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An in situ full-scale test is conducted to measure the dynamic response of a long cantilever 

wall that retains baclifill soil. The recorded modal parameters of this retaining wall ex

hibited significant similarity to those of a clamped cantilever plate (rather than those of a 

cantilever beam or plane-strain analysis). Such a three-dimensional (3-D) response pat

tern is not accountedfor by current analysis procedures. A simple 3-D finite element model 

is employed to further analyze the observed resonant configurations. The results indicate 

that such configurations play an important role in the seismic response of wall baclifill soil 

systems of variable height, such as wing walls supporting highway approach ramps. 

INTRODUCTION 

Retaining walls are built for the purpose of supporting 

an adjacent soil mass or backfill. The magnitude of 

earthquake-induced loads on such structures depends 

on the backfill and foundation properties, earthquake 

motion characteristics, and structural wall properties. 

Damage to retaining wall systems due to seismic activ

ity is often reported in the literature (Jennings, 1971; 

Seed and Whitman, 1970; Sitar et al., 1995; Tatsuoka 

et al., 1996; Whitman and Christian, 1990). 

A number of analytical and numerical models have 

been proposed to investigate the earthquake response 

of cantilever retaining walls (Alampalli, 1990; Whit

man, 1991). In these models, earthquake response is 
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assumed to be uniform along the wall, and such wall 

backfill systems are modeled under 2-dimensional (2-

D) or plane-strain conditions (Arias et al., 1981; Mat

suo and Ohara, 1960; Velestos et aI., 1995; Wood, 

1973, 1975). 

A large and growing body of full-scale dynamic 

tests on civil engineering structures has been reported 

in the literature (Alampalli et al., 1995; Calciati et 

al., 1977; Douglas and Reid, 1982; Keightley, 1966; 

Paskalov et al., 1977). However, very few full-scale 

tests have been performed on retaining wall soil sys

tems (Aliev et al., 1973; Amano et al., 1956; Chang 

et al., 1990; Fukuoka and Imamura, 1984). During a 

pilot full-scale test on a retaining wall system (Alam

palli, 1990; Elgamal et al., 1990), it was found that 
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modal spatial variation was displayed along the wall 

length as well as its height. Modes were found to bear 

significant similarity to those of a clamped cantilever 

plate rather than those of a cantilever beam (plane

strain analysis). Such a 3-D response pattern was fur

ther analyzed during a more recent forced vibration 

frequency sweep test (Elgamal et aI., 1996). 

In the following section, the experimental testing 

program is summarized. A number of salient experi

mental observations are presented. The recorded dy

namic response is analyzed within a simple analytical 

and numerical framework to investigate the observed 

3-D response mechanisms. 

EXPERIMENTAL STUDY 

The test structure was a long wall (140 ft) of vary

ing height from 4.6 to 10 ft and a thickness of 1.3 ft 

(Fig. 1). This wall supported an elevated parking lot. 

A construction joint was located at about 75 ft from 

the short end of the wall (Fig. 1). 

A typical test configuration is shown in Fig. 2. 

It consists of a dynamic signal analyzer (HP model 

HP3562A) to obtain real-time frequency domain rep

resentations of the recorded signals, a large 12-lb 

weight sledge hammer with a force transducer for 

excitation (PCB model 086B50), an accelerometer 

for response measurement (PCB model 39C), ampli

fiers, signal conditioners, and a microcomputer with 

a floppy and hard disk drive (HP model 300, se

ries 9000). At the beginning of testing, reciprocity 

was verified by comparing frequency response func

tions (FRF) obtained through interchanging input and 

output locations. During a test, measurement locations 

were chosen to reflect the behavior of the strucutre in 

the modes of interest. Only the dynamic wall response 

perpendicular to its plane was measured (Alampalli, 

1990). 

Excitation hammer input was imparted at sam

pling points (measurement locations) and the result

ing acceleration output was measured at a stationary 

point (Alampalli, 1990). For each measurement point, 

an input-output FRF was computed by the analyzer, 

which also performed signal digilization using appro

priate antialiasing filters, such that, 

FRF(f) = Gyx(f)/Gxx(f), (1) 

where G~:(f) is the cross power sectrum of output 

and input signals, G xx (f) is the auto power spectrum 

of the input signal, and f is the frequency variable. An 

exponential window (filter) was used on the structural 

vibration response and a force window was used on 

the hammer excitation. Mode shapes were extracted 

using the peak curve-fitting technique (Ewins, 1984). 

For any sampling point, the process was repeated and 

the average of a number of FRFs was finally stored 

as the input-output transfer function for this point. In

spection of the coherence function, y (Ewins, 1984) 

dictated the number of FRFs to be averaged, where 

in which Gyy(f) is the auto power spectrum of the 

output signal. The coherence function assures con

sistency of the obtained data. A coherence of zero 

denotes that input and output are unrelated, whereas 

a coherence of unity denotes that they are related 

with no interference or noise effects. In this study, a 

highly satisfactory coherence of 0.95 or greater was 

always achieved. A modal parameter estimation pack

age (modal 3.0 SE), developed by Structural Measure

ment Systems (SMS, 1987), was employed for extrac

tion of modal parameters (linearity and reciprocity for 

the test structures is assumed). 

Transfer functions of 178 measurement locations 

along the exposed side of the wall were measured 

(Alampalli, 1990). From these transfer functions, res

onant frequencies and associated mode shapes were 

obtained. A number of these mode shapes are shown 

in Fig. 3(a). A rough estimate of damping ratios sug

gested a value of about 8% for most of these modes. 

In a more recent test, the same structure was tested 

in the low frequency range (up to 17 Hz) of signifi

cance for earthquake-type excitation (Elgamal et aI., 

1996). A 5000-lb harmonic shaker was employed in a 

frequency sweep mode. The observed modal config

urations [Fig. 3(b)] also clearly displayed the above 

mentioned 3-D response effects. 

It may be noted that the resonant wall configura

tions (Fig. 3) mimic that of a cantilever clamped plate. 

Along the length, the amplitude gradually increased 

with the increase in free cantilever wall height (Fig. 3). 

Such a 3-D response pattern is not accounted for by 

current analysis procedures. Hence, a simple 3-D fi

nite element model was employed to further analyze 

the observed resonant configurations and their poten

tial contribution to seismic response of wall backfill 

soil systems. 

NUMERICAL STUDY 

A simple finite element model was employed to in

vestigate the conditions associated with 3-D seismic 

retaining wall response. The wall was modeled using 

3-D brick elements. A system of springs along the 
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Length = 140 ft 

FIGURE 1 Schematic of tested wall (elevation view). 
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FIGURE 2 General test setup for impact hammer test. 

Table 1. Natural Frequencies and Modal Participation 

Factors of 30-ft Plane-Strain Wall 

Mode Frequency 

No. (Hz) Modal Participation Factor 

5.581 0.50285 

2 17.186 -0.18740 

3 31.237 -0.00016 

4 47.088 0.12500 

5 90.638 -0.03567 

wall face represented the backfill soil. In this model, 

the following parameters were employed: Young's 

modulus = 4 x 108 Ib/ft2, Poisson's ratio = O.IS, 

density = 14S Ib/ft3 , and soil spring constant = 
1 x 105 Ib/ft3. 

The response of four long walls (fixed at the base 

and free along the boundaries) was studied: a wall of 

30-ft height and 3-ft thickness, using plane-strain anal

ysis; a wall of IS0-ft length, 3-ft thickness, and 30-

ft uniform height; a wall of ISO-ft length, 3-ft thick

ness, and height varying from 40 ft at one end to 

20 ft at the other end; and a wall of IS0-ft length, 

3-ft thickness, and height varying from 40 ft at one 

end to 10 ft at the other end. In all cases, the re

tained soil was assumed to extend throughout the 

Table 2. Natural Frequencies and Modal Participation 

Factors of 3-D Wall with 30-ft Uniform Height 

Mode Frequency 

No. (Hz) Modal Participation Factor* 

5.Q20 1.407 

2 5.083 0 

3 5.305 0 

4 5.793 0 

5 6.703 0 

6 8.190 0 

7 10.311 0 

8 13.084 0 

9 14.852 0 

10 16.466 0 

11 16.469 0 

12 17.238 -0.720 

13 17.375 0 

14 17.840 0 

15 18.621 0 

* Motion perpendicular to wall face. 

wall height and length. Natural frequencies and modal 

participation factors (perpendicular to the wall face) 

were computed by an appropriate eigenvalue solver 

(Tables 1-4). Mode shapes for this 3-D finite element 
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FIGURE 3 Selected resonant configurations of wall system. (a) In situ impact hammer test and 

(b) In situ frequency sweep test. 
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FIGURE 4 Mode shapes of 30-ft uniform height wall (in plan view). 

model are shown in Figs. 4-6. These results reveal the 

following. 

Uniform Height Wall 

The mode shapes of the uniform height wall are shown 

in Fig. 4, and corresponding modal participation fac

tors are shown in Table 2. (Mode 9 is a longitudinal

vertical mode of negligible modal participation fac

tor; hence, attention is focused herein on the other 

modes.) Only modes 1 and 12 have a significant modal 

participation factor in the direction perpendicular to 

the wall face. These modes are the first and second 

modes along the height, rerspectively, and correspond 

to modes 1 and 2 of the plane-strain idealization (Ta

ble 1). 

All other 3-D modes were essentially perfectly 

symmetric or perfectly antisymmetric along the wall 

height (Fig. 4). Hence, modal participation factors cor

responding to these modes were zero (see Table 2). 

Such modes would only be excited by nonuniform in

put ground motion components along the wall length. 

In general, such motions during an earthquake may be 

of negligible effect, except for walls of large length. 

Table 3. Natural Frequencies and Modal Participation 

Factors of Wall with Height Varying Linearly from 40 

to 20 ft 

Mode Frequency 

No. (Hz) Modal Participation Factor* 

4.459 2.214 

2 4.806 -1.l72 

3 5.271 0.694 

4 5.833 -0.376 

5 6.752 0.123 

6 8.255 0 

7 10.391 0 

8 12.361 0 

9 12.965 -0.807 

10 13.173 -0.196 

11 15.422 -0.523 

12 16.552 0 

13 17.594 -0.360 

14 19.492 0 

15 19.815 0.284 

* Motion perpendicular to wall face. 
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FIGURE 5 Mode shapes of wall with height varying linearly from 40 to 20 ft (in plan view). 
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Mode shapes of wall with height varying linearly from 40 to lOft (in plan view). 



Table 4. Natural Frequencies and Modal Participation 

Factors of Wall with Height Varying Linearly from 40 

to 10 ft 

Mode Frequency 

No. (Hz) Modal Participation Factor* 

1 4.473 2.185 

2 5.038 -1.135 

3 5.938 0.687 

4 7.211 -0.494 

5 8.843 0.381 

6 10.765 -0.293 

7 12.546 0 

8 12.925 0.213 

9 13.221 -0.974 

10 15.960 -0.139 

11 16.680 0.523 

12 18.573 0 

13 19.988 -0.328 

14 21.089 0 

15 23.325 0 

* Motion perpendicular to wall face. 

Nonuniform Height Walls 

Mode shapes of these two walls are shown in Figs. 5 

and 6, and the corresponding modal participation fac

tors are shown in Tables 3 and 4. (Modes 8 and 14 

of Table 3 and Fig. 5 and modes 7 and 14 of Table 4 

and Fig. 6 are vertical-longitudinal modes of negligi

ble modal participation factors; hence, attention is fo

cused herein on the other modes.) In the two nonuni

form height cases, it is evident that all modes signif

icantly depart from perfect symmetry or asymmetry. 

This departure increased with the increase in height 

differential between the left and right ends of the wall. 

Thus, all modes show significant nonzero modal par

ticipation factors. Uniform ground motion will conse

quently excite all these modes. Under earthquake exci

tation, any of these modes may playa significant role 

as dictated by the nature of input ground excitation. 

Based on the above discussions, it might be con

cluded that the 30-ft plane-strain idealization is only 

effective in matching the first mode of a variable 

height wall (such as the 40-20 case) and essentially 

misses all other modes of vibration ( Table 3). 

Steady-State Forced Response 

For above mentioned four wall models, a steady-state 

forced response analysis was also performed by ap

plying an inertial load in the direction perpendicu

lar to the wall plane. A frequency sweep was con

ducted in the 0-25 Hz range at an interval of 0.05 Hz 
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Table 5. Natural Frequencies of Uniform Height Wall 

Using Plate Theory 

Frequency (Hz) 

H = 12 ft H = 24 ft H = 24 ft 

Mode L = 140 ft L = 140 ft L = 280 ft 

No. m, n T = 1.33 ft T = 2.66 ft L = 2.66 ft 

1,0 14.23 7.12 7.12 

2 1,1 14.62 7.88 7.31 

3 1,2 15.80 9.96 7.90 

4 1,3 17.55 12.89 8.77 

5 1,4 19.75 16.64 9.87 

6 1,5 22.43 21.38 11.22 

7 1,6 25.60 27.20 12.80 

8 1,7 29.28 34.16 14.64 

9 1,8 33.48 42.27 16.74 

10 1,9 38.23 51.56 19.11 

H, plate height; L, plate length; T, plate thickness; plate 

elastic modulus = 4 x 108 Ib/ft2; Poisson's ratio = 0.15; 

mass density = 130 Ib/ft3; m is the mode number along 

the height; and n is the mode number along the length. 

Adapted from Wanbourton (1954). 

(with slight viscous damping to control resonant am

plitudes). The frequency sweep (Alampalli, 1990) 

showed that (Fig. 7) the 30-ft uniform height wall dis

payed two main resonances in both its computed 3-D 

and plane-strain responses. Hence, walls of uniform 

height can be modeled using plane-strain analysis. In 

general, contribution of modes involving spatial vari

ation along the length (between the first and second 

mode given by plane-strain analysis) might be negligi

ble for most typical walls. 

The two walls of variable height (Fig. 7) displayed 

additional resonances that correspond to modal con

figurations along the wall length (Figs. 5, 6). These 

resonances were not excited by the imparted uniform 

base excitation for the constant height walls (walls I 

and 4 of Fig. 7). Hence, a dynamic plane-strain analy

sis of structures such as wing walls (where the height 

varies continuously along the wall length) may not 

be satisfactory and a 3-D analysis might be neces

sary. 

As may be noted, only one finite element was used 

along the wall thickness. The effect of this crude repre

sentation along the thickness was investigated (Alam

palli, 1990) in four different cases (with 1 to 4 el

ements along the wall thickness). It was found that 

number of elements along the thickness had a minor 

effect on the results reported herein (natural frequen

cies, mode shapes, and modal participation factors). 
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Elevation View 
Length=150 ft 
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FIGURE 7 Computed Fourier amplitude spectrum of wall response. 

PLATE ANALYSIS 

The influence of wall and backfill length and height 

on dynamic response may be visualized using a sim

ple plate theory idealization (Wanbourton, 1954). In 

this idealization, the resonances of a wall modeled as 

a cantilever plate illustrate the effect of length and 

height (Table 5). The results reveal that the fundamen

tal frequency of the wall is governed by the height and 

wall length plays no roll in this respect. As the wall 

length increases, additional low frequency modes ap

pear (along the length). As mentioned earlier, these 

modes may play an important role in the seismic re

sponse of nonuniform height walls. 

CONCLUSIONS 

The conducted testing program and associated study 

showed that additional 3-D resonances play an im

portant role in the seismic response of wall backfill 

soil systems of variable height (such as highway wing 

walls). For typical uniform height wall systems (with 

free vertical edges), modal configurations that display 

spatial variability along the wall length will only be 

excited by nonuniform seismic motions. Hence, the 

seismic response of uniform height walls may be ad

equately analyzed using a 2-D or plane-strain model. 

Variable height walls are more accurately represented 

by a 3-D model. 
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