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Dynamic Response Optimization
of Piezoelectrically Excited Thin
Resonant Beams
Piezoelectrically excited, resonant, elastic beams find wide use as piezoelectric fans,
optical choppers, MEMS sensors, and piezoelectric motors. The devices consist of either
one piezoelectric ceramic patch (piezopatch) bonded on one side (asymmetric configura-
tion), or of two oppositely poled patches placed symmetrically on either side of a thin,
flexible elastic beam (symmetric configuration). Field equations of the coupled structure
governing the coupled longitudinal and bending motions of the resonator are derived
using linear constitutive equations, slender beam approximations, and Hamilton’s prin-
ciple. Analytical solutions are found to the coupled eigenvalue problem. Eigenvalues and
eigenfunctions for the short-circuited and open-circuited configurations are predicted
analytically and are found to be in excellent agreement with results from three-
dimensional finite element simulations. Electromechanical coupling factors (EMCF) are
computed using the analytical and finite element model and optimal resonator geometries
are identified for maximal EMCF. The EMCF predictions are also compared with experi-
ments for an asymmetrically configured resonator. The analytical solution provides a
convenient tool for the optimal design of such devices.@DOI: 10.1115/1.1857921#

1 Introduction
Flexural piezoelectric resonators are solid-state devices consist-

ing of piezoelectric elements bonded to an underlying elastic
structure. A properly tuned harmonic voltage input excites piezo-
electrically a flexural resonance in the structure. Such resonators
are used as actuators and sensors for a wide variety of applications
including piezoelectric fans, optical beam choppers, ultrasonic
choppers, MEMS density sensors, resonating viscometers, ultra-
sonic motors, automatic tooth brushes, and dentistry tools. In par-
ticular, piezoelectric fans utilize this flexural vibration to induce
vortices and streaming flow for electronics cooling. Figure 1
shows a single-patch commercial piezoelectric fan which is made
of mylar and operates at a nominal bending resonance of 60 Hz.

These fans were first discussed by Toda@1#. Piezoelectric fans
have gained importance recently for cooling applications in mod-
ern portable electronics such as laptops and cellphones and auto-
mobile multimedia boxes. The use of piezoelectric fans as very
compact, low power, noiseless air cooling devices has been stud-
ied recently by Yoo et al.@2# and Campbell et al.@3#. For the
design of flexural resonators in piezoelectric fans and other appli-
cations, little seems to be known about an optimal actuator-beam
configuration. Indeed the optimization objective may vary among
these devices. However for piezoelectric fans a clear objective is
to maximize the output mechanical energy for a given available
electrical energy input. This leads to faster streaming and thus to
effective cooling. To achieve this, the so-called electromechanical
coupling factor~EMCF! needs to be maximized for each chosen
resonant mode. Likewise, maximal EMCF is one of the natural
optimization objectives for other devices such as optical choppers
and resonant motors.

The literature on piezoelectric beam systems can be divided
broadly into that dealing with static actuation~@4–7#! and that
focused on dynamic analysis~@8–19#! of infinite and finite beams.
Gibbs and Fuller@8#, Pan and Hansen@9#, Brennan et al.@10#, and
more recently, Wolf@11# investigated the dynamics of structures
consisting of a finite length piezopatch attached to an infinite

beam. Gibbs and Fuller@8# and Brennan et al.@10# modeled the
flexural and longitudinal waves generated in the beam by the pi-
ezopatch. Pan and Hansen@9# modeled piezoelectric actuation as
an equivalent point force located at the center of the actuator. Wolf
@11# derived the equations of motion using variational principle.
The EMCF dependence on the patch thickness was investigated
analytically and using finite element methods. However in most
applications outlined earlier, both the patch and the underlying
beam are of finite dimensions. Flexural and longitudinal waves
generated by the piezoelectric excitation reflect off the beam
boundaries requiring a separate, detailed analysis of the finite
beam.

Dynamics of finite beams were analyzed in@12–19#. Pan et al.
@12# and Rivory et al.@13# presented a dynamical model of a finite
beam with symmetrically placed piezopatches. They did not com-
pute the EMCF and neglected the added mass and stiffness effects
of the piezopatches. Kim and Jones@14# studied the statics and
dynamics of symmetric and asymmetric configurations. However,
their dynamic analysis was restricted to cases where the piezo-
patch covered entirely the underlying beam. As will be demon-
strated in this paper, the problem is significantly complicated
when the patch is shorter than the beam. Rontong et al.@15# stud-
ied the bending and extension of a cantilever with symmetrically
placed piezopatches using the Rayleigh–Ritz approach. They also
assumed a constrained layer between the beam and the patches.
Lobontiu et al.@16# used a lumped parameter approach to predict
the resonant tip deflection. The mass, damping, stiffness, and forc-
ing terms were derived as parameters of the piezoelectrically ac-
tuated system. Barboni et al.@17# analyzed a beam covered par-
tially by two piezopatches using the kinematic assumptions of
Crawley and de Luis@4#. However, the additional mass and stiff-
ness of the piezopatches are not considered. Optimal location and
geometries of the piezopatches were investigated to improve the
controllability of the structure. Wang and Wang@18# modeled the
effects of the piezopatches as internal bending moments, neglect-
ing the effects of beam deflection on the piezopatch. Bu¨rmann
et al.@19# analyzed a partially covered, symmetrically configured,
double-patch finite beam.

Furthermore,@5–10# and @12–18# assume a constant electric
field across the patch thickness in conjunction with Bernoulli–
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Euler strain distribution in the patches. However these two as-
sumptions together violate Gauss’ law, which requires a vanishing
charge in the electrically insulated dielectric.

This paper follows the developments of@19# and extends the
analysis to the more complicated and practically relevant case of
finite beams in both symmetric and asymmetric configurations.
Modeling the asymmetric configuration is more complicated than
the symmetric configuration because both bending and exten-
sional motions are excited simultaneously. Moreover, the neutral
axis jumps discontinuously across the ends of the actuator. The
main contributions of this paper include:~i! analytical modeling
of the coupled dynamics of a piezopatch attached to a thin, finite
elastic beam in the symmetric and asymmetric configurations;
~ii ! derivation of an analytical solution of the short-circuited
and open-circuited eigenvalue problem;~iii ! predictions of
optimal configurations based on EMCF;~iv! verification of the
results using finite element predictions; and~v! comparison with
experimental results obtained with asymmetrically configured
resonators.

2 Electromechanical Modeling and Analysis

2.1 Kinematics. A schematic of the key kinematic variables
used in the analysis is presented in Fig. 2. Unless otherwise noted,
the subsequent development is common to both the symmetric
and asymmetric configurations. The composite elastic beam is di-
vided into three regions: Region 1 extends from the clamp up to
the start of the patch; region 2 is the composite piezopatch-elastic
beam section; and region 3 extends from the end of the patch to
the free end of the elastic beam. The structure in each region is
modeled separately as a thin Bernoulli–Euler beam. The model is
assumed to be free of all kind of losses. The piezopatches are
assumed to be bonded perfectly to the elastic beam through an
infinitesimal bonding layer. The neutral axis in region 1 and re-
gion 3 lies along the centroidal axis of the beam cross section,
while its location in region 2 depends on its configuration. In the
symmetric configuration@Fig. 2~b!#, the neutral axis in region 2 is
identical to that in region 1 and region 3. For the asymmetric
configuration, however, the neutral axis in region 2 is located a
distancee below the patch-beam interface@Fig. 2~a!#, where@11#

e5
tb

2 F S Eb

Ep
2S tp

tb
D 2D

Eb

Ep
1S tp

tb
D G (1)

The beam is made of a linearly elastic, isotropic material while
the piezopatch is planar isotropic@20#. Planar isotropy is usually
assumed for initially strongly polarized piezoelectric materials.
For thin beams undergoing small amplitude oscillations and cross-
sectional rotations, the Bernoulli–Euler beam model is applied
separately to each region. Accordingly the longitudinal normal
strain«1 is approximated by

«15u82x3w9 (2)

where8 denotes the derivative with respect tox1 , andx3 is mea-

Fig. 1 A photograph of a single-patch „asymmetric configura-
tion … commercial fan from Piezo Systems, Inc.

Fig. 2 Schematic diagram displaying the kinematic quantities of the „a… asymmetrically and „b… symmetrically configured
resonators. Note that in „a… the neutral axis jumps at the interface between regions 1, 2 and 3.
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sured from the neutral axis for each individual region. In Eq.~2!,
u andw stand for the longitudinal and transverse displacements,
respectively.

2.2 Electric Enthalpy. The electrical enthalpy@20# of the
piezopatch is now derived under the assumption of thin beam
theory. The axis of polarization of each patch is thex3 axis. The
planar, isotropic piezoelectric constitutive equations are@20#

T5cS2eE, D5eTS1eE

whereT, S, E, andD denote, respectively, stress, strain, electric
field, and electric displacement vector whilec, e, e contain, re-
spectively, the components of linear moduli, the piezoelectric co-
efficients, and the dielectric constants.

Assuming a state of uniaxial stresss1 and uniaxial electric field
E3 andD3 , the linear constitutive equations@20# for piezopatches
reduce to@11#

s15c11«12e31E3 , D35e31«11e33E3 (3)

The constants in the constitutive equations are given by

e335K33e0 , c115Ep , e315Epd31 (4)

whereK33, «0 , Ep , andd31 denote respectively the relative di-
electric constant, the permittivity of free space, the Young’s modu-
lus of the piezoelectric actuator, and the piezoelectric strain
coefficient.

The absence of free charges inside the actuator requires“.D
50 @11#. For the one-dimensional case under consideration, this
further reduces to

D3,350 (5)

where the index 3 denotes the derivative ofD3 with respect tox3 .
In addition, the electric potentialF is introduced such that
E52¹F. For thin piezopatches, this reduces to

E352f ,3 . (6)

Substitution of Eqs.~2! and ~5! into Eq. ~3! yields

«33E3,32e31w950. (7)

Equations~6! and ~7! lead to the conclusion that the electric po-
tential function must be quadratic inx3

F~x3!5f01f1x31f2x3
2 (8)

Substitution of Eqs.~6! and ~8! into Eq. ~7! leads to

f252
1

2

e31

«33
w9. (9)

Further, using the boundary condition

f~e1tp!2f~e!5Df

whereDf is the potential difference between the bottom and the
top of electrodes, together with Eq.~8! leads to

f15
Df

tp
1

1

2

e31

«33
~2e1tp!w9 (10)

Equations~9! and ~10! together with Eq.~8! then lead to the
approximate form of the electric field in the piezopatch

E3~x1 ,x3 ,t !52
2«33Df1e31hp~2e1tp22x3!w9

2«33tp
(11)

It may be noted that the electric fieldE3 depends linearly on the
potential differenceDf and the curvaturew9. Becauses1 andD3
are related to the internal energy of the piezoelectric actuator@20#
through

s15
]H

]«1
, D352

]H

]E3
(12)

the total enthalpy of the piezopatch is given by@20#

H5
1
2 c11«1

22e31E3«12
1
2 «33E3

2 (13)

Substitution of the approximations of strain~2! and electric field
~11! into Eq. ~13! leads to

H5
1
2 Epu821~a2x3

21a3!w921a4w91a51~a61a7x3!u8w9

1a8u8 (14)

where the constants in Eq.~14! are given by

a25
1

2 S c111
e31

2

«33
D , a35

2e31
2 ~2e1tp!2

8«33
,

a452
e31~2e1tp!Df

2tp
,

a55
2«33~Df!2

2~hp!2 , a65
e31

2

2«33
~2e1tp!,

a752S Ep1
e31

2

«33
D , a85e31

Df

tp
(15)

The potential differenceDf is prescribed as an electrical
boundary condition, that is, the electrodes of the actuator are ei-
ther short-circuited~SC!

Df50 (16)

or open-circuited~OC! and the charges on the electrodes are gen-
erated naturally by bending. Upon assumption that the top elec-
trode is initially charge-free*L1

L2D3dx150 and using Eqs.~3! and
~11! the open-circuited boundary condition may be obtained

Df5
e31tp

~L22L1!e33
FuU

L1

L2

2
~ tp12e!

2
w8U

L1

L2G (17)

Equation~17! relates the charge developed to the difference in the
displacement fields at the beginning and the end of the electrode.

2.3 Equations of Motion and Boundary Conditions.
Upon neglect of the rotational inertia of the beam and the patch
the Lagrangian for the resonator can be formulated as

L5Lb1Lp , Lb5Tb2Ub , Lp5Tp2Up (18)

where

Tb5E
Vb

rb

2
u̇2dVb1E

Vb

rb

2
ẇ2dVb ,

Tp5E
Vp

rp

2
u̇2dVp1E

Vp

rp

2
ẇ2dVp ,

Ub5E
Vb

1

2
Eb~u82x3w9!2dVb , Up5E

Vp

HdVp

andrb , rp , Vb , Vp , andEb denote, respectively, the mass den-
sity of the beam and the piezopatch, the volume of the beam and
the piezopatch, and the Young’s modulus of the beam.H is the
enthalpy of the piezoelectric actuator derived in the previous sec-
tion. u and w are the longitudinal and transverse displacements,
respectively. The equations of motion of the system are derived by
setting the first variation of action to zero@11#, such that

dE
t1

t2

(
i 51

3

Lidt50 (19)

where Li denotes the Lagrangian that is defined piecewise for
region 1, region 2 and region 3, respectively.

The above formulation is valid for both the asymmetric~single-
patch! and symmetric~two-patch! configurations. The patches on
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either side of the symmetrically configured beam are either driven
in phase exciting longitudinal motions, or out of phase inducing
pure flexure@4#. For either type of motion, only the longitudinal
or the transverse vibration terms need to be retained in Eq.~18!.

Application of Hamilton’s principle for the asymmetric con-
figuration results in two equations of motion for each region, one
corresponding to the longitudinal motion and the other corre-
sponding to the transverse motion. In all, there are 18 boundary
conditions–four each associated with the transverse motion in
each region and two each for the longitudinal motion of each
region. The SC and OC electrical boundary conditions are imple-
mented through terms in the equations of motion involvingDf.
Df in turn is prescribed by the electrical boundary conditions
@Eqs.~16! and ~17!#.

The equations of motion in the three regions are given as
follows:

Region 1

2rbAbü11EbAbu1950, rbAbẅ11EbI bw18-50 (20)

Region 2

2~rbAb1rpAp!ü21~EbAb1EpAb!u2950

2~rbAb1rpAp!ẅ22~2a2I pe12a3Ap1EbI be!w28-50
(21)

Region 3

2rbAbü31EbAbu3950, rbAbẅ31EbI bw38-50 (22)

The geometric boundary conditions are given by

u1~0,t !50, w1~0,t !50, w18~0,t !50

u1~L1,t !5u2~L1,t !, w1~L1,t !5w2~L1,t !,

w18~L1,t !5w28~L1,t !

u2~L2,t !5u3~L2,t !, w2~L2,t !5w3~L2,t !,

w28~L2,t !5w38~L2,t !.

And the natural boundary conditions are

~ApEp1EbAb!u28~L1,t !1a8Ap5EbAbu18~L1,t !

~2a2I pe12a3Ap1EbI be!w29~L1,t !1a4Ap5EbI bw19~L1,t !

~2a2I pe12a3Ap1EbI be!w2-~L1,t !5EbI bw1-~L1,t !

~ApEp1EbAb!u28~L2,t !1a8Ap5EbAbu38~L2,t !

~2a2I pe12a3Ap1EbI be!w29~L2,t !2a4Ap5EbI bw39~L2,t !

~2a2I pe12a3Ap1EbI be!w2-~L2,t !5EbI bw3-~L2,t !

u38~L3,t !50, w39~L3,t !50, w3-~L3,t !50. (23)

Equations~20!–~22! govern the dynamics of the asymmetric con-
figuration. The longitudinal and transverse motions in the equa-
tions of motion are decoupled in each region. The coupling arises,
however, in the boundary conditions through the termsa4 anda8
in Eqs.~23a!, ~23b!, ~23d! and~23e!. The corresponding equations
for the symmetric configuration can be easily derived as a special
case from the above equations by setting the transverse compo-
nents to zero when the patches are driven in phase and by setting
the longitudinal components to zero when the patches are driven
out of phase.

2.4 Solution Procedure. Introduction of a time-separable
solution

ui~x1 ,t !5R@Ui~x1!ej Vt#,

wi~x1 ,t !5R@Wi~x1!ej Vt# i 51,2,3 (24)

for the displacement fields in the three regions results in the fol-
lowing general solution

Wi~x1!5Ci ,3 sin~d ix!1Ci ,4 cos~d ix!1Ci ,5 sinh~d ix!

1Ci ,6 cosh~d ix!,

Ui~x1!5Ci ,1 sinb ix1Ci ,2 cosb ix i51,2,3 (25)

Table 1 Material properties used in this paper. A polarized ferroelectric ceramic model with x 3
as the poling direction was used in the analysis. Piezoelectric material properties are obtained
from Piezo Systems, Inc. catalog 3.

Physical Quantity Value

Eb Young’s modulus of the beam~brass! 1031010 N/m2

Ep Young’s modulus of the actuator~PSI-5H-S4-ENH! 6.231010 N/m2

rb Density of the beam~brass! 8400 kg/m3

rp Density of the actuator~PSI-5H-S4-ENH! 7800 kg/m3

tb Thickness of the beam 0.1016 mm
tp Thickness of the actuator 0.05tb– 1.5tb

~varied in steps of 0.05tb)
b Width of beam and actuator 8.89 mm
L1 Length of region 1 0.5 mm
L2 Length of patch 0.06L3 – 0.99L3

~varied in steps of 0.03L3)
L3 Overall length of the structureL3 27.424 mm
K33 Relative dielectric constant 3800
e0 Permittivity of free space 8.8542310212 C/V m
d31 Piezoelectric strain coefficient 2320310212 m/V

Table 2 The natural frequencies of the analytical and the finite
element model for the asymmetric configuration. The finite el-
ement model is used as reference when computing the error.

Mode L257 mm L2512 mm L2517 mm

First SC anal. 117.60Hz 161.68Hz 179.50Hz
First SC FEM 117.81Hz 158.68Hz 172.98Hz

Error 20.18% 1.89% 3.77%

First OC anal. 118.13Hz 163.25Hz 181.82Hz
First OC FEM 118.38Hz 160.52Hz 175.67Hz

Error 20.21% 1.70% 3.50%

Second SC anal. 595.07Hz 533.32Hz 652.87Hz
Second SC FEM 595.29Hz 535.77Hz 649.99Hz

Error 20.04% 20.46% 0.44%

Second OC anal. 598.11Hz 534.30Hz 653.32Hz
Second OC FEM 598.45Hz 536.68Hz 651.25Hz

Error 20.06% 20.44% 0.32%
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where

b1,35S rbv2

Eb
D 1/2

, d1,35S rbAbv2

EbI b
D 1/4

,

b25S ~rbAb1rpAp!v2

EbAb1EpAp
D 1/2

, d25S ~rbAb1rpAp!v2

2a2I p12a3Ap1EbI be
D 1/4

.

(26)

On implementation of the geometric boundary conditions atx
50, the constantsC1,2 vanish and C1,552C1,3 and C1,65
2C1,4. The remaining 15 boundary constants are used to con-
struct a 15315 matrix containing the unknown modal frequen-
cies. Vanishing values of the determinant of this matrix yield the
natural frequencies and mode shapes of the structure.MAPLE 8 @21#
is used to compute the zeros of the determinant. This leads to the
exact eigenvalues and eigenfunctions of the structure. For the

symmetric configuration this matrix will be only 535 for a purely
longitudinal resonator and 10310 for a purely flexural resonator.

2.5 Electromechanical Coupling Factor „EMCF …. The
EMCF is a measure of the obtainable mechanical work in a quasi-
static deformation cycle of the piezoceramic. This is conveniently
expressed in terms of the SC and the OC strain energies as@11#

EMCF5S UOC2USC

UOC
D 1/2

5S Uconv

USC
p 1Uconv1Ub

D 1/2

, (27)

where UOC is the total energy stored in the structure when the
patch is open-circuited~OC!, USC is the total energy stored in the
structure when the patch is short-circuited~SC!, Uconv is the con-
vertible energy,USC

p is the energy stored in the patch alone with
short-circuited electrodes, andUb is the total strain energy stored
in the beam.

Fig. 3 Transverse vibration component of the first and second bending dominated modes of
the asymmetrically configured resonator: „a… SC first Mode, „b… SC second Mode, „c… OC first
Mode, and „d… OC second Mode. Solid black line: analytical; stars: finite element predictions.

Fig. 4 Longitudinal displacement component of the first bending dominated mode of
the asymmetrically configured resonator: „a… SC mode, and „b… OC mode. Solid line:
analytical; stars: finite element.
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Assuming negligible longitudinal displacement, the expressions
for Uconv andUSC

p for the asymmetric configuration are@11#

Uconv5
1

2

btp

s11
E

k31
2

~12k31
2 !

S e1
tp

2 D 2 1

~L22L1!
@w28~x1!uL1

L2#2

(28)

USC
p 5

1

2

btp

s11
E F S e1

tp

2 D 2

1
1

12k31
2

h2

12G EL1

L2

@w29~x1!#2dx1

(29)

where s11
E is the elastic compliance of the piezopatch under a

constant electric field, andk31 is the material coupling factor for
longitudinal deformation of a thickness polarized piezoelectric
rod. SimilarlyUb can be summed piecewise over the three regions

Ub5
1

2
I bEbE

0

L1

@w19~x1!#2dx11
1

2
btbEbS tb

2

12
1S e2

tb

2 D 2D
3E

L1

L2

@w29~x1!#2dx11
1

2
I bEbE

L2

L3

@w39~x1!#2dx1 . (30)

Equations~28!–~30! can be specialized for the symmetric case
simply by substitutinge5 tb/2.

For the resonant beams under consideration, the present interest
is in maximizing thedynamicelectromechanical coupling of the
resonant structure. For this purpose, assuming that the mode
shapes remain identical for SC and OC electrodes, the effective or

dynamic EMCF of a chosen mode of the piezoelectric structure
can be related to the OC and SC frequencies~@22,23#!

EMCF5S UOC2USC

UOC
D 1/2

5S vOC
2 2vSC

2

vOC
2 D 1/2

(31)

wherevOC andvSC are the OC and SC natural frequencies of the
chosen mode of the structure. The computation of dynamic EMCF
is then performed conveniently using Eq.~31!.

3 Finite Element Analysis
To verify the analytical model a finite element analysis for both

the symmetric and asymmetric configurations was carried out in
ANSYS 6.0 @24#. ANSYS element SOLID5 was used in this analysis.
SOLID5 is a 20 node three-dimensional linear coupled-field solid
element having both piezoelectric and structural properties. It may
be noted that the planar isotropy of the piezoelectric material re-
quires the prescription of more material constants than simply the
three constants employed in the one-dimensional analytical beam
model.

The model is constructed by first defining keypoints, creating
volumes, and assigning the material properties to the respective
volumes. As in the analytical model, a perfect infinitesimal-
thickness bond between the actuator and the beam is assumed.
The finite element model is also assumed to be lossless. A free
three-dimensional~3-D! mesh is constructed that yields a regular
brick mesh. All nodes underneath and above the piezopatch~es!

Fig. 5 EMCF variation of the first bending mode of an asymmetric resonator with
patch-to-beam length ratio „L2ÀL1…ÕL3 and patch-to-beam thickness ratio t p Õt b :
„a… analytical prediction, and „b… finite element prediction
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are assigned a voltage coupling for the SC and OC free vibration
problem~modal analysis!. For the SC condition, the top electrode
is assigned zero voltage. For the OC case, the voltages at all nodes
on the top electrode are forced to be identical. Material properties
used for the analytical model are presented in Table 1, while the
material properties used in the 3-D finite element analysis are
presented in matrix form in the following

c53
6.2 3.1 3.1 0 0 0

3.1 6.2 3.1 0 0 0

3.1 3.1 5.0 0 0 0

0 0 0 1.0 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

4 31010
N

m2

e5F 0 0 219.84

0 0 219.84

0 0 32.5
G C

m2

e53
3.382 0 0

0 3.382 0

0 0 3.382

0 0 0

0 0 0

0 0 0

4 31028
F

m
(32)

The finite element results thus generated are compared to the
analytical results for long and slender beams with different patch
lengths. Specifically the modal frequencies~OC and SC! for the
asymmetric configuration for typical patch lengths andone thick-
ness (tp50.178 mm) are presented in Table 2 and are found to be

in close agreement. In Figs. 3 and 4 the predicted mode shapes are
compared for the first and second bending modes for both the SC
and OC boundary conditions. The length of the patch is set to
L22L156.5 mm while the remaining parameters are listed in
Table 1. The mode shapes predicted by the finite element method
are presented in terms of the deflections of the centroidal axis of
the beam. Figures 3~a!–3~d! demonstrate that the transverse de-
flections of the analytical and finite element results are in close
agreement for the first and the second modes. Figures 4~a! and
4~b! describe the longitudinal component of the analytical and
finite element predictions of the first bending dominated mode for
the asymmetric configuration. These two are also in close agree-
ment.

For the symmetric configuration, the finite element and analyti-
cal predictions of OC and SC frequencies and mode shapes were
also compared and found to be in close agreement. Indeed, the
errors were smaller in this case than for the asymmetric configu-
ration, and detailed results are not included here.

4 Optimization Results
The main objective of the optimization in this paper is to find

the particular geometry of the fan for which the dynamic EMCF
of the first bending mode is maximized. For this purpose, the
overall fan length,L3, the distance from the clamp to the begin-
ning of the patch,L1, and the beam thickness,tb , are kept con-
stant and the thickness of the patch,tp , and the distance from the
clamp to the end of the patch,L2, are varied as described in Table
1. In Fig. 5, EMCF contour plots are provided for both the ana-
lytical and the finite element models for the asymmetric configu-
ration. The optimal geometries predicted by these plots are in
close agreement with each other.

Several important observations can be made from these plots:

Fig. 6 Variation of Uconv , USC
p , Ub with patch-to-beam thick-

ness ratio „t p Õt b… and the resulting EMCF values according to
Eq. „27… for a constant length ratio „L2ÀL1…ÕL3 Ä0.58. These
curves demonstrate why an optimal thickness ratio exists for
maximizing the EMCF. Fig. 7 Variation of Uconv , USC

p , Ub with patch-to-beam length
ratio †„L2ÀL1…ÕL3‡ and the resulting EMCF values according
to Eq. „27… for a constant thickness ratio t p Õt b Ä0.5. These
curves demonstrate why an optimal patch-to-beam length ratio
exists for maximizing the EMCF.
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1. There is a clear optimum length ratio, (L22L1)/L3, and
thickness ratiotp /tb for which the dynamic EMCF of the first
bending mode is maximized. This optimal geometry corresponds
to tp /tb '0.5, (L22L1)/L3 '0.6. However, while the optimal
fan geometry is identical using the theoretical and finite element
analysis, the EMCF contour values are not identical.

2. It may be noted that these contour plots are specific to the
chosen piezoelectric and beam material properties. The optimal
geometry varies depending on these properties.

The existence of an optimum in the EMCF plots can also be
interpreted using Eqs.~27!–~30!. In Fig. 6 the energies,USC

p , Ub ,
Uconv are plotted for a constant length ratio@(L22L1)/L3
50.58# using Eqs. ~28!, ~29!, and ~30! and analytical mode
shapes. Also plotted are the resulting EMCF values using Eq.
~27!. In Fig. 7 these quantities are plotted for a constant thickness
ratio (tp /tb 50.5). When the thickness ratio is varied with a con-
stant length ratio~Fig. 6!, USC

p andUconv have local maxima near
tp /tb 50.4. Ub however decreases with increasing thickness be-
cause the piezopatch stiffens thus reducing the beam strain energy.
When the thickness ratio is kept constant and the length ratio is
varied ~Fig. 7!, there are two competing factors that come into
play in Eqs.~28!–~30!. As the length ratio is increased, the overall
structure stiffens resulting in less deflection and strain energy in
the beam. Thus initiallyUb decreases. But with increasing length

ratio, the second integral in Eq.~30! also increases relative to the
third integral, andUb increases beyond (L22L1)/L3 >0.7. For
these reasons the EMCF is maximized for specific thickness and
length ratios.

Similar observations can be made for the symmetric configura-
tion ~Fig. 8!. In this case, the optimal length ratio@(L2
2L1)/L3'0.6# remains the same, but the optimal thickness ratio
(tp /tb '0.4) is slightly lower than the optimal asymmetric con-
figuration. Thus the optimal geometry for the symmetric resonator
requires more piezoelectric material than the optimal geometry of
the asymmetric resonator. Again, like the asymmetric configura-
tion, EMCF contour values are higher for the finite element model
compared to the analytical model. The optimal geometries will
depend on the chosen material properties of the beam and the
piezopatch.

5 Experimental Verification of Optimization Results

5.1 Experimental Setup. To verify the theoretical and finite
element results, experiments are performed on an asymmetrically
configured piezoelectric fan-like structure consisting of a piezo-
patch attached to a thin steel blade with superglue. The initial
dimensions of the steel blade and piezopatch are shown in Table
3. The effect of patch to beam length ratio on the EMCF of the
first bending mode are measured experimentally for this system.

Fig. 8 EMCF variation of the first bending mode of a symmetric resonator with
patch-to-beam length ratio „L2ÀL1…ÕL3 and patch-to-beam thickness ratio t p Õt b :
„a… analytical prediction, and „b… finite element prediction
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To investigate this,L1 andL2 are maintained constant whileL3
is decreased gradually in steps. This process was chosen because
the reduction inL3 can be achieved without inducing errors from
clamping and unclamping of the structure.

5.2 Impedance Measurement. At eachL3, the SC and OC
frequencies of the structure are obtained from impedance plots
generated by the Impedance Analyzer~HP/Agilent 4294A). Fig-
ure 9 shows the experimental setup. Figure 10 represents a typical
impedance plot near the first resonance frequency of the structure
together with the corresponding finite element and analytical fre-
quencies based on the material properties listed in Table 3. For a
lossless resonator, the frequency at every local minimum of the
impedance plot represents a natural frequency. Thus the first local
minimum indicates the first SC frequency or the resonant fre-
quency. Similarly, for a lossless resonator, the corresponding local
maximum is the first antiresonance or the OC frequency of the
structure.

It may be noted that the SC and OC frequencies predicted by
the finite element and the analytical models are slightly lower than
the corresponding experimental values. This discrepancy is likely
due to the lack of inclusion of the bonding layer mechanics into
the models. To demonstrate this, finite element calculations in
ANSYS were performed on a resonator with a thin elastic bonding
layer of low modulus~10 GPa! and density 1100 kg/m3 ~that of
ethyl cyano-acrylate, the major ingredient of the bonding used in

the experiment!. As shown in Fig. 10, inclusion of the bonding
layer results in an increase in both the SC and the OC frequencies
and they approach the experimental frequencies.

5.3 Optimization Results and Discussion. At eachL3, the
impedance data are collected ten times and their average and
61s deviations computed. The results are shown in Fig. 11,
along with analytical and finite element predictions based on the
methods described earlier. Material properties of the finite element
and the analytical models are listed in Table 3. Figure 11 shows
clearly that the experimental EMCF reaches a local maximum at
(L22L1)/L3 '0.32 which is close to the analytical and finite
element predictions of 0.35 and 0.33 respectively.

The apparent underprediction of the measured EMCF values by
the finite element and the analytical EMCF calculations can be
explained from@23# and @25#. Specifically, the measured EMCF
and OC and SC frequencies are based on the minima and the

Table 3 Properties and dimensions of the piezoceramic and the steel blade used in the ex-
periment. Piezoelectric material properties are obtained from Piezo Systems, Inc. catalog 3.

Physical quantity Value

Eb Young’s modulus of the beam~steel! 2131010 N/m2

Ep Young’s modulus of the actuator~PSI-5A-S4-ENH! 6.631010 N/m2

rb Density of the beam~steel! 7850 kg/m3

rp Density of the actuator~PSI-5A-S4-ENH! 7800 kg/m3

tb Thickness of the beam 0.1016 mm
tp Thickness of the actuator 0.1905 mm
b Width of beam and actuator 10 mm
L1 Length of region 1 2.8 mm
L22L1 Length of patch 10.8 mm
L3 Overall length of the structureL3 51.65225.65 mm
K33 Relative dielectric constant 1800
e0 Permittivity of free space 8.8542310212 C/V m
d31 Piezoelectric strain coefficient 2190310212 m/V

Fig. 9 Experimental setup for the measurement of EMCF with
varying blade lengths of an asymmetrically configured flexural
resonator

Fig. 10 A typical impedance plot with steel blade of width 10
mm, height 0.1016 mm, and length 36.65 mm. The piezopatch
used is PSI-5A-S4-ENH „thickness Ä0.1905 mm, EpÄ66 GPa…
and of length „L2ÀL1…Ä10.8 mm and L1Ä2.3 mm. For a loss-
less resonator, the minimum in the impedance plot represents
the SC frequency or the series resonance frequency, whereas
the maximum represents the OC frequency or the parallel reso-
nance frequency. Corresponding SC and OC frequencies for
the analytical, finite element model with and without a thin
bonding layer are also provided for comparison.
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maxima of the measured impedance. This, however, is not accu-
rate in the presence of unmodeled losses. In fact it can be shown
@22# that the difference between the actual SC and OC frequencies
is less than the difference in frequencies corresponding to maxima
and minima of the measured impedance plots. This implies that
the actual experimental EMCF is lower than the measured experi-
mental EMCF.

6 Conclusions
This paper investigates the dynamic response of resonators con-

sisting of symmetrically or asymmetrically configured piezo-
patches bonded on thin elastic beams. An analytical model is de-
veloped for both configurations using thin composite beam theory
and through the use of Hamilton’s principle. The analysis predicts
that transverse and longitudinal motions are coupled in the asym-
metric configuration, but they decouple for the symmetric prob-
lem. The analytical solution is found to match closely with the
finite element predictions for both the symmetric and the asym-
metric configurations.

The analytical predictions are used to investigate optimal patch-
to-beam length and thickness ratios to maximize electromechani-
cal coupling factor~EMCF! of such structures. It is shown that
depending on the configuration~symmetric or asymmetric! and
the choice of materials, specific length and thickness ratios maxi-
mize the EMCF for certain bending-dominated modes of these
structures. Experiments are performed to investigate the variation
with length ratio of the EMCF of the first bending mode of an
asymmetrically configured resonator. The results indicate that the
analytical and finite element predictions of the optimal length ra-
tio match those found in the experiments. The analytical and finite
element EMCF predictions underpredict somewhat the measured
EMCF values. This discrepancy is likely due to the inherent losses
in the experiment.

The results indicate that the analytical model is useful for the
optimization of the geometry of such resonators. The results are
important for the design of piezoelectric fans, optical beam chop-
pers, ultrasonic choppers, MEMS density sensors, resonating vis-
cometers, MEMS resonating acclerometers, ultrasonic motors, au-
tomatic tooth brushes, and dentistry tools.
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