
Dynamic Response to Global Oscillation of Propulsion
Systems with Cavitating Pumps

Shusuke Hori∗

Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan

and

Christopher E. Brennen†

California Institute of Technology, Pasadena, California 91125

DOI: 10.2514/1.51945

A time-domain model was developed to evaluate the dynamic response of pumping systems in the accelerating

environment of rockets with a focus on cavitation. The model was first verified by comparing the results with

measurements in ground-based tests of an LE-7A rocket engine. In these tests, various resonances occurred and

levels of pump cavitation or incorporation of an accumulator altered them. Themodel results simulated the test data

well,matching both the frequency and the amplitude. The test andmodel results also demonstrated the stability of the

LE-7A propulsion system within nonaccelerating environments. Then, the model was used to examine the response

of the propulsion system in accelerating frames; sinusoidal vehicle oscillations over a range of frequencies were

explored. Under noncavitating conditions, the pressure amplitudes within the propulsion system did not

substantially exceed the quasi-static acceleration head response �ah. However, under cavitating conditions

(� � 0:02), the same accelerations produced violent responses with pressure and flow amplitudes about 2 orders of

magnitude greater than in noncavitating conditions. The obvious conclusion is that vehicle oscillations can cause

substantial pressure and flow amplitudes, particularly when the pump is cavitating, even if the ground-based tests

and the calculations in static frames indicate stable and well-behaved responses.

Nomenclature

A = duct cross-sectional area or pump inlet area, m2

a = global acceleration of propulsion system, ms�2

C = accumulator compliance or cavitation compliance,
m4 kg�1 s2

c = speed of sound, ms�1

D = duct diameter or pump inlet diameter, m
f = friction factor
f = nondimensional frequency of oscillation; frequency=�
h = elevation difference, m
k = component loss coefficient
L = inertance, m�4 kg
M = mass flow gain factor, s
m = pump gain
P = total pressure, Pa
p = static pressure, Pa
Q = volumetric flow rate, m3 s�1

R = resistance, m�4 kg s�1

t = time, s
u = flow velocity, ms�1

x = position coordinate, m
Z = number of blades
�H = pump head rise, Pa
�t = time step, s
� = liquid density, kgm�3

� = cavitation number
� = pump flow coefficient
� = frequency of rotation of pump, s�1

�p = frequency of flow fluctuation in pump, s�1

! = rate of rotation of coordinate system or vehicle, rad s�1

Subscripts

A = point on upstream characteristic line
B = point on downstream characteristic line
C = point on both characteristic lines
c = pertaining to accumulator
cc = pertaining to combustion chamber or terminating

reservoir
e = pertaining to end of discharge line
p = pertaining to pump
s = pertaining to suction line
sc = pertaining to short column of liquid between pump

and accumulator
t = pertaining to tank
tip = pertaining to pump tip
u = pertaining to ullage gas in tank
1 = inlet to component
2 = discharge from component

I. Introduction

W HEN a pumping system is subjected to shaking, the flow rates
and pressures within that system can reach levels that may

threaten the integrity of the system or radically alter its performance
[1–3]. This could occur as a result of shaking imposed on a ground-
based system or of an instability of a vehicle propulsion system of
which the pumping system is a part [4,5]. The analysis by Rubin [4]
of the pogo instability of a liquid-propelled rocket was an early
example of amethodical approach to the dynamics of vehicle propul-
sion systems [5–7]. Since then, much research has been conducted to
determine the dynamic response of rocket engine turbopumps [8–
14], and the same kind of dynamic analysis has been used in other
pumping contexts: for example, for primary coolant systems in
power plants [15].

Virtually all of the experimental work on the dynamics of pumps
has been necessarily conducted in ground-based test facilities (see,
for example, [10–12,14]), and much attention has therefore focused
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on the instabilities that are observed in pumping systems in a
nonaccelerating environment (for example, [16–21]). Among these
much-studied instabilities are those caused by cavitation in the
pump: for example, rotating cavitation [18–21] and cavitation surge
[16,20]. This last is perhaps the most violent and dangerous of these
instabilities and, for the sake of the later discussion, it is worth briefly
reviewing the simplest model of that phenomenon in the context of a
cavitating inducer. The dynamics of a cavitating inducer can be
represented as shown on Fig. 1. In this model, one can visualize the
lower path containing the resistance Rp and the inertance Lp as
representing themain flow through the inducer, while visualizing the
upper path containing the compliance Cp and the mass flow gain
factor Mp as representing the cavitation and the backflow. Clearly,
the natural frequency of the internal flow loop within the pump
(consisting of the main flow and the backflow) will be given
simply by

�p �
�LpCp�

�1=2

2�
(1)

Note that the resistance of the pump is positivewhen operating in a
condition in which the head decreases as the flow increases, and this
prevents any self-oscillation of the pump under conditions of little
cavitation. However, as the cavitation number decreases, the compli-
ance and themassflowgain factor increase, and it is the latter that can
feed energy into any instability.

As an example, we can point to the experimental measurements on
a scale model of the space shuttle main engine (SSME) low pressure
oxidizer turbopump [1,10,11], which indicate that appropriate
values of the inertance and compliance in that case are given approxi-
mately by

Lp �
20

Dp

and Cp �
0:025Dp

��2���2
(2)

where � is the cavitation number. Substituting the preceding
approximate expressions into Eq. (1) yields

�p

�
� �2��1=2 (3)

which is precisely the frequency of cavitation surge put forward as an
empirical observation in [1,16] and reproduced in Fig. 2.

Returning to the general issue, less attention has been paid to the
dynamic response of a pumping system (whether with or without
cavitation), which is subjected to overall shaking, although the
interaction of a launch vehicle’s propulsion system and structure can
be a source of dynamic instability (pogo). Since the days of the
Gemini program, efforts have beenmade to find better ways tomodel
and mitigate this potentially dangerous phenomenon [7]. In this
paper, we explore the dynamic response of a pumping system to an
imposed global oscillation and identify issues that should be of
concern because, under global oscillation, they manifest substantial
flow rate and pressure fluctuations in systems that are stable and
benign in a nonaccelerating frame.

II. Outline of Model

A schematic of the dynamics of the type of system considered in
this paper is sketched in Fig. 3; for example, this might represent the
pumping system aboard a liquid-propelled rocket [6,7]. While the
entire dynamical system would involve feedback through the re-
sponse of the structure to fluctuating thrust, we focus here on the
transfer functionGhydraulic of the hydraulic propulsion system and its

response to an imposed acceleration a�x; t�. In the complete system,
the output from the hydraulic system would be a fluctuating thrust
that would feed back into the structure to produce the acceleration
a�x; t� [4]. In the most general case, the structural oscillation and
acceleration would be a function of both time t and the position x
within the structure. However, for the purpose of simplicity, the
results presented in this paper will be restricted to cases in which it is
sufficient to simplify the issue by assuming a uniform acceleration
a�t�, which is independent of position.

We begin by describing the time-domain model for the hydraulic
pumping system, which incorporates the response to the imposed
acceleration a�t�. The model connects the pressure p�x; t� and flow
rate Q�x; t� [or volumetric velocity, u�x; t� �Q�x; t�=A�x�, where
A�x� is the cross-sectional area of the feedlines] at every location
within the pumping system. While it is also possible to construct a
frequency-domainmodel, we chose a time-domain approach in order
to incorporate nonlinear inertial and frictional terms in the feedlines
by the standard method of characteristics [1]. In addition, this leaves
open the possibility of future incorporation of nonlinear effects in the
components, particularly in the cavitating pump. These feedline
models are married to a dynamic response model for the cavitating
pumps that includes cavitation compliance andmass flow gain factor
terms, as well as the known steady pump performance characteristic.

The methodology is designed to be applied to various config-
urations of pumping and propulsion systems, such as those sketched
in Fig. 4. The examples include four different configurations
pertaining to the turbopumps for the Japanese LE-7A rocket engine.
Three of these configurations are ground-based facilities used to test
designs of the turbopumps. The first two are cold-test facilities
incorporating a turbopump: the first without a suction line accumu-
lator and the second with a suction line accumulator. The third is a
hot-firing engine test facility. The fourth configuration is the flight
hardware consisting of the hydraulic system mounted in the
accelerating rocket. Specific elements in these systems include the
storage tank (fuel or oxidizer), compressible flow in the feedlines, an
accumulator, valves, the turbopump, and discharge into a combus-
tion chamber or catchment tank.

Fig. 1 Dynamic model of a cavitating pump.

Fig. 2 Frequencies of cavitation surge from [1,16]: solid lines represent

experimental observations of frequencies observed to occur for anumber

of different inducers operating at different flow coefficients �, and the
dotted line represents an empirical fit.

Gstructure

Q(t)

a(t, x)

T(t)
GhydraulicGthrust chamber

T(t)

Fig. 3 Schematic of rocket propulsion system and dynamics: current

paper focuses on response of hydraulic system (within dashed outline) to

imposed oscillations.

600 HORI AND BRENNEN



The assumed boundary conditions at inlet to and discharge from
these hydraulic systems are an assumed storage tank pressure and the
backpressure in the combustion chamber or catchment tank. It is
convenient to choose the origin of the position vector x to be the
storage tank junction with the feedline; that coordinate and the
acceleration a are considered positive in the direction of flow.
Consequently, if in the fourth configuration the vehicle is accel-
erating upward, the acceleration a is negative.

III. Details of Model

In this section, we list some details of the dynamic model of the
hydraulic system.

A. Upstream Boundary Condition

The upstream boundary condition at the junction of the tank and
the feedline consists of a time-dependent total pressure Pt con-
structed by adding the tank ullage pressurepu (taken to be constant in
the examples presented here) and the acceleration head of the liquid
in the tank:

Pt � pu � �atht (4)

where � is the propellant density (assumed constant and uniform in
the tank), at is the acceleration of the tank, and ht is the difference in
the x coordinates of the junction and the free surface of the tank. All
of these quantities may be functions of time. In addition, the static
pressure at the junction pt is calculated as

pt � Pt �
1
2
�u2

t (5)

where ut is the volumetric velocity at the junction.

B. Feedlines

The relative motion of the liquid at any point in the suction line
(and relative to the suction line) is governed by the following basic
continuity and momentum equations for compressible, frictional
flow in a duct:

@��A�

@t
�

@��uA�

@x
� 0 (6)

�

�

@u

@t
� u

@u

@x

�

��
@p

@x
� �a� �!2x � 2�!u � �

@!

@t
x �

�fujuj

2D

(7)

whereD and f are the diameter and the friction factor of the duct. The
set of equations for the compressible flow are closed through
the definition of the speed of sound c in the duct derived from the
Joukowsky equation (2):

@��A�

@p
�

A

c2
(8)

Since these frictionally modified Euler equations apply in an
accelerating coordinate system, the second, third, fourth, and fifth
terms in the momentum equation [Eq. (7)] must be included in the
formulation. These additional, pseudopressure terms (see [22]),
which reduce to zero in the absence of acceleration, involve not only
the relative velocity u and the acceleration a but also the rate of
rotation ! of the coordinate system about the axes perpendicular to
the flow direction. However, in the examples presented in this paper,
the rate of rotation! is taken to be zero. Similar equations are used for
the discharge line downstream of the pump.

C. Valves

Valves and orifices are modeled using a simple lumped parameter
loss coefficient, so that the properties upstream and downstream of
the restriction (denoted, respectively, by subscripts 1 and 2) are
related by

Q2 �Q1 (9)

p2 � p1 ��
1

2
k�

�

Q1

A1

�

2

� L
dQ1

dt
� �a�x2 � x1� (10)

where k and L are the loss coefficient and the inertance of the
component. Here again, the pseudopressure effects are included
through the inclusion of the terms involving the acceleration a.

D. Accumulator

The accumulator is modeled as a capacitor with an initial pressure
pc. The pressure difference between the suction line and the inside of
the accumulator, p � pc, should satisfy

Q2 �Qc �Q1 (11)

p � pc �
1

Cc

Z

t

0

Qc dt� RcQc � Lc

dQc

dt
� �ahc (12)

where pc is the initial accumulator gas pressure; Qc is the flow rate
into the accumulator;Rc,Lc, andCc are the resistance, inertance, and
compliance of the accumulator; and hc is the elevation difference
between the suction line next to the accumulator and the free surface
in the accumulator.

E. Cavitating Pump

The flow rates Q relative to the pump and the total pressures P at
the inlet to (subscript 1) and discharge from (subscript 2) the pump
are related by the conventional pump transfer matrix [1,11,13]

P2 � �mp � 1�P1 ��H��; Q1�

� Lp

dQ1

dt
� �a�x2 � �mp � 1�x1� (13)

Q2 �Q1 � Cp

dP1

dt
�Mp

dQ1

dt
(14)

where, as is conventional, (mp � 1) is called the pump gain;
�H��; Q1� represents the static pump total pressure increase (which
normally has a negative slope and is often linearized asRpQ1, where
Rp is called the pump resistance); Lp is the pump inertance; Cp is
called the cavitation compliance; andMp is called themass flow gain
factor. Potential values of these dynamic pump characteristics have
been the subject of much discussion and research [1,11,13] and,
following this brief summary of the hydraulic models, we include
comments on the values for these characteristics in the next section.

F. Downstream Boundary Condition

The downstream boundary condition is provided by the total
pressure Pcc in the combustion chamber or the catchment tank into
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Fig. 4 Four hydraulic system configurations for which the dynamic

responses are compared.
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which the liquid discharges (thismay be a function of time). Since the
liquid typically discharges through a large resistance (a valve, orifice,
or injector), the static pressurepe at the end of the line downstream of
the pump (at x� xe) should satisfy a relation similar to Eq. (10),
namely,

Pcc � pe ��
1

2
ke�

�

Qe

Ae

�

2

� �a�xcc � xe� (15)

where Qe and Ae are the flow rate and duct area at the end of the
discharge line, and ke is the loss coefficient in that terminating
resistance.

The equations described previously were solved numerically by
standard methods traditionally used for fluid transients [1,2].
Equations (6–8) for compressible flow in a duct are solved using the
method of characteristics, and the boundary conditions between
components are solved numerically using the Newton–Raphson
method. We will briefly review these methods here.

The typical numerical solutions by the method of characteristics
are depicted graphically in Fig. 5. By assuming the constant density
of liquid �, speed of sound c, and the uniform pipe, so that f is
constant, Eqs. (6–8) yield the following set of two ordinary
differential equations:

1) In a frame of reference moving with velocity u� c,

du

dt
�

1

�c

dp

dt
�

fujuj

2D
�
ua

c
� 0 (16)

2) In a frame of reference moving with velocity u � c,

du

dt
�

1

�c

dp

dt
�

fujuj

2D
�

ua

c
� 0 (17)

In the finite difference forms, Eqs. (16) and (17) become
1) On the characteristic line dx=dt� u� c (upstream character-

istic line),

uC � uA

�t
�

1

�c

pC � pA

�t
�

fuAjuAj

2D
�
uAaA

c
� 0 (18)

2) On the characteristic line dx=dt� u � c (downstream
characteristic line),

uC � uB

�t
�

1

�c

pC � pB

�t
�

fuBjuBj

2D
�

uBaB

c
� 0 (19)

Here, uA, uB, pA, and pB are velocities and pressures at points A
and B at time t, which are determined by interpolation between the
known values at points such as R, S, and T in Fig. 5. By solving the
simultaneous first-order equations (18) and (19), uC and pC, the
velocity and pressure of the position C at time t��t, are obtained.
Similarly, the upstream and downstream properties of the component
that lies between the pipe (u1, u2, p1, and p2) are obtained using the
Newton–Raphson method to solve the four simultaneous equations:
the characteristic equation (18) of the upstream line, a set of two
equations that relate the upstream and downstream properties of each
component listed previously but in thefinite difference forms, and the
characteristic equation (19) of the downstream pipe.

IV. Dynamic Pump Characteristics

Since pump cavitation and its dynamic characteristics play a
substantial role in determining the response of the hydraulic system,

it is important to use values for the dynamic pump characteristics that
are as accurate as possible. Hence, we digress here to add further
comment on these parameters of the problem. In the absence of
cavitation, and neglecting the compressibility of the liquid and
structure of the pump, it follows from fluid continuity that mp, Cp,
and Mp should be equal to zero. It also follows that, at low rates of
change, it is also reasonable to set Rp equal to the slope of the static
pump performance curve, as described by Brennen [1]. Moreover,
reasonably accurate values of the pump inertanceLp can be obtained
from first principles.With these assumptions, it transpires that, under
stable, noncavitating conditions, the pump resistance and inertance
simply and benignly add to the resistance and inertance of the
feedlines and invoke no surprise in the response of the hydraulic
systems. In this scenario, one complication that we do not include in
the present calculations is the dependence of the pump resistance and
inertance on the oscillation frequency (or rate of change of the flow
variables). It may be important to note that these frequency variations
can be quite substantial. For example, Rubin [13] notes that the pump
resistance Rp may increase substantially with frequency, while the
inertance Lp may decrease.

However, pump cavitation changes that conclusion and, as Rubin
[13] demonstrated, radically alters the response. All of the pump
dynamic characteristics become functions of the extent of the
cavitation in the pump, as well as the other mean operating condi-
tions. The extent of the cavitation is conveniently characterized by
the cavitation number �, defined as

� �
p1 � pv

�1=2��u2
tip

(20)

wherepv is the saturated vapor pressure, and utip is the velocity of the
inducer tip. The pattern and extent of cavitation also change with the
operating condition (represented most conveniently by a flow
coefficient), but we shall simplify this presentation by confining the
calculations to the design flow coefficient. We focus, therefore, on
the effects of � on the pump dynamic characteristics, particularly the
pump complianceCp, mass flow gain factorMp, and the consequent
effects on the system response. We therefore digress further to
comment on the appropriate values of Cp and Mp for the LE-7A
turbopump. In this regard, we are primarily guided by the available
experimental measurements for this and other turbopumps [11–13].
However, since the LE-7A turbopump includes an inducer that
displays a cavitation pattern that is somewhat different from the
SSME inducer of [11], the following procedure was conducted in an
attempt to extract some confirmational data from the LE-7A
turbopump ground tests.

During the static ground tests of this turbopump, naturally
occurring pressure fluctuations and structural oscillations were
monitored. Moreover, pressures were measured at several locations
along the suction and discharge lines so that fluctuating flow rates
could also be calculated. From these measurements, it was then
possible to estimate pertinent pump compliance Cp and mass flow
gain factorMp values, and to do so for a range of cavitation numbers.
For a variety of reasons (principally the uncertainty in the calculation
of the instantaneous flow rate difference between the suction and the
discharge), these calculations are subject to large uncertainties (about
an order of magnitude), but we present the results here, since they
provide some comparisons with the much more accurate values of
these quantities obtained by imposed fluctuation of the hydraulic
system [11]. The values obtained from the static ground-based tests
on the LE-7A turbopump are shown in Fig. 6, where they are
compared with the more accurate data from [11]. We note that the
present estimates of the LE-7A compliance are quite consistent with
those of [11,12]. They are also consistent with the compliance value
derived from a simple model of the peak natural vibration frequency
observed during the turbopump ground tests with an accumulator
(the second configuration). That calculation assumes a mode
involving the inertance of the suction line between the accumulator
and the inducer and derives a nondimensional inducer cavitation
compliance of 0.6 at a cavitation number of � � 0:04. Figure 6
exhibits Mp values for the LE-7A that are less than the values from
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Fig. 5 Example of numerical solution by method of characteristics.
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[11], although the difference is still within the uncertainty of the
present calculations. We do note, however, that the LE-7A design
involves smaller angles of incidence and, therefore, less backflow
cavitation than the SSME design. Therefore, a lower value for Mp

would not be unexpected. The validity and potential uncertainties in
the dynamic pump coefficients have recently been examined by
Rubin [13].

For the purposes of the present comparisons, the LE-7A estimates
for Cp and Mp as functions of � that are presented in Fig. 6 were
applied to the calculations of the responses in each of the four
hydraulic system configurations. In addition, a value of unity was
assumed for the pump gain (mp � 0), although we again note that
[11,13] suggest a value that increases with frequency.

V. Dynamic Responses in Ground-Based
Configurations

Calculations for the various configurations of pumping or
propulsion systems described previously were made for a range of
frequencies f, made nondimensional by dividing by the pump
rotating frequency. These results were then compared with the corre-
sponding test data from experiments on the liquid oxygen pump in
the Japanese LE-7A rocket engine. It is important to emphasize that,
although these configurations correspond to different test facilities,
the pump being tested is the same in all configurations. Thus, in each
of the models, we use the same static pump performance curves and
the same sets of pump transfer matrices; only the facility properties
differ in each of the configurations. In addition, in the three ground-
test configurations, low-level white noise (random pressure pertur-
bations) is generated and injected at the pump inlet in order to provide
a trigger for potential cavitation surge, should that be inclined to

occur. The same level of noise is used in all the calculations. This
technique is based on the assumption that the cavitation surge (and
other dynamic responses) observed in the ground-based tests is
triggered by random pressure perturbations generated within the
turbopump itself. We now describe the results obtained for each of
the configurations.

A. Cold-Test Facility Incorporating a Turbopump
Without Accumulator

The calculated results for the cold-test facility for the turbopump
without an accumulator are shown in Fig. 7. For a cavitation number
greater than 0.04, Fig. 7 shows that the inducer pressure fluctuations
are very small. However, when the cavitation number is decreased
into the range 0.033 to 0.020, pressure fluctuations at a non-
dimensional frequency of f� 0:22 become dominant. This resonant
frequency, f� 0:22, corresponds to the third organ-pipe mode of
oscillation of the compressible liquid in the suction line, with the
open end at the tank and the closed end at the pump. However, the
maximum pressure amplitude that occurs at the inducer discharge is
less than 0.4% of the inducer tip dynamic pressure. The pressure
amplitude at the pump discharge (not shown) is very small because of
the large resistance and the inertance of the pump and the discharge
line. Note that small pressure fluctuations with the nondimensional
frequency of 0.04 and 0.13 are also observed at pump inlet and
inducer discharge. These frequencies correspond to the first and the
second organ-pipe modes of the suction line.

The corresponding data from the measurements taken during the
turbopump tests in the first configuration are presented in Fig. 8. As
in the calculations, the pressure oscillations exhibit a resonance at
f� 0:22 and onset when the cavitation number decreases into the
range 0.033 to 0.020. But the amplitudes are less than 0.3% of the

Fig. 6 Pump dynamic characteristics as a function of cavitation number: nondimensional a) cavitation compliance, Cp�u
2
tipZp=2�ApDp, and b) mass

flow gain factor,MputipZp=�Dp. Values for LE-7A turbopump (solid circles) are compared with SSME impeller measurements (open triangles) [11] and

LE-7 measurements (solid squares) [12].

Fig. 7 Model calculations for inducer a) inlet pressure and b) discharge pressure in cold-test facility without accumulator, first configuration.
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inducer tip dynamic pressure and are therefore not consequential.
Thus, the model accurately reproduces the test data, both in
frequency and amplitude.

Parenthetically, we also note that the Helmholtz frequency fs of
the incompressible liquid in the suction line between the tank and the
pump is given by

fs �
�LsCp�

�1=2

2��
(21)

where Ls is the inertance of the whole suction line. This Helmholtz
frequency that has a nondimensional value of about fs � 0:02 does
not clearly present, both in the model results and test data. This is the
result of large inertance of the suction line.

B. Cold-Test Facility Incorporating a Turbopump
With Accumulator

The calculated model results for the cold-test facility with the
accumulator (the second configuration) are shown inFig. 9. Themost
obvious change is the appearance of a natural resonant oscillation of

the flow between the accumulator and the cavitation in the pump.
This occurs because of the short length (and therefore small
inertance) offluid between the accumulator and the cavitation.As the
cavitation number decreases and the cavitation compliance
increases, the frequency of this natural cavitation surge decreases.
The nondimensional frequency fsc follows the Helmholtz frequency
calculated byEq. (21) butwithLs replaced byLsc, the inertance of the
liquid in the short column between the accumulator and the pump.
For � > 0:040, the inducer pressure fluctuations involved are very
small. But when � is reduced to 0.037, fsc becomes about 0.22 and
therefore matches the third organ-pipe mode between the tank and
the pump. This double resonance results in a sudden, substantial
increase in the magnitude of the pressure oscillations. Moreover,
with further decrease in � to 0.035, the fluctuation magnitude
decreases again as the double resonance has passed. Despite the
double resonance, the largest pressure amplitudes are less than 1% of
the inducer tip dynamic pressure. As in the first configuration, this
magnitude may be inconsequential.

The corresponding experimental measurements are presented in
Fig. 10 and show good qualitative agreement with the model. As in

Fig. 8 Measurements from cold-test facility without accumulator of inducer a) inlet pressure and b) discharge pressure to be comparedwith Fig. 7. Also

shown is c) main impeller discharge pressure.

Fig. 9 Model calculations for inducer a) inlet pressure and b) discharge pressure in cold-test facility with accumulator, second configuration.
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the first configuration without the accumulator, the maximum
pressure amplitude occurs at the inducer discharge, while the
pressure amplitudes at the pump discharge are much smaller because
of the large resistance and the inertance of the pump and the discharge
line. Thus, the model reproduces the test data accurately, both in the
frequency and the amplitude. However, the higher harmonics
observedon the test do not appear in themodel calculations, probably
because the model does not include adequate nonlinear effects. We
also note that the natural frequency fsc is slightly lower in the model
calculation, especially at low cavitation numbers. This is probably
caused by an estimated cavitation compliance, which is slightly
larger than in reality.

C. Hot-Firing Engine Test Facility

The model results for the third configuration, the hot-firing engine
test, are presented in Fig. 11. As in the second configuration, the
response is dominated by a strong resonance of the suction line

between the pump and the accumulator. The nondimensional
frequency of this resonance decreases from 0.5 to 0.3 as the
cavitation number is decreased from 0.05 to 0.02. The frequencies
are higher than in the second configuration, because the accumulator
is much closer to the turbopump; hence, Lsc is smaller. However, the
pressure amplitudes are still small: less than 0.01% of the inducer tip
dynamic pressure, even at the inducer discharge. Even though the
suction line organ-pipe frequencies exist at every 0.02 step in the
nondimensional frequency spectrum, no large pressure oscillation
magnitudes occur, because the suction line in the hot-firing engine
test facility is very long and the suction line resistance is large. The
correspondingmeasurements from the hot-firing test are presented in
Fig. 12. Again, the model results appear to simulate the test data very
well, matching both the frequency and the amplitude. The major
difference between Figs. 11 and 12 is that the results of the model
calculations appear noisy compared with the experimental data. The
reason is that almost all the organ-pipe modes around the natural
frequency respond in the model calculations while they are muted in

Fig. 10 Measurements from cold-test facility with accumulator of inducer a) inlet pressure and b) discharge pressure to be compared with Fig. 9.

Fig. 11 Model calculations for inducer a) inlet pressure and b) discharge pressure in hot-firing engine test, third configuration.

Fig. 12 Measurements from hot-firing engine test of inducer a) inlet pressure and b) discharge pressure to be compared with Fig. 11.
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the tests because, in the test facility, the actual suction line has a
complex geometry that inhibits the standing wave development.

These comparisons between the model predictions and the
ground-based test stand measurements provide considerable confi-
dence in the predictive capability of themodel. Thus, wemove, in the
next section, to examine the model predictions for the actual rocket-
based propulsion system. The preceding model calculations and
ground-based tests also demonstrate that the hydraulic system is very
stable within a nonaccelerating environment.

VI. Dynamic Response in Accelerating Frame

We now turn to the fourth configuration: the hydraulic propulsion
system in a vehicle that is experiencing oscillations. First, however,
we examine the response of the flight configuration in a static,
nonaccelerating frame, but with the samewhite noise excitation used
in thefirst three configurations. The results of this preliminary test are
presented in Fig. 13, where it is seen that only very low-level
oscillations are generated: namely, pressure oscillations less than
0.01% of inducer tip dynamic pressure and flow rate oscillations less
than 0.01%ofmeanflow.Thus, aswemight have anticipated, like the
first three configurations, the flight configuration is very stable in a
nonaccelerating frame.

Then, the model was used to examine the response in a
sinusoidally accelerating frame with an acceleration amplitude of
0:1 m=s2 at various nondimensional frequencies ranging from 0 to
0.5. This magnitude would be characteristic of the background
excitation experienced in the rocket environment. For example, a
thrust oscillation with an amplitude of 0.5% (of the total thrust) will
generate an oscillating acceleration of 0:1 m=s2 of the center of mass
of the whole vehicle accelerating at 19:6 m=s2 (2 G). The model
results under noncavitating conditions are shown in Fig. 14, which

plots the response of the pressures and the flow rates at tank outlet,
inducer inlet, and pump discharge as a function of the excitation
frequency. The conclusion is that, in the absence of cavitation, the
system response is quite muted with pressure oscillation magnitudes
less than 0.05% of inducer tip dynamic pressure and flow rate
oscillation magnitudes less than 0.02% of mean flow. The pressure
magnitudes in the suction line exhibit almost no frequency depend-
ence, while the pump discharge pressure exhibits a minimum at
f� 0:05, which corresponds to the line resonance of the compres-
sible liquid between the accumulator and the combustion chamber.
The tank outlet flow rate exhibits peaks at each of the resonant
frequencies of the organ-pipe modes of the compressible liquid
between the tank and the accumulator, with the maximum flow rates
occurring at the inlet of the accumulator. Meanwhile, the pump inlet
flow rate decreases almost monotonically with frequency as a result
of the line resistances. The pumpdischargeflow rate into the combus-
tion chamber decreases with frequency, exhibiting a maximum of
about 0.01% of mean flow rate at the lowest frequencies and a
decrease at higher frequencies. But, in summary, in the absence of
cavitation, the flight system behaves like a continuous compressible
tube and the pressure oscillation amplitudes do not substantially
exceed the quasi-static acceleration head response at the low
frequency given by �ah, where h is the elevation difference between
the two ends.

Finally, we present the key result of this paper: namely, the
response of the flight hardware to the same range of global oscillation
(an acceleration magnitude of 0:1 m=s2 for a range of oscillation
frequencies) when the pump is cavitating. Figure 15 presents the
results for the lowest cavitation number examined: namely,
� � 0:02. Compared with the results presented in Fig. 14, it is clear
that the result is a violent resonant response with amplitudes about
twoorders ofmagnitude greater than in the absence of cavitation. The

Fig. 13 Model calculations for flight configuration in a static, nonaccelerating frame: a) turbopump inlet pressure and b) turbopump discharge flow

rate.

Fig. 14 Model calculations of frequency response of flight configuration to global oscillationwithmagnitude of 0:1 m=s2 in absence of pump cavitation:
a) pressure amplitudes and b) flow rate amplitudes. Solid, dashed, and dotted lines, respectively, represent main impeller discharge, inducer inlet, and

tank outlet quantities.
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pressure oscillation magnitudes are more than 2% of the inducer tip
dynamic pressure, and the flow rate oscillation magnitudes are more
than 20% of the mean flow. Under these cavitating conditions, the
largest flow rate magnitudes occur between the accumulator and the
inducer at all frequencies and the largest pressure amplitudes occur at
the inducer discharge. Thus, the flow rate oscillation between the
accumulator and the inducer dominates the overall response and
excites the rest of the system like an oscillating piston. The suction
line from the tank to the accumulator also plays a role, albeit a
secondary role.When the frequency of the “piston” coincideswith an
organ-pipemode of the compressible liquid between the tank and the
cavitating inducer, the entire system exhibits a peak response, and
this happens at each of those organ-pipe modes. There is also an
important global response maximum near the natural cavitation
surge frequency of 0.3; at higher frequencies, the response dies off
rather rapidly. We also note one mitigating factor, namely, that the
pump discharge flow rate oscillations are generally smaller than
those upstream of the pump because of the large resistance and
inertance of the pump itself. Other cavitation numbers follow a
similar pattern with the same natural peak frequencies and ampli-
tudes in the same proportions, as indicated in Fig. 13.

Thus, the model calculations demonstrate how a violent resonant
response can occur in the acceleratingflight environmentwhen pump
cavitation is present and that this response can occur even when all
the ground tests (and themodelflight calculationswithout cavitation)
indicate a stable and well-behaved response. The difficulty of
duplicating these adverse flight environments in any ground test
(and, therefore, of examining such an adverse condition) makes
accurate model calculations an almost essential design tool.

VII. Conclusions

A time-domain response analysis model has been developed to
evaluate the dynamic response of pumping systems in an accelerating
environment. The particular application considered concerns the
stability of liquid pumping systems in rockets, but findings could
apply to a wide range of other contexts in which pumping systems
may be subject to shaking. The paper particularly focuses on the role
cavitation may play in determining the dynamic response and
demonstrates the important role cavitation can play in altering the
response. The dynamic model is first verified by comparing the
results with experimental measurements made during ground-based
tests of the Japanese LE-7A rocket engine. These tests were con-
ducted in three different test facilities and involved various levels of
pump cavitation, including cases leading to natural cavitation surge.
By using the models to evaluate the response of these systems, it is
shown that various inlet and discharge line resonances occur and that
features such as cavitation or the incorporation of an accumulator
alter these resonances. As in the experiments, the analyses demon-
strated that the LE-7A propulsion system was very stable in a
nonaccelerating frame; even at the resonance corresponding to the

frequency of cavitation surge, the pressure oscillations were minimal
(less than 0.01%of the inducer tip dynamic pressure). Themodelwas
also used to examine the response in an accelerating frame;
sinusoidal oscillations of the vehicle over a range of frequencies were
explored. Under noncavitating conditions, a vehicle acceleration of
0:1 m=s2 produced pump inlet pressure oscillations of less than
0.05% and pump discharge flow rate oscillations of less than 0.02%.
On the other hand, under cavitating conditions at � � 0:02, a vehicle
acceleration of 0:1 m=s2 produced inducer inletflow rate oscillations
of more than 20% and discharge flow rate oscillations of 2%. The
obvious conclusion is that ground-based tests may not adequately
predict the potential resonances of the pumping system, especially
when the pump is cavitating. Even if the pumping system is stable in
the static analysis and in ground-based tests conducted in a static test
facility, oscillations of the whole vehicle can cause a substantial
amplitude of flow oscillation, particularly when the pump is
cavitating.
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