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Abstract
This paper discusses the dynamic response of thin plates on the elastic foundations due
to the moving loads by means of the variational calculus. In the text we take the mass of
moving loads into account, treat a series of questions such as the forced oscillations, the
influence surfaces of the flexions and the influence surfaces of the inner forces, resonance
conditions and critical speed and so forth.

1. Introduction

The dynamic problems due to the moving loads, which takes the mass into consideration and
which acts on the beam, were studied by R.Willis et al.l! ~®), In [6 — 8] the method of small parameters
were applied. The dynamic questions for the plates and the shells caused by the moving loads were
discussed by M.F. Dimentberg et al.”~'2, but they generally considered the moving loads as moving
constant forces which are subjected on the plates or the shells and without taking the mass of the
moving loads into account, reference[13] dissussed the approximate solutions of the forced
vibrations of elastic shallow shell due to the moving mass. It is also necessary and are very important
to take the mass of the moving loads into consideration for the studies of the forced vibrations,
resonance conditions and critical speed of structures.

This paper will discuss the dynamic response of the plates on the elastic foundations due to the
moving loads by means of the variational calculus.

II. Fundamental Equations

Now let us study the orthotropic elastic thin plate lying on the elastic foundations in moving
state, its fundamental equations may be written in the variational form!"*? as follows

o'w 'w 'w Fw 8w
[f{ Do +2D, g+ D g+ G +Kim—Kivot Ko S

-2 }dwdxdy'=.o (2.1)

This is a variational equation which contains a lateral flexions w as an unknown quantity.
Where the coordinate axes xOycoincide with the medium plane of the plate, the deflections w and
the z-axis downward are considered as the positive, the Z is the intensity of distributed lateral load,
D, and D, are the flexural rigidity of the plates in the elastical principal directions, D, is the reduced
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rigidity, furthermore, we have™

EM E.m
Dy= L D,=—rt " Dy=Dyu,+2D
S mm) T 1e(i— ) T A
in which P, is the torsional rigidity of the thin plates in the elastical principal directions, 4 is the
thickness of the plates, where E, and E, are the modulus of elasticity of the materials of the plates in
tension or compression along the elastical principal directions, #; and 4, are the shrinkage

coefficients in transverse directions, and what is more®

D, =1—12'Gh8. o Ey=E,, Dyp,=Dyuy

in which G is the modulus of elasticity in shear; ¢ is the time, 9 and g are density of the materials
of the plates and the gravitational acceleration respectively; X, and K, are the basic coefTicients of
elastical foundations in the elastic semi-space'', X, is a constant coefficient; dw' is the variation
of the lateral deflections of thin plates.

Let the thin plates be constant thickness, rectange, its boundaries are: x=¢, x=a;y=0,y=>b.
The integration of (2.1) is all over the region of the medium plane of the plate over, namely:
0<x<a, 0<y<<h

Besides, all the bending inner forces may repressented by the flexural functions™ as follows

M,=—-D, a—‘”,» ) M,;=-D(3% 5 LA ) )
M,=—2Dy—5—— axa Dnﬁ—[—agr'*‘(z'p— uz)i’;”]> (2.2)
V= Dzay ay 2('17' —DL“z a'w]

/

in which the M, and M, are the bending moments, pf, ’ is the twisting moment, the ", and |/ ,are
resultant lateral shearing forces.

Because when a moving load is considered which takes the mass into consideration, and which
is moving on the plate lying on the elastic foundations, the relationship between the load and the
deflections will be nonlinear, therefore now our questions are nonlinear. For the sake of finding the
solutions for the previous variational equations (2.1), we try to choose the functions in the following

form ™
w(%,y,1)=Aas(t) Xa(2)Y.(y), Z(x%,y,1)=Bas(})Xa(x)Ya(y) (2.3)

where X ( x)and¥,( y )Jare characteristic functions of the beam as the functions of the vibratory
mode of thin plates, it is well known they possess orthogonality, we should choose it in advance to
satisfy the boundary conditions of rectangular plates along the x-and the y-directions respectivély.
A _(Nand B_(f)are the coefficients of the flexural functions w and the intensity of the load Z which
are expanded by the characteristic functions. The variations corressponding to the flexural
functions w are

Sw=Xu(2)Y a(y)0Aas (2.4)

substitute (2.3) and (2.4) into (2.1) and observe that the variations §A4,., of coefficients are
arbitrary and indépendent, moreover the characteristic functions or the functions of the vibratory
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mode which possess the orthogonality may obtain the following differential equation

. 1 =9
Ama(t) +2aAna(t) +0indma(t) «,-TB"(‘) (2.5)
in which
) 2 8 _I_.
Za—;;Ka, w"’”—yh I: (2.6)
~N

= [[{0 e Xn¥tw) T2, g XaldVat) [+ Dz

[Xn®) Yale) |+ KiXa (Y a(0) = Kav? [ Xn ()Y o0) [} Xn(3) Valy)dxdyp(2.7)

I,= [jxux)Y:(y)dxdy )

a Is the so-called coefficient of damping, @na is the eigenfrequency of free vibrations for thin
plates in the case of no damping. Equation (2.5) is a linear inhomogeneous ordinary differential
equation in second order about coefficient 4__

When w?,>a® , the solutions of equation (2.6) are

Ann(t) =€ "(amasinmnt +bmc0smat)

'))thnj Talts ”an(r)Sanmn( —-T)d!‘ (2,8)
in which Qu.=+/0l,—a® Iis the so-called eigenfrequency of free vibrations with damping for
thin plates. The first tenn in the right hand in formula (2.8) represents the free vibrations of thin
plates, and the second term denoted the forced vibrations of thin plate. From (2.3) we may obtain
the solution for the flexural functions w .

w(x,y,t):e—“( amQSianut +bmacosgmnt )Xm(x)yr-(y)

+‘VTh gm Xm(:;c)Y.(y) j:e'au—v)B,,,,.('r)sinQ,,.,(t—r)dr (2.9)

in which @ and b__ are constants which should be determined by the initial conditions of the
moving, if the damping forces are not taken into account, then a=0 ; if the initial moving is
absent, thena_=b_=0. Bpma(7) depends on the character of loads, now let us analyse it as
follows.

NI. Analyses of Moving Loads

If a moving concentrated load P, acts on the thin plate to a certain point M (£,n), its mass
must be P /g. Now we take the effect of the moving load on the lateral vibrations of the thin plate
into account, therefore it is necessary to take the lateral inertia forces of the load on thin plate
—(P/g)(d*w/di*) into consideration, the whole lateral pressure which appliesonthe M (£,7)
point of thin piate is

Pr=P— P(

d;:g> =¢ [1_"< ) —;] (3.1)
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The lateral loads Z in egs. (2.1) and (2.3) may be regarded as the following intensity of
distributed loads

ESxE+Ax
Z= w en{q :
<y<n+Ay (3.2)
Z=0, elsewhere!

in accordance with (2.3) we expand (3.2) and get
Baa(t)={ [ 200,00 Xul) Vaw)ddy [ [[ X2V 2w)axdy]” (3.3)

the integration in the above formula is all over the region of the medium plane of the plate over.
If we assume a load to move with uniform velocity v.on the plate, its components of velocity in
x-and y-directions are respectively

v.=%?—-=const, vy= j‘t; = (3.4)
We consider the flexsural functions w in formula (3.1) as the following functions
w=w(x(t), ¥(1)) (3.5)
Observing formula (3.4), we have
dw dw dw dw ,dw  .dw (3.6)

=V gy YUy aE =g Ui

substituting (3.6) into (3.1) we may get the general lateral pressure subjected at point M(£,n7) on
the plate

dw  , d*w
Pr=F[1- (o g ot ) ”] (3.7)
from (3.2), (3.3), (3.7) we may obtain B_(7)

B..(t)=P [1—%(1:,7 +u; ch; :I_X,,(;)y'(,,)
UX:(x)Y:(wdxdy (3.8)

from (3.2); (3.3), (3.8) we knows that B_(r) equals zero eise-where except point M(£, ,,) on the -
plate.

IV. Influence Surfaces of Flexions and Influence Surfaces of Internal Forces

If we don’t consider the free vibrations of thin plate, but study the forced vibrations of thin
ptate only, then substituting (3.8) in (2.9) and let £=v,f, n=v, , we may obtain the general
formula-of the dynamic deflections of thin plate

o P Xa(%)Ya(y) i 2
w(x,y,t) ——‘Pg- O..ﬂX.’,(:)Yi(Z)dxdy ﬁe ¢ h[l——é—(‘v.%}f—

+v'?_r ey, T ]'X.(U.f)Y.(v,‘r)-sin.Q,,(t-—f)dr (4.1)

Y=0,7
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If we demand P=1 in the above formula, then we get the formula of influence surface for
deflections of thin plaie in the case in which the load is moving with constant velocity. Over again
after performing differentiating (4.1) and substituting it into the formulae of the bending inner
forces (2.2), we may obtain the formula of influence surface for the internal forces of thin plate. Let
the loads be started from x = 0 and moved with constant velocity v, only parallel to the x-axis along
astraightline Y=7 on the plate, then we may put x=uv,t,y=1n,ue=0, F=1 inthe previous
formula (4.1), and obtain the expressions of influence surface for the deflections which correspond
to the above mentioned cases as follows

X (%)Y a(y) mac-ny, [ Ly (AW
wn = 7Q~ Jjxzor ‘t(jy)dxdyj e [1-2o (e )x=v- ]

'Xm(UuT)Y.(ﬂ)stm”(t—r)dr (4.2)

Similarly assuming the load be started from y=20 and moved with a constant velocity y, only
parallel to the y-axis along a straight line x=£ on the plate, then we putx=¢§, y=uv,t, v,=9,
P=1 in formula (4.1) and may obtain the formula of influence surface for the flexions which
correspond to this case as follows

yh=2 Xu(x)Ya(y) Yemaaem, [ L. d*w
wiE,y )= Qmﬂxa(x)yz(y)dxdyjoe [ g’ (‘T‘ pi ]
X n(E)Y o(v,7)sinpa(t—7)d7T (4.3)

For the obtained formulae (4.1), (4.2), (4.3) of the influence surface which are suitable for the
various rectanguiar plaies and arbiirary boundary conditions, they possess of generality. The most
substantial is to select the functions of the vibratory modes in formulae in accordance with the
different boundary conditions of the plates.

The above obtained expressionis, with respect to the influence surface, are just suitable only
when the moving ioads have not ieft the surface of the plate yet. If the moving loads have left the
plate, then the vibrations of plate will be transformed from the forced vibrations into the free
vibrations, by this time we may use the foregoing term in formula (2.9), which may be written as

w(x, y,t) =exp[ "'a(t'—fo)][asQSinQna( t_tﬂ) + b,.cos.Q..(f—t,)]X.(x)Y,(y)
(4.4)

constants a_ and b should be determined by the initial conditions which, according to the
quantities, must be relative to an instant when the loads have left the thin plate, namely, using
w(x,y,t) and (Ow/d#)i=¢, for the determinations, #,=a/v, or #,=b/v, are the time of the
full course which'nave been passed by the moving loads on the plate along ‘the directions in the
x-axis or in the y-axis.respectively

At present though we have got expressions (4.1) of the dynamic deflections and formulae (4.2)
with (4.3) of the influence surfaces, yet there are flexural functions w contained under the integrating
symbols in all the formulae, hence the problems is a nonlinear in quality. If in light of the method of
R.Willis™'7'#I; instead of the flexural functions w in (4.1), (4.2), (4.3) is expressed by a static
deflection of the plate on which the concentrated force acts at point M(£,n) , then the questions
mentioned earlier would be simplified and consequently we gain the approximate solutions of this
problem,
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V. Practical Applications

Let a rectangular orthotropic plate lie on the elastic foundations, simply supported at all edges,
aand b are dimensions of thin plate along the x-and the y-axes directions respectively, K, and K, are:
the basic coefficients of elastical foundations in the elastic semi-space. Let the thickness of thin plate
is constant and its magnitude is h.

Now choose the functions of the vibratory mode

Xm(x)=sindpnx, YV.(y)=sing,y (5.1)
in which
mx nx
Am= o W=

then the flexural functions wof formulae (2.3) may satisfy the boundary conditions of the plate, i.e.

otw

On the edges x=¢0 and x=a: = =
ges 0 w ¥ra 0
(5.2)
‘w
On the edges y=0 and y=§: w= e =90

We know that the static deflections at any point for the rectangular plate on elastic foundations
by simply supported at all edges to be applied by a concentrated force P at point M(£,n) is

w(x,y) =%ygh— ; ; —Ti—-sini.mg-sinp,m-sin).,,.x-sinu,.y

(mr ”=1;2r31“'»°°) (5-3)

in the above formula the @r. which is under the sum can be calculated from (2.6), (2.7) and its
value is

ca.=7%tD,A;+zD,A:yz +Dut+ K4+ Ky(AL+u2)]
(m: “=1,2:3;"':°°) (504)

Substituting w of (5.3) into (4.1) and obtaining the approximate solutions of this problem
consequently the general formula of the dynamic deflections may be represented as follows

P ‘ .
‘”("'y’t)___%‘:»_hfgm{j’ e e, [1+ ath PRPIE (Anvitpivy)

0 " Ona
-sin’*Apv.t- sinzy.v,r]sinlmu,r SinuaU, T sinQma(t—1)dr } (5.5)
sinAmX-singay

If we demand P=1 in the above formula, then we obtain the most general formula of the
flexural influence surface of thin plate on which the moving loads are subjected.

If we don’t take the resistance into account in the previous formula, then a=0 , therefore
Qma=0w&mn . We will discuss it in two cases as follows.

(1) If we demand v,=0, vyv=n ,and perform integrating for the above formula, then we
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may obtain the expressions of dynamic flexions of plate when the moving loads are started from
x =0 and moved with a constant velocity v, only parallel to the x-axis along a straight line y=n

4Pg singa.n
W=k Alvi—ol,

( ) (yh)* {Z 3 “-,,. i)t #-'7[ 3 masinAmv,t

4 Aivi-ol,

(ﬁ;‘v'ﬂnm,.t—sm l,,.v,t)smi.,.x singay

1 OmaSin3Amv t Gl;v,smw,,.,.t ]} . .
ot —ol, T (MToi—ar, ) (s /tvi—an,y it sinty. (5.6)

(2) In the same manner, from (5.5) we may obtain the formula of dynamic deflections when the
moving loads on the plate are moved witha constant velocity'v, only parallel to the y-axis along a
straight line x=§£

4Pg sindmé  [UaUy . . . .
abh Eivi—ats \om, Sin@Wmnt —sing,v,t )sm/l,.x-smu,.y

Py n . V am. n
@) il S T s [ S

4 pilvi—wi.

w =

l_ w-nSiHS[an'f
4 uivi—ol,

6urUlsingaf

+ (HlvT—0?,)(9utvi—at,)

+ ]}sin/l,.x-sinu,.y (5.7)

If in formulae (5.6) and (5.7) we demand P =1, we may obtain the expressions of the flexural
influence surfaces for the above two cases. After differentiating formulae (5.6) and (5.7) and
substituting them into formulae (2.2) of the bending internal forces we may obtain the expressions
of the dynamic internal forces for this practical problems. If in the obtained expressions of the
dynamic internal forces we put P= 1, we may get the formulae of the influence surface of internal
forces.

It must be pointed out that in the obtained expressions (5.6) and (5.7) the relationship between
the dynamic deflections and load Pis riot a linear one; they are related to the square of load P. From
the two preceding formulae we can see that the first term represents the linear and the second term
represents the nonlinear, which is caused by taking the mass of the moving load into account.

From the former two expressions (5.6) and (5.7) it may be seen also, while v,=was/As and
Us=Wnms /3Am orwhile v,=@n./pe and UVy=wma/3u, thedenominatorsin both of the two
expressions vanish, then the flexions w will be increased to infinity, naturally at this time the bending
inner forces are also increased to infinity at the same time, hence at present the resonance of the plate
takes place. the resonance conditions are

Alpi—e? =0 and 9A20}—@?,=0 (5.8)

or
wivi—wi,=0 and 9uivi—wli,=0
(mpn=1:2;3r"') (5-9)

The corresponding moving velocities v, or y, of the moving loads in the present case are called
the critical speed and are represented by (w,), or (v,)". From (5.8) and by using (5.4) we may gain
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(U.)or'—-}i\\/% VDA +2D A i+ Dyt + K+ K (A2 +ud) (5.10)

and

L
(v!)cr=m,\/1%4/D!).;+ZDgﬂ-;#: F D+ K F K, (AL ut) (5.11)

in the same way.from(5.9)and by applying (5.4) we may get (Vg )or=0ma/tsand( Vg ) es =@ ms/ 3tin
For the isotropic plates, in the previous discussion we may take

ER
12(1—ut)

consequently, every formula in the above mentioned may be obtained in more simplified form, for
instance, formulae (5.10) and (5.11) may be written

4D1=D:=D3=D=

(v.)a,=f;J% VDA 4+u) 2+ K+ K, (A2 +ul) (5.12)
and
(v.)"=§;;- \/%./D(A:+u:)’+K,+K,,(1:«!-#.;) (6.18)

When the mass of the moving loads is not considered we will only obtain one group of the
resonance conditions; (vs)er=®ma/Am O (Uy)or=0m/ln , while we take the mass of the
moving load into account, another group of the smaller critical speeds will be got: (vs)er=
(Dnn/33p or (U,)or=a)mn/3.un

Since the mass of the moving load is not considered, the nonlinear terms in (5.6) and (5.7) will
disappear, the resonance conditions gain one group only:

Al0i—ol.=0 or ulvi—owi.=0 (m, n=1,2,3,) (5.14)
If the mass of the moving load is considered, then to (5.5), (5.6) and (5.7) we will be add
additional nonlinear terms in which the terms of square of load P are contained, hence due to these
terms we gain the additional resonance conditions which exist in the denominators of (5.6) and
5.7):
9A20t —w2,=0 Or 9uivi—wi.= (m, 1=1.2,3,) (5.15)

Comparing (5.14) with (5.15) we may see that the gained critical speeds from (5.15) will be one
third of the critical speells got by (5.14). This case is quite probable in fact and therefore it is more
important. If the mass of the moving load is not taken into accournit, then these results cannot be got,
hence by using expressions (5.15) may determine the minimum critical speeds when the resonance of
the plate, on which the moving load is applied, takes place.

V1. Numerical Examples

Let us illustrate a concrete numerical example. Set a concrete rectangular orthotropic plate on
elastic foundations, given Ey=3Xx 10°/m?, E,=6x10%/m%, G=1,47x10%/m?, u,=0.14,

U4y,=0,28, 6=80m, b=20m, h=0.,4dm, yp=2 5t/m° , by calculating we may obtain
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Dl=

m/sec?,

By computation the eigenfrequencies Pms.

133.33t-m,
K;=3000t/m*, K,=500t/m,

D,=266.67t-m, D,=162,77t-m, [),=62 72t-m, taking g=9 81

, which correspond to the different vibratory types

of thin plates, the corresponding critical speeds (v, )., and their results are given in the following

table
Table 1
Calculating Case of having elastic foundations Case of no elastic foundations
resels el Lt I KR R R o
"‘;" rad. [sec. m/sec. "m/nec. rad. /sec. m/sec. m/eec
11 | 111928 4375.0441 1459.3480 1.3083 33.3420 11,1140
Lz 173.0488 | 4406.6358 1468.8795 |  5.0885 129.8327 43.2778
1.8 | 177.5881 4522.2585 1507.4195 11.4085 200.4456 |  98.8152
2.1 | 171.9830 2189.8785 729.9595 1.4589 18.5760 8.1917
2.2 | ws.uss | 2204.2128 784.7376 6.2417 66.7390 22.2483
2.8 175.1602 | 2230.2046 743.4015 11.6508 147.0701 49,0234
3.1 1121122 | 1460, ;z-s'( 488.9788 2.2818 19.3685 8. 4565
L 173.2419 14105188 | ”490 .1729 5.6898 48,2972 16,0981
5.3 224.8787 1904.6803 |  634.8601 11.8801 100.9267 33.6419

From the above-table it may be seen that in the case of having an elastic foundations the
minimum critical speed, which corresponds to the cigenfrequency @y of thin piate, is 486.9766
m/sec., that is greater in value, but this case would be impossible. In general, the ca calculations show
that in formulae (5.10) — (5.13) of (vs)os , the percentage occupied by the coe“ﬁcxents of elastic
foundations is larger, hence the differences of the neighboring eigenfrequencies correspond to the
various vibfating modes of thin plates, and the differences of the corresponding critical speeds are
not very obvious.

For the case of absent elastic foundations, the calcuiating results for the cigenfresucacies
‘®ms correspond to the different vibratory types of thin plates, and the corresponding critical speeds
(s )os-are given in the same table for the sake of comparison, The minimum critical speedsis §.1917

mifsec. whicki corresponds to the eigenfrequency w;, in the table, this case is guitc probeble, 2ad
what is more; the distinctions of the neighboring ﬁgchfr“quenuies which correspond to the different
vibtatory modes of thin plates, and the distinctions of corresponding critical speeds are larger.

VIL. Concluding Remarks

1. This paper found the general expressions (4.1) of the dynamic deflections for the thin plate
which lies_on the elastic foundations and is subjected to the moving loads pOw.mr_g the mass,

2. It solved the flexural influence surfacs formniaz (4.2) and {4.3) for ike thin phate which lies on
the elastic foundations and due to the moving loads possessing ihe mass when the Ioad moves witha
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constant velocity parallel to the x-axis and y-axis respectively, consequently by differentiations we
may obtain the influence surface formulae of inner forces also.

3. [t obtained the general expressions (5.5) of the dynamic deflections for the rectangular thin
plate which is simply supported at all edges and lies on the elastic foundations applied by the moving
loads and it obtained formnlae (5.6) and (5.7) of the dynamic flexions or influence surface when the
load moves with constant velocity parallel to the x-axis and y-axis directions respectively. These
formulae are nonlinear and they are related to load P and the square of load P.

4. It gained the resonance conditions (5.8) with (5.9) for the rectangular thin plate which is
simply supported at all edges and lies on the elastic foundations acted on by the moving loads and
gained formulae (5.10)—(5.13) for the critical sppeds.

5. From the numerical examples in the text it may be seen that the value of coefficients of the
elastic foundations plays a decisive role in calculations for the eigenfrequencies which correspond to
the different oscillating modes of thin plates and for the corresponding critical speeds, since in the
computations the percentage occupied by these coefficients is greater, the differences of the
neighboring eigenfrequencies correspond to the various vibratory types of thin plates, and the
differences of the corresponding critical velocities are not distinct, but yet for the case which don’t
have elastical bases, its differences are larger.

6. From formulae (5.6) or (5.7) we may gain two groups of the resonance conditions (5.8) or
(5.9) for the plate, which lies on the elastic foundations and is simply supported. hence we may aiso
obtain the critical speeds of two groups (5.10) and (5.11). One of them is least.

7. If the mass of the moving loads is not considered we will only obtain one group of the
resonance conditions. While we take the mass of the moving loads into account, we will get two
groups of the resonance conditions, hence the less critical speed is obtained, the ratio of the critical
speeds between the front case and the back case is three to one.

8. Provided we select the suitable functions (2.3) of the vibratory modes in advance to satisfy all
the boundary conditions, namely, the boundary conditions of geometry and internal forces, in such
a manner, the results, which were obtained by this paper, are suitable in applications for the
rectangular plates with various supports on boundaries.

9. The method which is mentioned in this paper is.a kind of approximate solutions by
simplification, but it has not yet arrived at perfection, besides, we may use any other ways which
may lead to the study of the problems of the nonlinear parametric resonance, such as the
troublesome Mathieu’s equations!'? -2 by the method of successive iterations and the method of
small parameter or the perturbation method -8, etc.
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