear inhomogeneous ordinary differential 

equation in second order about coefficient A 

When ' co . , .~a  . the solutions of equation (2.6) are 

A~. (  t ) e (am.smf2 ,~ t+b.~cosf2m. t )  

g * 
. . i - - ~ .  Io e-oC'-')B,..( v )sinfJ.,~( :--~')dr (2 .8 )  

- -  2 2 in which f2. , . - -~/com.--a is the so-called eigenfrequency of free vibrations with damping for 

thin plates. The first term in the right hand in formula (2.8) represents the free vibrations of  thin 

plates, and the second term denoted the forced vibrations of thin plate. From (2.3) wemay obtain 

the solution for the flexural functions w 

w( x ,  y .  t ) = e - " (  a,~.sinO.,.t + b,~nc osO,. .t  )X, . (  x )Y.. ( y ) 

in which a and b m are constants which should be determined by the initial conditions of the 

moving, if the damping forces are not taken into account, then a----0 ; if the initial moving is 

absent, then a = b = 0. B , . . (v )  depends on the character of loads, now let us analyse it as 

follows. 

(2.7) 

l I I .  A n a l y s e s  o f  M o v i n g  Loads  

If  a moving concentrated load P, acts on the thin plate to a certain point M ( ~ ,  77), its mass 

must beP/9.  Now we take the effect of the moving load on the lateral vibrations of the thin plate 

into account, therefore it is necessary to take the lateral inertia forces of the load on thin plate 

-- (P / f l )  ( dZw/dP ) into consideration, the whole lateral pressure which applies on the M ( ~, 77 ) 
point of thin plate is 

P* ~ P / d Z w \  ['1 1 / d ~ w \  
( 3 . 1 )  
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The lateral loads Z in eqs. (2.1) and (2.3) may be regarded as the following intensity of 
distributed loads 

P* whenaf~x~<~+ Ax 1 z= ~-h-~-~' ~ < v < ~ + a v  (s.~) 

Z--  O, elsewherei 

in accordance with (2.3) we expand (3.2) and get 

the integration in the above formula is all over the region of the medium plane of the plate over. 
If we assume a load to move with uniform velocity v. on the plate, its components of velocity in 

x-and wdirections are respectively 

d x  d v  v, __-- __d~_=const, ve_--.-dT = const ( 3 . 4 )  

We consider the flexsural functions to in formula (3.1) as the following functions 

==to(x(t), v(O) (3.5) 
Observing formula (3.4), we have 

dW __ v d w  + dto d~to , d=w �9 sd~w 
d t " - -d 'x  v , : d y ' -d-f" = v " --d-~ -t" v " -d'~ (3 .6 )  

substituting (3.6) into (3.1) we may get the general lateral pressure subjected at point M(~,  rt) on 
the plate 

9, nF .  1 [  = d ~  . z d = w \  "1 (s. 7) = r E , -  Tko.- ~ -  + o,-~)~=~ j 
g----T/ 

from (3.2), (3.3), (3.7) we may obtain B ( t )  

r 1 / =dZw = d i m ' ,  P 
.ffx"( )v:(u)d dY (s.8) 

from (3.2), (3.3), (3.8.) we knows that B (t) equals zero else-where except point M(~,  ~/) on t h e  

plate. 

IV. Inf luence S u r f a c e s  o f  F l ex ions  a n d  i n f l u e n c e  S u r f a c e s  o f  I n t e r n a l  Forces  

If we don't  consider the free vibrations of thin plate, but study the forced vibrations of thin 
p'..ate only, then substituting (3.8) in (2.9) and let /~=v#,  ri-----v d , we may obtain the general 
formula "of the dynamic deflections of thin plate 

r 1 / = d tw  Pa x.(~)Y.(y) .~, _.,,_.,. 
w(x,y,t) = ~-~i" a.,JIXZ(x)y2(y)dxdy 

, dSw\ v,--~js._v.r ] . X = ( v , r ) Y , ( v , r ) . s i n ~ , ~ , ( t - - r ) d ,  (4 .1 )  
y - ~ -  t)  y lr 
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If we demand P= 1 in the above formula, then we get the formula of influence surface for 
deflections of thin plate in the ease in which the load is moving with constant velocity. Over again 
after performing differentiating (4.1) and substituting it into the formulae of the bending inner 
forges (2.2), we may obtain the formula of influence surface for the internal forces of thin plate. Let 
the loads be started from x = 0 and moved with constant velocity v~ only parallel to the x-axis along 
a straight line y=r /  on the plate, then we may put x----v,t,q~%vtt~O, F = I  in the previous 
formula (4.1), and obtain the expressions of influence surface for the ~leflections which correspond 
to the above mentioned cases as follows 

va(x,y./)=V__~ X ~ ( x ) Y . ( y )  f '  r .  1 ,/d2vo \ 

. X . (  vor ) Y . (  ~ )sing~.( t - - r  )dr (4.2) 

Similarly assnming the load be started from y~O and moved with a constant velocity 'V~ only 
parallel to the//-axis along a straight line x =  ~ on the plate, then we put x ~  ~,  y = vwt  , v .  ~ O, 
P ~ I  in formula (4.1) and may obtain the formula of influence surface for the flexions which 
correspond to this ease as follows 

w ( x , y , t ) - -  g X , . (x )Y , , (y )  f '  ['1 l v , /  d~m'~ 

. X. . (  ~ ) y . (  v sr ) s in~ . . (  t _ r  )dr (4 .3 )  

For the obtained formulae (4.1), (4.2), (4.3) of the influence surface which are suitable for the 
various rectangular plates and arbitrary boundary conditions, they possess of generality. The most 
substantial is to select the functions of the vibratory modes in formulae in accordance with the 
different boundary conditions of the plates. 

. , k ' *  

The above obtained expresszom, with respect to the influence surface, are just suitable only 
when the moving loads have not left the surface o f  the plate yet. If the moving loads have left the 
plate, then the vibrations of plate will be transformed from the forced vibrations into the free 
vibrations, by this time we may use the foregoing term in formula (2.9). which may be written as 

w( x, y,  t ) -- exp[ -- a( t - -  to ) 3[ a~asin~m. ( t --  to ) + b.m.eos~m.( t - -  to ) ] X . ( x ) Y . (  y ) 

(4.4) 
constants a and b should be determined by the initial conditions which, according to the 
quantities, must be relative to an instarLt when the loads have left the thin plate, namely, using 

w( X , y , to ) and ( 8w / Ot )t=t, for the determinations, to=a /v ,  or to-'=b /vr  are the time of~oe 
full course whichmave been passed by the moving loads on the plate along the directions in the 
x-axis or in the y-axis.,respectively 

At present though we have got expressions (4.1) of' the dynamic deflections and formulae (4.2) 
with (4.3) of the influence surf~:es, yet there are flexural functions w contained under the integrating 
symbols in all the formulae, hence the problems is a nonlinear in quality. If in fight of  the method of 
R.Wfllist~,~7,~sJ: instead of the flexm~l funcfionsw in (4.1), (4.2), (4.3) is expressed by a static 
deflection of the plate on which the concentrated force acts at point M(~;t?~ , then the questions 
mentioned cartier would be simplified and consequently we gain the approximate solutiona o f th~  
problem. 
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V. P rac t i c a l  Appl i ca t ions  

Let a rectangular orthotropic plate lie on the elastic foundations, simply supported at all edges, 
a and b are dimensions of thin plate along the x-and they-axes directions respectively, K~ and K 2 arc 
the basic coefficients ofelastical foundations in the elastic semi-space. Let the thickness of thin plate 
is constant and its magnitude is h. 

Now choose the functions of the vibratory mode 

X,,,(x)=sin2mx, Y.(y)=sinl~,,y (5 .1 )  

in which 

,~,m ~--" reel" f l / t  

a , #n---- b 

then the flexural functions wof  formulae (2.3) may satisfy the boundary conditions of the plate, i.e. 

On the edges x----0 and x=a: 

On the edges y----0 and y~b: 

w=-~-r--O 

w---- 02w - - 0  
0yZ -- 

We know that the static deflections at any point for the rectangular plate on elastic foundations 

by simply supported at all edges to be applied by a concentrated force P at point M(~,rl) is 

~ ~--~--n sl n2m~. sm).,~x, sm#.y w(.~, y) =-- -~-~-  ~ 1 . . . .  sin.j/. 

(m, n=1,2,3,-..,oo) (5.3) 

in the ab(~ye formula the co,,' which is under the sum can be calculated from (2.6), (2.7) and its 

value is 

co'~. = ~ [ D 1 2  ~ + 2D~).'. # ~- + D~#-' + K t  + K,(2~ + #-* ) l 

(m, n - - - -1 ,2 ,3 , . . . ,~ )  (5 .4 )  

Su.bstituting w of (5.3) into (4.1) and obtaining the approximate solutions of this problem 
consequently the general formula of the dynamic deflections may be represented as follows 

4Pg (f, ~ 4e 

"sinVt-v*r'sin2#=v,r]sin2*v*r'sin#=v,r'sinl2..(t--r)dr ~ ( 5 . 5 ) '  

�9 sin).mx, sin#ny 

If we demand P =  l in the above formula, then we obtain the most general formula of the 

flexural influence surface of thin plate on which the moving loads are subjected. 
If we don't take the resistance into account in the previous formula, then a----0 , therefore 

.Qm.=a)~. .  We will discuss it in two cases as follows. 
(l) If we demand vu----0 , v~v:=r/ , and perform integrating for the above formula, then we 
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may obtain the expressions of dynamic flexions of  plate when the moving loads are started from 

x = 0 and moved with a constant velocity v, only parallel to the x-axis along a straight line y = r/ 

_ _ •  sin/z.~/ g,~v, 
* e m ~  x ~ w m f $  

+ __1 co.,.sin3)i,.vJ, , , ,  , 6 a ~ v ] s i n c a ' " t  ]}s in / l ,x .  sin/z,,9 ( 5.6 ) 

(2) In the same manner, from (5.5) we may obtain the formula ofdynamic deflections when the 

moving loads on the plate are moved with a constant velocity!v~ only parallel to the y-axis along a 
straight line x = ~  

4Pa sin,t,.~ (la"V' sincom.t--sin#.v,t )sinA,.x.sin/l.y 

a (s,,,,.,,)' s in$~ ,m~ .  I ~ ~ _ O')m' fl S i TI ~('L n T'J Ir~ 
tt ll,r, ll .,,..~ l ~ l ~ � 9  - - 1 . u m m  

+• 1} 4 9p.v,2 2 2 t (p.v,~ ~ co 2 ~. s in ; t , x - s in# ,y  
~C'Om~l  mn ] ~. P"s �9 r a n /  ,J,P 

(5.7) 

I f  in formulae (5.6) and (5.7) we demand P = 1, we may obtain the expressions of  the flexural 

influence surfaces for the above two cases. After differentiating formulae (5.6) and (5.7) and 

substituting them into formulae (2.2) of  the bending internal forces we may obtain the expressions 

of  the dynamic internal forces for this practical problems. If  in the obtained expressions of  the 

dynamic internal force's we put P = 1, we may get the formulae of  the influence surface of  internal 
forces. 

It must be pointed out that in the obtained expressions (5.6) and (5.7) the relationship between 

the dynamic deflections and load P is not a linear one; they are related to the square of load P. From 

the two pre~.ding formulae we can see that the first term represents the linear and the second term 

represents the nonlinear, which is caused by taking the mass of.the moving load into account. 

From the former two expressions (5.6) and (5.7) it may be seen also, while v,=com,/g~ and 

v ~  or while ve=con,,/p, and vf=co, , , /3/~,  the denominators in both of the  two 

expressions vanish, then the flexions w will be increased to infinity, naturally at this time the bending 

inner forces are also increased to infinity at the same time, hence at present the resonance of the plate 
takes place, the resonence conditions are 

2 3 2 m )[.v~--co.~-- 0 

o r  

and 9g~b~--~.-----O (5 .8 )  

z=,,2 ,.,2 - - 0  a n d  . 2 2 �9 , , i  - - , ~ , = . - -  9 p . v f  - - c o = . =  0 

( r e , n = 1 , 2 ; 3 , - . - )  ( 5 . 9 )  

The corresponding moving velocities v, or v, of  the moving loads in the present case are called 

the critical speed and are represented by (V,)o or (V~)o~ From (5.8) and by using (5.4) we may gain 
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and 

I /~" 
(v,),,= =-,~-- , 9. , ~ ~/D~2. + ~D,2./~. +D2~; +K, +K2(I~ +p: ) a.w# (5.zo)  

1 "~ 4 3 1 4 (v,).,f3-3-~4y--~.,/D,)..+2Djt~,lz.+D~p.+Kl+K~(l~+pl) (5.11), 

inthe same way,from(5.9)+and by applying (5.4) we may gct:(.v~)o,----co,,//~.and{vw)~,,--co~,~'3/~, 
For the isotropic plates, in the previous discussion we may take 

Eh o 
Dt=D'~=Ds=D= 12(t-~-~'~ 

consequently, every formula in the above mentioned may be obtained in more simplified form, for 

instance, formulae (5.10) and (5.11) may be written 

z (v,)  o, = ~,~/-~_ ,JD(A'~ + t~l )~ + K~ + K,(A~- + ttl ) (5 .12)  

and 

(vo) ,, = 3--)~-- JD(A'-+IzI)'+Kx+K., (~'~+#'~) (6.15), 

When the mass of the moving loads is not considered we wilt only obtain one group of  the 
resonance conditions; (v . )o~=co. . /2 , .  or (v,)o,=a~,..,/#~ , while we take the mass oft_he 
moving load into account, another group of the smaller critical speeds will be got: ( v . ) o . =  
co. . /3 / l ,  or ( v , ) . . =  co,~./3/-t. 

Since the mass of the moving load is not considered, the nonlinear terms in (5.6) and (5.7) will 

disappear, the resonance conditions gain one group only: 

2.v,' '--co,,--0~ -- or # .o , - -co . . - -0 '  ' ' -- (m, n=1,Z,3, . . . )  (5.14) 

If the mass of the moving load is considered, then to (5.5), (5.6) and (5.7) we will be. add 
additional nonlinear terms in which the terms of square of load P are contained, hence due to these 

terms we gain the additional resonance conditions which exist in the denominators of (5.6) and 

(5.7): 
91~v~--co~.=0 or 9/z2.u~--c0~.=0 (m, n = 1 , 2 , 3 , . . . )  (5 .15)  

Comparing (5.14) with (5.15) we may see that the gained critical speeds from (5.15) will be one 

third of the critical speelts gotby (5.14). This case is quite probable in fact and therefore it is more 
~mportant. If the mass of the moving load is not taken into ac~ourit, then these results cannot be got, 
hence by using expressions (5.15) may determine the minimum critical speeds when the resonance of 

the plate, on which the moving load is applied, takes place. 

VI. Numerical ExAmples 

Let us illustrate a concrete numerical example. Set a concrete rectangular orthotropic plate on 

elastic foundations, given Ez----3 x 106t/m 2, E2 = 6  • t0at/m ~, G =  t .  47 • 10et/m ~, #t.----0.14, 

#~=0.28 ,  a = 8 0 m ,  b=20m,  h = 0 . 4 m ,  y = 2 . 5 t / m  3 , by calculating we may obtain 
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D t f 1 3 3 . S S t - m ,  Dt---266.6?t-m, Ds~Z63.77t-m, Dbm62. Tgt-ra, taking g = 9 . 8 1  

,m/see =, Ktf3OOOt/m s, Kt==5OOt/m~ 

-By computation the eigcnfreqnenci-es ~=n. , which correspond to the different vibratory types 
of thin plates, the corresponding critical speeds .(v.).r and their results are given in the following 
table 
Table 1 

Calculating 
results 

nl,PI 

1,1 

1,2 

Case of having damtie foundations 

~tne 

f ~ .  /see. 

171. 9285 

2,3 

3.1 _ _  il 172.1122 

3,2 173.2419 

3,3 L 

m/ram. 

J.878.04,il 

misoc. 

1459.8480 

~tm 

red. /see. 

1.3093 

173.0488 4406.6858 1468.8795 5.0985 

1,3 177.5891 4522.2585 1507.4195 11.4085 

2,1 171.9930 2189.8785 729.9595 1.4589 

2,2 173.1188 2204.2126 734.7375 5.2417 

175.1802 2230.2045 743.4016 

486,9766 

490.1729 

1460.9297 

Case of no elastic foundations 

!470.5188 

224.3787 634.8601 1904.5803 

11.5509 
) 

2~2816 

6.8809 
11.8901 

m/see, m/sec. 

33.3420 11 .I140 

129.8327 43.2?76 

290.4458 96.8152 

18.5750 6.IgtT 

66.7390 I 22.2463 

I(7.OTOI 49.0234 

19.3666 ! 6.,Z55 
-j. 

48.2972 I 18.0991 

100.9257 ! 33.8419 

From the above.table it may be seen that in the case of having an elastic foundations the 
minimum critical speed, which corresponds to the eigenfrequency co~t of thin plate, is 486.9766 
m/see., that is greater in value, but this case would be impossible. In general, the ~!cu!att_'otm show 

that in formulae (5. l 0) - (5.13) of (v,)  o, , the percentage occupied by the coefficients of  elastic 
foundations is larger, hence the differences of the neighboring eigenfrequencies corr~pond to the 
various vibrating modes of thin plates, arid the differences of the corresponding critical .,speeds a.ne 
r, ot very obvious. 

For the case of absent elastic foundations, the calculating results for the eigenfre~ucncies 
~_=,, correspond to the d-hTerent vibratory types of thin plates, and the corresponding criHe~! .speeds 
(v,) , , .are given in the same table for the sake ofeomlmrison. The minim-ann critical speeds is 6.19!7 
ra/~e, which corresponds to the eigenfrequency w--t in tl~ table, ~ case is guite proba-h!e, end 
what is more;the distinctions of the neighboring ~genfrequeneies, which correspond to the different 
~t~!-htory modes of thin plates, and the distinctions of corresponding critical speeds are larger. 

~r Oonc lud ing  R e m a r k s  

1. This paper found tim general expressions (4. l) of the dynamic defle,~tions for the tMn plate 
~ i c h  lies_on the elastic fl~mndations and is sub_icetexl to the moving loads posscssins the mass. 

,..'~ It s0ived the fl exur ai infiaencr s~.art'.ace formrdae (4 2) and (4 a-) r e . .  .._ r ~e th i  n plate which li~ on 
the elastic foundations and due to themoving loads pos.~ssing the mass when the load mvves with a 
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constant velocity parallel to the x-axis and y-axis respectively, consequently by differentiations we 

may obtain the influence surface formulae of inner forces also. 
3. It obtained the general expressions (5.5) of the dynamic deflections for the rectangular thin 

plate which is simply supported at all edges and lies on the elastic foundations applied by the moving 

loads and. it obtained formnlae (5.6) and (5.7) of the dynamic flexions or influence surface when the 

load moves with constant velocity parallel to the x-axis and y-axis directions respectively. These 

formulae are nonlinear and they are related to load P and the square of load P. 

4. It gained the resonance conditions (5.8) with (5.9) for the rectangular thin plate which is 

simply supported at all edges and lies on the elastic foundations acted on by the moving loads and 

gained formulae (5.10) - (5.13) for the critical sppeds. 

5. From the numerical examples in the text it may be seen that the value of coefficients of the 

elastic foundations plays a decisive role in calculations for the eigenfrequencies which correspond to 

the different oscillating modes of thin plates and for the corresponding critical speeds, since in the 

computations the percentage occupied by these coefficients is greater, the differences of the 

neighboring eigenfrequencies correspond to the various vibratory types of thin plates, and the 

differences of the corresponding critical velocities are not distinct, but yet for the case which don't 
have elastical bases, its differences are larger. 

6. From formulae (5.6) or (5.7) we may gain two groups of the resonance conditions (5.8) or 

(5.9) for the plate, which lies on the elastic foundations and is simply supported, hence we may also 

obtain the critical speeds of two groups (5.10) and (5.1 !). One of them is least. 

7. If the mass of the moving loads is not considered we will only obtain one group of the 

resonance conditions. While we take the mass of the moving loads into account, we will get two 

groups of the resonance conditions, hence the less critical speed is obtained, the ratio of the critical 
speeds between the front case and the back case is three to one. 

8. Provided we select the suitable functions (2.3) of the vibratory modes in advance to satisfy all 

the boundary conditions, namely, the boundary conditions of geometry and internal forces, in such 

a manner, the results, which were obtained by this paper, are suitable in applications for the 

rectangular plates with various supports on boundaries. 

9. The method which is mentioned in this paper is a kind of approximate solutions by 

simplification, but it has not yet arrived at perfection, besides, we may use any other ways which 

may lead to the study of the problems of the nonlinear parametric resonance, such as the 
troublesome Mathieu's equationsU9-2t) by the method of successive iterations and the method of 
small parameter or the perturbation method t~-s), etc. 
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