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Dynamic Response Optimization
of Piezoelectrically Excited Thin
Resonant Beams

Sudipta Basak

Arvind Raman* Piezoelectrically excited, resonant, elastic beams find wide use as piezoelectric fans,
g-mail: raman@ecn.purdue.edu optical choppers, MEMS sensors, and piezoelectric motors. The devices consist of either
one piezoelectric ceramic patch (piezopatch) bonded on one side (asymmetric configura-
Suresh V. Garimella tion), or of two oppositely poled patches placed symmetrically on either side of a thin,
flexible elastic beam (symmetric configuration). Field equations of the coupled structure
School of Mechanical Engineering, governing the coupled longitudinal and bending motions of the resonator are derived
Purdue University, using linear constitutive equations, slender beam approximations, and Hamilton’s prin-
West Lafayette, Indiana 47907-2088 ciple. Analytical solutions are found to the coupled eigenvalue problem. Eigenvalues and

eigenfunctions for the short-circuited and open-circuited configurations are predicted
analytically and are found to be in excellent agreement with results from three-
dimensional finite element simulations. Electromechanical coupling factors (EMCF) are
computed using the analytical and finite element model and optimal resonator geometries
are identified for maximal EMCF. The EMCF predictions are also compared with experi-
ments for an asymmetrically configured resonator. The analytical solution provides a
convenient tool for the optimal design of such devi¢&I: 10.1115/1.1857921

1 Introduction beam. Gibbs anc_i FL!”{B] and Brennan et a[.lo] modeled the _
Flexural piezoelectric resonators are solid-state devices cons](g?guZLﬁng;ﬂngl'qtgdﬁgﬂsgvgzgggﬁrai%glézfrigiirtrllj:t)ilowzsp"
ing of piezoelectric elements bonded to an underlying elasfi¢OPatch- . P
structure. A properly tuned harmonic voltage input excites piez n eqmyalent point forc_e located at the center Of. th_e actuator. Walf
%] derived the equations of motion using variational principle.

electrically a flexural resonance in the structure. Such resonat EMCE d d h h thick . : d
are used as actuators and sensors for a wide variety of applicati . ependence on the patch thickness was mvgstlgate
alytically and using finite element methods. However in most

including piezoelectric fans, optical beam choppers, ultraso S h . :
choppers, MEMS density sensors, resonating viscometers, uliRplications outlined earlier, both the patch and the underlying

sonic motors, automatic tooth brushes, and dentistry tools. In pgg@m are of finite dimensions. Flexural and longitudinal waves
ticular, piezoelectric fans utilize this flexural vibration to induc&/€nerated by the piezoelectric excitation reflect off the beam
vortices and streaming flow for electronics cooling. Figure boundaries requiring a separate, detailed analysis of the finite
shows a single-patch commercial piezoelectric fan which is maBgam. ) o
of mylar and operates at a nominal bending resonance of 60 Hz.Dynamics of finite beams were analyzed i2—19. Pan et al.
These fans were first discussed by Tah Piezoelectric fans [12] and Rivory et al[13] presented a dynamical model of a finite
have gained importance recently for cooling applications in mo&eam with symmetrically placed piezopatches. They did not com-
ern portable electronics such as laptops and cellphones and a@t#e the EMCF and neglected the added mass and stiffness effects
mobile multimedia boxes. The use of piezoelectric fans as ve®j the piezopatches. Kim and Jonfgist] studied the statics and
compact, low power, noiseless air cooling devices has been stg@ynamics of symmetric and asymmetric configurations. However,
ied recently by Yoo et al[2] and Campbell et al[3]. For the their dynamic analysis was restricted to cases where the piezo-
design of flexural resonators in piezoelectric fans and other apgdiatch covered entirely the underlying beam. As will be demon-
cations, little seems to be known about an optimal actuator-beatnated in this paper, the problem is significantly complicated
configuration. Indeed the optimization objective may vary amonghen the patch is shorter than the beam. Rontong ¢15] stud-
these devices. However for piezoelectric fans a clear objectiveiésl the bending and extension of a cantilever with symmetrically
to maximize the output mechanical energy for a given availabfgaced piezopatches using the Rayleigh—Ritz approach. They also
electrical energy input. This leads to faster streaming and thusgssumed a constrained layer between the beam and the patches.
effective cooling. To achieve this, the so-called electromechanidaibontiu et al.[16] used a lumped parameter approach to predict
coupling factor(EMCF) needs to be maximized for each chosethe resonant tip deflection. The mass, damping, stiffness, and forc-
resonant mode. Likewise, maximal EMCF is one of the naturilg terms were derived as parameters of the piezoelectrically ac-
optimization objectives for other devices such as optical choppeited system. Barboni et 4ll7] analyzed a beam covered par-
and resonant motors. tially by two piezopatches using the kinematic assumptions of
The literature on piezoelectric beam systems can be divideglawley and de Lui$§4]. However, the additional mass and stiff-
broadly into that dealing with static actuatief¥—7]) and that ness of the piezopatches are not considered. Optimal location and
focused on dynamic analysi8—19)) of infinite and finite beams. geometries of the piezopatches were investigated to improve the
Gibbs and Fullef8], Pan and Hans€j9], Brennan et all10], and  controllability of the structure. Wang and Waftg] modeled the
more recently, Wolf 11] investigated the dynamics of structureseffects of the piezopatches as internal bending moments, neglect-
consisting of a finite length piezopatch attached to an infini{gy the effects of beam deflection on the piezopatchinBnn
— y " et al.[19] analyzed a partially covered, symmetrically configured,
*Corresponding author. i
Contribuaed bygthe Technical Committee on Vibration and Sound for publicatiogollzjl?:‘?l';gfrfgr;r[]gﬁ1bOTaar|n'1.d [12—18 assume a constant electric

in the DURNAL OF VIBRATION AND ACOUSTICS Manuscript received May 9, 2003; - . j ' > -
final revision March 29, 2004. Review conducted by J. Main. field across the patch thickness in conjunction with Bernoulli—
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2 Electromechanical Modeling and Analysis

2.1 Kinematics. A schematic of the key kinematic variables
used in the analysis is presented in Fig. 2. Unless otherwise noted,
the subsequent development is common to both the symmetric
and asymmetric configurations. The composite elastic beam is di-
vided into three regions: Region 1 extends from the clamp up to
the start of the patch; region 2 is the composite piezopatch-elastic
beam section; and region 3 extends from the end of the patch to
the free end of the elastic beam. The structure in each region is
modeled separately as a thin Bernoulli-Euler beam. The model is
assumed to be free of all kind of losses. The piezopatches are
assumed to be bonded perfectly to the elastic beam through an
infinitesimal bonding layer. The neutral axis in region 1 and re-
Fig. 1 A photograph of a single-patch  (asymmetric configura- gion 3 lies along the centroidal axis of the beam cross section,
tion) commercial fan from Piezo Systems, Inc. while its location in region 2 depends on its configuration. In the

symmetric configuratiofFig. 2(b)], the neutral axis in region 2 is
identical to that in region 1 and region 3. For the asymmetric
configuration, however, the neutral axis in region 2 is located a
distancee below the patch-beam interfaf€ig. 2(a)], where[11]
Euler strain distribution in the patches. However these two as-
sumptions together violate Gauss’ law, which requires a vanishing Ey [t 2
of [E-(3

charge in the electrically insulated dielectric.

This paper follows the developments [df9] and extends the _ b B\

. ; : e= —_— 1)
analysis to the more complicated and practically relevant case of 2 Ep [tp
finite beams in both symmetric and asymmetric configurations. _Ep E

Modeling the asymmetric configuration is more complicated than
the symmetric configuration because both bending and exten- . . L . . .
sional motions are excited simultaneously. Moreover, the neutrall "¢ P€am is made of a linearly elastic, isotropic material while
axis jumps discontinuously across the ends of the actuator. THE PiéZopatch is planar isotrofliz0]. Planar isotropy is usually
main contributions of this paper includé) analytical modeling assumed for initially strongly polarized piezoelectric materials.
of the coupled dynamics of a piezopatch attached to a thin, finft:é’r thin beams undergoing small amplitude oscillations and cross-

elastic beam in the symmetric and asymmetric configuration%gcgcr’gf‘ell rott(;';\tg)gcsﬁ igei(?:rr;%ﬂgr_d?#lfr %Zamnmﬁggln:; ﬁgmz?
(i) derivation of an analytical solution of the short-circuited®<P y gion. aly 9

and open-circuited eigenvalue probleniji) predictions of Straine, is approximated by
optimal configurations based on EMCHy) verification of the

results using finite element predictions; afwi comparison with g1=U"—XaW" (2
experimental results obtained with asymmetrically configured
resonators. where’ denotes the derivative with respectxp, andxs is mea-

Piezopatch / Piezopatch
\
\
1]

Region 1

(a) X1 (b) X4

Fig. 2 Schematic diagram displaying the kinematic quantities of the (@) asymmetrically and (b) symmetrically configured
resonators. Note that in (&) the neutral axis jumps at the interface between regions 1, 2 and 3.
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sured from the neutral axis for each individual region. In &), the total enthalpy of the piezopatch is given [20]
u andw stand for the longitudinal and transverse displacements, N 5 N 5
respectively. H= 3cpie1—exnEse 1~ se33E5 (13)

2.2 Electric Enthalpy. The electrical enthalpy20] of the Substitution of the approximations of straip) and electric field
piezopatch is now derived under the assumption of thin beddl into Eq.(13) leads to
theory. The axis of polarization of each patch is #yeaxis. The

_1 ’2 2 "2 " I
. > , o . =3 + + + +ag+ (ag+
planar, isotropic piezoelectric constitutive equations[2& H=32Bpu""+ (X5 +ag)W'"+a,W' +as+ (g arXg)u'w

T=cS—eE, D=e'S+ecE T agU’ (14)
whereT, S, E, andD denote, respectively, stress, strain, electriWhere the constants in E¢L4) are given by
field, and electric displacement vector whige, e contain, re- 1 e —e§1(2e+tp)2
spectively, the components of linear moduli, the piezoelectric co- a2=§ Ciit —/, a3=8—
efficients, and the dielectric constants. £33 €33
Assuming a state of uniaxial stresg and uniaxial electric field egi(2e+t,)Ad
E; andD3, the linear constitutive equatiofig0] for piezopatches e T
reduce to11] p
_ 2 2
o1=Cpie1—€31F3, Dz=ege;+ €k 3) _"eulde)” _&a
as Z(h )2 ’ ag 2¢ (ZE+tp)1
The constants in the constitutive equations are given by P =
2
e A
€33=Kgzeg, C11=E,, en=Eydy 4) a;=—|Ep+ 8—31 , aszezlt—¢ (15)
33 p

whereKgs, €q, E,, andds; denote respectively the relative di- ) ] ] ) )
electric constant, the permittivity of free space, the Young's modu- The potential differenceA¢ is prescribed as an electrical
lus of the piezoelectric actuator, and the piezoelectric strafpundary condition, that is, the electrodes of the actuator are ei-

coefficient. ther short-circuitedSC)
The absence of free charges inside the actuator reqWirBs Adp=0 (16)
=0 [11]. For the one-dimensional case under consideration, this
further reduces to or open-circuitedOC) and the charges on the electrodes are gen-

erated naturally by bending. Upon assumption that the top elec-
D35=0 trode is initially charge-freg-2D,dx; =0 and using Eqs(3) and
where the index 3 denotes the derivativeDafwith respect toc;.  (11) the open-circuited boundary condition may be obtained

In addition, the electric potentiafp is introduced such that et L2 (t_+2e) L2
E=—V®. For thin piezopatches, this reduces to Ap= P |yl —® ' 17)
Em— g ©) (L2—=L1)egs| |\, 2 L1
L ° . o _ Equation(17) relates the charge developed to the difference in the
Substitution of Eqs(2) and (5) into Eq. (3) yields displacement fields at the beginning and the end of the electrode.
£33E33— €3 W' =0. (7)

) ) ) 2.3 Equations of Motion and Boundary Conditions.
Equations(6) and (7) lead to the conclusion that the electric poypon neglect of the rotational inertia of the beam and the patch

tential function must be quadratic iy the Lagrangian for the resonator can be formulated as
D(X3) = o+ P1Xa+ hoX5 (8) L=Lp+tLlp, Lp=Tp=Up, Lp=T,—U, 18)
Substitution of Eqs(6) and(8) into Eq.(7) leads to where
1ley j Pb . f Po .
=—>—w 9 To=| —U2dVy+ | —W2dV,,
¢2 2 £33 ( ) b Vo 2 b Vi 2 b
Further, using the boundary condition
T :f LLIERY +f Peizgy
pletty)—p(e)=A¢ P v, 2 P v, 2 P
whereAd¢ is the potential difference between the bottom and the 1
top of electrodes, together with EB) leads to Ub:f EEb(ur_ngn)deb, Up:f HdV,
V V
Ap legy ’ -
¢1:t—+ > —(2e+ty)w” (10) andpy, pp. Vp, Vp, andE, denote, respectively, the mass den-
p €33 sity of the beam and the piezopatch, the volume of the beam and
Equations(9) and (10) together with Eq.(8) then lead to the the piezopatch, and the Young's modulus of the belms the
approximate form of the electric field in the piezopatch enthalpy of the piezoelectric actuator derived in the previous sec-

tion. u andw are the longitudinal and transverse displacements,

28330 o+ ezihp(2e+1t,— 2x3)W” respectively. The equations of motion of the system are derived by

Ea(X1.X3,1)= 2e3d, 11 setting the first variation of action to zeft1], such that

It may be noted that the electric fieE; depends linearly on the t, 3

potential difference\ ¢ and the curvature/”. Becauser; andDy s X Lidt=0 (19)

are related to the internal energy of the piezoelectric actiafir ty =1

through where L; denotes the Lagrangian that is defined piecewise for
JH JH region 1, region 2 and region 3, respectively. )

oj=—, Dz=—— (12) The above formulation is valid for both the asymmetgmgle-

dey 4= patch and symmetridtwo-patch configurations. The patches on

20 / Vol. 127, FEBRUARY 2005 Transactions of the ASME



Table 1 Material properties used in this paper. A polarized ferroelectric ceramic model with X3
as the poling direction was used in the analysis. Piezoelectric material properties are obtained

from Piezo Systems, Inc. catalog 3.

Physical Quantity Value
Ep Young'’s modulus of the beaitibrass 10X 100 N/m?
E, Young’s modulus of the actuatéPSI-5H-S4-ENH 6.2X 100 N/m?
Pb Density of the beantbras$ 8400 kg/ni
Pp Density of the actuatofPSI-5H-S4-ENH 7800 kg/ni
ty Thickness of the beam 0.1016 mm
tp Thickness of the actuator 0051.5,
(varied in steps of 0.G5)
b Width of beam and actuator 8.89 mm
L1 Length of region 1 0.5 mm
L2 Length of patch 0.063-0.99.3
(varied in steps of 0.033)
L3 Overall length of the structure3 27.424 mm
Kss Relative dielectric constant 3800
€ Permittivity of free space 8.8542<10 2 C/Vm

ds; Piezoelectric strain coefficient

—320x107 2 m/V

either side of the symmetrically configured beam are either driven

(Zazl pe+ 233Ap+ Ebl be)W,Z/,(LZ!t) = Ebl ng’(Lz,t)

in phase exciting longitudinal motions, or out of phase inducing

pure flexure]4]. For either type of motion, only the longitudinal
or the transverse vibration terms need to be retained inE)-

Application of Hamilton’s principle for the asymmetric con-
figuration results in two equations of motion for each region, on

corresponding to the longitudinal motion and the other corr

sponding to the transverse motion. In all, there are 18 boundar:

uz(L3t)=0, wj(L3t)=0, wg(L3t)=0. (23)

Equations(20)—(22) govern the dynamics of the asymmetric con-

fgquration. The longitudinal and transverse motions in the equa-

jons of motion are decoupled in each region. The coupling arises,
owever, in the boundary conditions through the teepsindag
itYEgs.(23a), (23b), (23d) and(23e). The corresponding equations

conditions—four each associated with the transverse motion (in

each region and two each for the longitudinal motion of eac
region. The SC and OC electrical boundary conditions are impl

mented through terms in the equations of motion involving.

A¢ in turn is prescribed by the electrical boundary condition

[Egs.(16) and(17)].

for the symmetric configuration can be easily derived as a special
ase from the above equations by setting the transverse compo-
ents to zero when the patches are driven in phase and by setting
?e longitudinal components to zero when the patches are driven

ut of phase.

The equations of motion in the three regions are given as2.4 Solution Procedure. Introduction of a time-separable

follows:
Region 1

- pbAb'Lll-l- EbAbUI: 0, PbAbW1+ Ebl bWi”’: 0 (20)
Region 2
= (ppApt ppAp) Uz + (EpAp+ EpAp)us=0

_ (PbAb+ PpAp)Wz_ (2a2| pe+ 2a3Ap+ Ebl be)Wém: 0
(21)

Region 3
— poAplis+ EpAnUs=0, ppAnWiz+Epl,ws”=0  (22)
The geometric boundary conditions are given by

u,(0t)=0, wy(0t)=0, w;(0t)=0
ug(L1t)=u,(L1}),
wi(L1t)=wsy(L1}t)
Uy(L2t)y=ug(L2}t),

wWh(L2t)=wj(L2}t).

And the natural boundary conditions are
(A Ep+EpAp)us(L1t) +agA,=EpApui(L1t)

wy(L1t)=w,(L1t),

wyo(L2t)=ws3(L2}),

(2a,) pot 285A,+ EplpaWi(L L) +a,A = Epl Wi(L 1Y)
(2a2| pe+ 2a3Ap+ Ebl be)Wg’(Ll,t) = Ebl bW;’_’(Ll,t)
(ApEp"r EbAb)ué(LZ,t) + agAp: EbAbué(LZ,t)
(28l pet 2a3A,+ EplpoWi(L21t) — agA, = Epl pwi(L2})

Journal of Vibration and Acoustics

solution
Ui(x1,t) =R[U;(xy) e ],
Wi (X, ) =R[W(x)e!?] i=1,2,3 (24)
for the displacement fields in the three regions results in the fol-
lowing general solution
Wi(x;)=C; 3sin(6;x) + C; 4 c0g ;x) + C; 5 Sinh( §;x)
+ C; g CcOsh( 5;x),

Ui(X1)=Civlsin,BiX+ Civzcos&x i=1,2,3 (25)

Table 2 The natural frequencies of the analytical and the finite
element model for the asymmetric configuration. The finite el-
ement model is used as reference when computing the error.

Mode L2=7 mm L2=12 mm L2=17 mm
First SC anal. 117.60Hz 161.68Hz 179.50Hz
First SC FEM 117.81Hz 158.68Hz 172.98Hz

Error —0.18% 1.89% 3.77%
First OC anal. 118.13Hz 163.25Hz 181.82Hz
First OC FEM 118.38Hz 160.52Hz 175.67Hz

Error -0.21% 1.70% 3.50%

Second SC anal. 595.07Hz 533.32Hz 652.87Hz
Second SC FEM 595.29Hz 535.77Hz 649.99Hz
Error —0.04% —0.46% 0.44%
Second OC anal. 598.11Hz 534.30Hz 653.32Hz
Second OC FEM 598.45Hz 536.68Hz 651.25Hz
Error —0.06% —0.44% 0.32%

FEBRUARY 2005, Vol. 127 / 21
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Fig. 3 Transverse vibration component of the first and second bending dominated modes of
the asymmetrically configured resonator: (a) SC first Mode, (b) SC second Mode, (c) OC first
Mode, and (d) OC second Mode. Solid black line: analytical; stars: finite element predictions.

where symmetric configuration this matrix will be only>65 for a purely
2\ 12 A 2| U4 longitudinal resonator and *010 for a purely flexural resonator.
wa PpAp@
Bis= © T TR ' 2.5 Electromechanical Coupling Factor (EMCF). The

EMCF is a measure of the obtainable mechanical work in a quasi-
(pbAberpA,:,)w2 )1’4 static deformation cycle of the piezoceramic. This is conveniently
l be

(PrAp+ ppAp) w2 12
2: T A L= A 1 52

EvAut EpA, ~ | 2a,l ot 2a5A,+Ep expressed in terms of the SC and the OC strain energigklhs
. . . . (26) EMCF= ( UOC7 USC 1l2: Uconv 12 (27)
On implementation of the geometric boundary conditions at Uoc UBt+ UgonytUp)

=0, the constantsC;, vanish andC;s=—C;3 and C;¢=

—Cy4. The remaining 15 boundary constants are used to conhere Uqc is the total energy stored in the structure when the
struct a 15 15 matrix containing the unknown modal frequenfatch is open-circuitedOC), Ugc is the total energy stored in the
cies. Vanishing values of the determinant of this matrix yield thgtructure when the patch is short-circuiteC), U, is the con-
natural frequencies and mode shapes of the strucaree 8[21]  vertible energyU&. is the energy stored in the patch alone with
is used to compute the zeros of the determinant. This leads to giert-circuited electrodes, atd}, is the total strain energy stored
exact eigenvalues and eigenfunctions of the structure. For tinethe beam.

1 rpatch_| i '—paich—l
""-"l!ullnnnnlnnlnnn 1 B UL
0
0
o T o3 0 0.03
(@ X (b) X

Fig. 4 Longitudinal displacement component of the first bending dominated mode of
the asymmetrically configured resonator: (a) SC mode, and (b) OC mode. Solid line:
analytical; stars: finite element.
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02 04 08 08 02 04 0B 08

(L2-L1) {L2-L1)
(a) L3 (b) L3

Fig. 5 EMCEF variation of the first bending mode of an asymmetric resonator with
patch-to-beam length ratio  (L2—L1)/L3 and patch-to-beam thickness ratio  t,/t,:
(a) analytical prediction, and  (b) finite element prediction

Assuming negligible longitudinal displacement, the expressiognamic EMCF of a chosen mode of the piezoelectric structure

for Ugony andUR. for the asymmetric configuration af&1] can be related to the OC and SC frequen¢jgg,23)
1 bt K2 t.\2 1 Uoc—Usc| M2 wéc_ wéc 1/2
—--p_ 8l Pl L2712 EMCE=| == _~5¢| _— 31
Voo™ 2 o8 (1-13) | 7 2) (2-1) el Uoc wde (31)
(28) wherewgc andwgc are the OC and SC natural frequencies of the
1 bt t )2 2] rL2 chosen mode of the structure. The computation of dynamic EMCF
ugczz S—Ep e+ Ep + 11— 1—2}1 [Wg(xl)]zdxl is then performed conveniently using E§1).
11 31 L1
(29)

where sfl is the elastic compliance of the piezopatch under % Finite Element Analysis
constant electric field, ankl;; is the material coupling factor for ~ To verify the analytical model a finite element analysis for both
longitudinal deformation of a thickness polarized piezoelectritie symmetric and asymmetric configurations was carried out in
rod. SimilarlyU, can be summed piecewise over the three regiomsisys 6.0[24]. ANsYs element SOLID5 was used in this analysis.
2 5 SOLIDS is a 20 node three-dimensional linear coupled-field solid
b element having both piezoelectric and structural properties. It may
2) ) be noted that the planar isotropy of the piezoelectric material re-
quires the prescription of more material constants than simply the
Lz ) 1 Ls 5 three constants employed in the one-dimensional analytical beam
X [W5(X1)] dX1+§|bEb [w3(x1)]dx;. (30)  model.

H L2 The model is constructed by first defining keypoints, creating
Equations(28)—(30) can be specialized for the symmetric caseolumes, and assigning the material properties to the respective
simply by substitutinge= t,/2. volumes. As in the analytical model, a perfect infinitesimal-

For the resonant beams under consideration, the present intetieiskness bond between the actuator and the beam is assumed.
is in maximizing thedynamicelectromechanical coupling of the The finite element model is also assumed to be lossless. A free
resonant structure. For this purpose, assuming that the mdbeee-dimensional3-D) mesh is constructed that yields a regular
shapes remain identical for SC and OC electrodes, the effectiveboick mesh. All nodes underneath and above the piezofegch

b
L
2" |¢

1 L1 1
UbZEIbEbe [W(x1)]%dx; + Ebthb

Journal of Vibration and Acoustics FEBRUARY 2005, Vol. 127 / 23
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Fig. 6 Variation of Uy, , U%:, U, with patch-to-beam thick- 0 4 0.005

ness ratio (t,/ty) and the resulting EMCF values according to
Eq. (27) for a constant length ratio (L2—L1)/L3 =0.58. These

curves demonstrate why an optimal thickness ratio exists for . o )
maximizing the EMCF. Fig. 7 Variation of Ugyny , UEc, U, with patch-to-beam length

ratio [(L2—L1)/L3] and the resulting EMCF values according
to Eq. (27) for a constant thickness ratio  t,/t, =0.5. These
curves demonstrate why an optimal patch-to-beam length ratio
are assigned a voltage coupling for the SC and OC free vibratigists for maximizing the EMCF.
problem(modal analysis For the SC condition, the top electrode
is assigned zero voltage. For the OC case, the voltages at all nodes ] ]
on the top electrode are forced to be identical. Material propertitsclose agreement. In Figs. 3 and 4 the predicted mode shapes are
used for the analytical model are presented in Table 1, while thRempared for the first and second bending modes for both the SC

material properties used in the 3-D finite element analysis a#@d OC boundary conditions. The length of the patch is set to
presented in matrix form in the following L2-L1=6.5 mm while the remaining parameters are listed in

Table 1. The mode shapes predicted by the finite element method

62 31 31 0 0 O are presented in terms of the deflections of the centroidal axis of
31 62 31 0 0 O the beam. Figures(8)—3(d) demonstrate that the transverse de-
flections of the analytical and finite element results are in close
_ 31 .31 50 0 0 O olo agreement for the first and the second modes. Figuf@sahd
= O O O 10 0 O X100 4(b) describe the longitudinal component of the analytical and
finite element predictions of the first bending dominated mode for
0 0 0 0 10 0 the asymmetric configuration. These two are also in close agree-
0O O 0 0 0 1d ment.
- . For the symmetric configuration, the finite element and analyti-
0 0 —-1984 cal predictions of OC and SC frequencies and mode shapes were
e=|0 0 -—19.84 £ also compared and found to be in close agreement. Indeed, the
m? errors were smaller in this case than for the asymmetric configu-
0 0 325 ration, and detailed results are not included here.
8882 0 0 4 Optimization Results
0 3.382 0 The main objective of the optimization in this paper is to find
0 0 3.382 E the particular geometry of the fan for which the dynamic EMCF
= 5 0 0 xlO*SE (32) of the first bending mode is maximized. For this purpose, the
overall fan lengthL 3, the distance from the clamp to the begin-
0 0 0 ning of the patchlL 1, and the beam thickness,, are kept con-
0 0 0 stant and the thickness of the patth, and the distance from the
L . clamp to the end of the patch2, are varied as described in Table

The finite element results thus generated are compared to fhdn Fig. 5, EMCF contour plots are provided for both the ana-
analytical results for long and slender beams with different patdytical and the finite element models for the asymmetric configu-
lengths. Specifically the modal frequenci€3C and SQ for the ration. The optimal geometries predicted by these plots are in
asymmetric configuration for typical patch lengths amthick- close agreement with each other.
ness {,=0.178 mm) are presented in Table 2 and are found to beSeveral important observations can be made from these plots:
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(b)

Fig. 8 EMCEF variation of the first bending mode of a symmetric resonator with
patch-to-beam length ratio  (L2—L1)/L3 and patch-to-beam thickness ratio  t,/t,:
(a) analytical prediction, and  (b) finite element prediction

1. There is a clear optimum length ratid,—L1)/L3, and ratio, the second integral in E¢B0) also increases relative to the
thickness ratiot, /t,, for which the dynamic EMCF of the first third integral, andJ,, increases beyond.@—L1)/L3=0.7. For
bending mode is maximized. This optimal geometry correspontteese reasons the EMCF is maximized for specific thickness and
to t,/t,~0.5, (L2—L1)/L3~0.6. However, while the optimal length ratios.
fan geometry is identical using the theoretical and finite elementSimilar observations can be made for the symmetric configura-
analysis, the EMCF contour values are not identical. tion (Fig. 8. In this case, the optimal length ratip(L2

2. It may be noted that these contour plots are specific to thd_1)/L3~0.6] remains the same, but the optimal thickness ratio
chosen piezoelectric and beam material properties. The optinfg]/t, ~0.4) is slightly lower than the optimal asymmetric con-
geometry varies depending on these properties. figuration. Thus the optimal geometry for the symmetric resonator

. . . requires more piezoelectric material than the optimal geometry of
~ The existence of an optimum in the EMCF plots can also jge o5y mmetric resonator. Again, like the asymmetric configura-
interpreted using Eq$27)—(30). In Fig. 6 the energies)8c, Uy, tion, EMCF contour values are higher for the finite element model
Ucony are plotted for a constant length rati[gL2—L1)/L3  compared to the analytical model. The optimal geometries will
=0.58] using Egs.(28), (29), and (30) and analytical mode gepend on the chosen material properties of the beam and the
shapes. Also plotted are the resulting EMCF values using Eglezopatch.

(27). In Fig. 7 these quantities are plotted for a constant thickness

ratio (t,/t, =0.5). When the thickness ratio is varied with a cong g harimental Verification of Optimization Results

stant length ratidFig. 6), U%- andU,,, have local maxima near
t,/t, =0.4. U, however decreases with increasing thickness be-5.1 Experimental Setup. To verify the theoretical and finite
cause the piezopatch stiffens thus reducing the beam strain eneedgment results, experiments are performed on an asymmetrically
When the thickness ratio is kept constant and the length ratiodenfigured piezoelectric fan-like structure consisting of a piezo-
varied (Fig. 7), there are two competing factors that come intpatch attached to a thin steel blade with superglue. The initial
play in Eqs.(28)—(30). As the length ratio is increased, the overaltlimensions of the steel blade and piezopatch are shown in Table
structure stiffens resulting in less deflection and strain energy 31 The effect of patch to beam length ratio on the EMCF of the
the beam. Thus initiallJ,, decreases. But with increasing lengtHirst bending mode are measured experimentally for this system.
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Table 3 Properties and dimensions of the piezoceramic and the steel blade used in the ex-
periment. Piezoelectric material properties are obtained from Piezo Systems, Inc. catalog 3.

Physical quantity Value
Ep Young’s modulus of the beartstee) 21% 10 N/m?
(= Young’s modulus of the actuatdPSI-5A-S4-ENH 6.6x 100 N/m?
Pb Density of the beantstee) 7850 kg/ni
Pp Density of the actuatofPSI-5A-S4-ENH 7800 kg/nt
tp Thickness of the beam 0.1016 mm
to Thickness of the actuator 0.1905 mm
b Width of beam and actuator 10 mm
L1 Length of region 1 2.8 mm
L2—-L1 Length of patch 10.8 mm
L3 Overall length of the structurie3 51.65-25.65 mm
Kz Relative dielectric constant 1800
€ Permittivity of free space 8.8542<10 2 C/Vm
ds Piezoelectric strain coefficient —190X 10" 2 m/VvV

To investigate thisl. 1 andL2 are maintained constant while8  the experiment As shown in Fig. 10, inclusion of the bonding
is decreased gradually in steps. This process was chosen bec#ger results in an increase in both the SC and the OC frequencies
the reduction inL3 can be achieved without inducing errors fromand they approach the experimental frequencies.

| i d | i f the structure. o . .
clamping and unclamping ot the structure 5.3 Optimization Results and Discussion. At eachL3, the

5.2 Impedance Measurement. At eachL3, the SC and OC impedance data are collected ten times and their average and
frequencies of the structure are obtained from impedance platdo deviations computed. The results are shown in Fig. 11,
generated by the Impedance AnalyzEiP/Agilent 4294\). Fig- along with analytical and finite element predictions based on the
ure 9 shows the experimental setup. Figure 10 represents a typioathods described earlier. Material properties of the finite element
impedance plot near the first resonance frequency of the structarel the analytical models are listed in Table 3. Figure 11 shows
together with the corresponding finite element and analytical frelearly that the experimental EMCF reaches a local maximum at
guencies based on the material properties listed in Table 3. Fofl&2—L1)/L3 ~0.32 which is close to the analytical and finite
lossless resonator, the frequency at every local minimum of teéement predictions of 0.35 and 0.33 respectively.
impedance plot represents a natural frequency. Thus the first localhe apparent underprediction of the measured EMCF values by
minimum indicates the first SC frequency or the resonant fréhe finite element and the analytical EMCF calculations can be
qguency. Similarly, for a lossless resonator, the corresponding loeadplained from[23] and [25]. Specifically, the measured EMCF
maximum is the first antiresonance or the OC frequency of tlemd OC and SC frequencies are based on the minima and the
structure.

It may be noted that the SC and OC frequencies predicted by
the finite element and the analytical models are slightly lower than
the corresponding experimental values. This discrepancy is like x 10

due to the lack of inclusion of the bonding layer mechanics int % ' ' ' '
the models. To demonstrate this, finite element calculations
ANSYS were performed on a resonator with a thin elastic bondir er
layer of low modulus(10 GPa and density 1100 kg/fn(that of
ethyl cyano-acrylate, the major ingredient of the bonding used -9
19}
8
c
o
3 185f
v
-
S0 1.8t
el
=
§ 1751 ——— FE OC frequency |
= FE SC frequency with (95‘% HZ)V
bonding layer(95.0Hz) ’
17r FE SC frequency, Analytical OC T
Hz / frequency (95.4Hz)
1.85 ) FE OC frequency with
Analytical SC f 7
frequency (4.6 Hz) bonding layer{95.5 Hz)
16 . :
92 93 94 95 9% 97

Frequency(Hz)

Fig. 10 A typical impedance plot with steel blade of width 10
mm, height 0.1016 mm, and length 36.65 mm. The piezopatch
used is PSI-5A-S4-ENH (thickness =0.1905 mm, Ep =66 GPa)
and of length (L2—L1)=10.8 mm and L1=2.3 mm. For a loss-
less resonator, the minimum in the impedance plot represents

the SC frequency or the series resonance frequency, whereas
the maximum represents the OC frequency or the parallel reso-

Fig. 9 Experimental setup for the measurement of EMCF with nance frequency. Corresponding SC and OC frequencies for
varying blade lengths of an asymmetrically configured flexural the analytical, finite element model with and without a thin
resonator bonding layer are also provided for comparison.
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T The results indicate that the analytical model is useful for the
* EXFLF:‘AS';m"’:fa" optimization of the geometry of such resonators. The results are
I Lf‘,ﬂem_g limit important for the design of piezoelectric fans, optical beam chop-
—— Analysis pers, ultrasonic choppers, MEMS density sensors, resonating vis-
0osf — FE I cometers, MEMS resonating acclerometers, ultrasonic motors, au-
tomatic tooth brushes, and dentistry tools.
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