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Abstract

Task-oriented dialogue systems provide a convenient inter-
face to help users complete tasks. An important consideration
for task-oriented dialogue systems is the ability to against the
noise commonly existed in the real-world conversation. Both
rule-based strategies and statistical modeling techniques can
solve noise problems, but they are costly. In this paper, we
propose a new approach, called Dynamic Reward-based Du-
eling Deep Dyna-Q (DR-D3Q). The DR-D3Q can learn poli-
cies in noise robustly, and it is easy to implement by combin-
ing dynamic reward and the Dueling Deep Q-Network (Duel-
ing DQN) into Deep Dyna-Q (DDQ) framework. The Duel-
ing DQN can mitigate the negative impact of noise on learn-
ing policies, but it is inapplicable to dialogue domain due to
different reward mechanisms. Unlike typical dialogue reward
function, we integrate dynamic reward that provides reward
in real-time for agent to make Dueling DQN adapt to dialogue
domain. For the purpose of supplementing the limited amount
of real user experiences, we take the DDQ framework as the
basic framework. Experiments using simulation and human
evaluation show that the DR-D3Q significantly improve the
performance of policy learning tasks in noisy environments.1

1 Introduction

Task-oriented dialogue systems aim at assisting users to
solve a task with fewer turns and have been used in a va-
riety of applications (Dhingra et al. 2017; Li et al. 2017;
Gao, Galley, and Li 2019). Dialogue policy, which can se-
lect appropriate dialogue actions to respond and steer the
conversation, is the key component of task-oriented dialogue
systems. The noise in real-world conversation include auto-
matic speech recognition (ASR) or natural language under-
standing (NLU) errors and ambiguous user utterances. This
noise adds the complexity of real dialogue tasks, increas-
ing the challenge of designing dialogue policies that can ro-
bustly handle noise. A dialogue system should be able to
carry on a conversation without the luxury of the accurate
ASR, NLU, or precise user utterances (Paek and Horvitz
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1Source code is at https://github.com/zhaoyangyangHH/DR-
D3Q.

2000). Therefore, designing a robust dialogue policy is cru-
cial for the application of task-oriented in real-world envi-
ronments.

The idea of dialogue policy learning for noise is not new
(Schatzmann et al. 2006). It has been suggested that both
the rule-based strategies and statistical modeling techniques
offer a natural framework for modeling noise and support
policies which are robust to their effects (Young et al. 2013;
Bohus and Rudnicky 2009). Some statistical-modeling tech-
niques generally model dialogue policies as a reinforce-
ment learning (RL) problem which requires a huge amount
of interactions between the dialogue system and real users
(Fazel-Zarandi et al. 2017; Guo et al. 2019). Although user
simulators provide an inexpensive alternative (Li et al. 2016;
Williams, Asadi, and Zweig 2017; ?), there always exists
discrepancies between real users and user simulators (Young
et al. 2016).

To alleviate the biases in the design of user simulators, the
Deep Dyna-Q (DDQ) has been proposed recently which in-
tegrates planning into RL for dialogue policy learning (Peng
et al. 2018). As illustrated in Figure 1a, the policy of the
DDQ agent can be improved through both real user experi-
ences via direct RL and simulated experiences via planning.
However, the effectiveness of DDQ depends upon the qual-
ity of simulated experiences. Although some DDQ variants
further incorporate discriminators (Su et al. 2018), active
learning (Wu et al. 2019) and Budget-Conscious Scheduling
(BCS) (Zhang et al. 2019) to obtain high-quality simulated
experiences, they are only suitable in simulated environment
without noise (Li et al. 2017). Noise in the real-world envi-
ronments hurts their performance badly. Moreover, in prac-
tice the noise problems are exacerbated in domains where
multi-step planning is used (Su et al. 2017).

Existing research on Dueling Deep Q-Network (Dueling
DQN) has shown that, in Atari 2600 tasks, an RL agent
can lead to better policy evaluation in noise conditions from
many similar-valued actions by automatically producing
separate estimates of the state value function V (s) and the
state-dependent action advantage function A(s, a) (Wang et
al. 2016). In this paper, we attempt to utilize Dueling DQN
method to mitigate the negative impact of noise in real dia-
logue environments.

9676



(a) DDQ framework

(b) Proposed DR-D3Q framework

Figure 1: Designs of RL agents for dialogue policy learning in task-completion dilaogue systems

Although it may seem intuitive to simply apply Dueling
DQN to dialogue domain, there are still problems needing
solution. The vanilla Dueling DQN method is not directly
applicable to dialogue domain, for the reason that the typi-
cal dialogue reward function is such that the agent only re-
ceives a positive reward for success ,and otherwise it gets
negative rewards for failure or per turn taken to encourage
shorter dialogs dialogues (whereas the game agent used in
Atari 2600 tasks gets positive rewards for each subgoal).
Taking the typical dialogue reward function, the immediate
rewards obtained often are the same using different actions
in the same state, resulting in the inability to learn V (s) and
A(s, a) effectively. Therefore, the typical dialogue reward
function limits the applicability of the Dueling DQN in dia-
logue tasks.

To solve the above problems, we propose Dynamic
Reward-based Dueling Deep Dyna-Q (DR-D3Q), providing
an effective and robust mechanism to against noise. As illus-
trated in Figure 1b, we incorporate dynamic reward to pro-
vide rewards in real-time for agent, which helps the vanilla
Dueling DQN adapt to the dialogue domain. The Dueling
DQN based on dynamic reward, called DR-Dueling DQN,
is characterized by giving a dynamic reward according to
the complexity of the subgoals completed by the current di-
alogue segment to encourage the dialogue agent to achieve
more challenging goals (the more complex subgoals, the
higher the corresponding rewards). Moreover, our approach
is based on the DDQ framework where the DR-Dueling
DQN is applied to replace native DQN in DDQ framework
to supplement the limited amount of real user experiences.
The policy of the DR-D3Q agent can be improved through
either dueling indirect RL or dueling planning. Experiments

show that our method is robust and effective in the face of
noise and achieve better performance than DDQ in noise-
free environments. In summary, our main contribution in this
work are as follows:

• We propose Dynamic Reward-based Dueling Deep Dyna-
Q. As far as we know, this is the first work that applies
the Dueling DQN idea to the problem of dialogue policy
learning in noisy environments.

• We introduce a new reward function (i.e., dynamic re-
ward) to measure the quality of each dialogue action in
real-time.

• We conduct extensive experiments on the movie-ticket
booking task for different noise level. The results show
that our model outperforms the state-of-the-art methods.

2 Model Architecture

As illustrated in Figure 2, the DR-D3Q framework consists
of six modules: (1) a LSTM-based NLU module (Hakkani-
Tür et al. 2016) for converting user’s raw utterance to the
semantic form of dialogue acts; (2) a state tracker (Mrksic et
al. 2017) for tracking the dialogue states; (3) a dialogue pol-
icy relies on the current state provided by the state tracker
to select an action; (4) a model-based natural language gen-
eration (NLG) module (Wen et al. 2015) for converting dia-
logue actions into a natural language response; (5) a world
model for generating simulated user actions and simulated
rewards; and (6) dynamic reward module provides dynamic
rewards for dialogue agent to rate the quality of each dia-
logue action in real-time during the conversation.

Figure 1b illustrates the training of the DR-D3Q agent
comprises four stages: (1) dynamic reward obtaining: the
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Figure 2: Illustration of the proposed DR-D3Q dialogue sys-
tem framework

dynamic rewards are obtained by judging whether the dia-
logue segment from the real and simulator experiences ac-
complishes the user subgoals in real-time. (2) Dueling Di-
rect Reinforcement Learning: the agent interacts with real
users directly, where the generated real experiences are used
to improve the dialogue policy; (3) Dueling planning: the
agent interacts with the world model and improves the pol-
icy using the simulator experiences; (4) world model learn-
ing: the world model updates itself using real experience.
Each stage is detailed in the subsections below.

2.1 Dynamic Reward

To obtain dynamic rewards requires three steps: Definition
of Dialogue Subgoal: we introduce the concept of dialogue
subgoal; Dynamic Segmentation Algorithm: we present a dy-
namic segmentation algorithm that efficiently segment valid
subgoals; Dynamic Reward Obtaining: calculate dynamic
predicted rewards based on the complexity of valid subgoals.

Definition of Dialogue Subgoal Task-oriented dialogue
systems assist users to solve a task, where have an objec-
tive goal G. The goal G includes a set of constraints C and
a set of requests R : G = (C,R) (Schatzmann and Young
2009).

Consider a air-ticket booking domain. A user may ask
about the departure time and prices of a tomorrow’s air-
ticket from Beijing to Guangzhou,where the goal is in the
form of:

Goal =

(

C =

⎡

⎣

location from = Beijing

location to = Guangzhou

date = tomorrow

⎤

⎦ ,

R =

[

air − ticket price =

departure time =

]

)

(1)

Definition 1. Subgoal2 Given G = (C,R) and G′ =
(C ′, R′), we say G′is a subgoal of G, or G′

⊏ G, if
C ′ ⊂ Cand R′ ⊂ R, where G′ �= ∅.

2Our definition of subgoal is provided by two complex HER
methods (Lu, Zhang, and Chen 2019).

Subgoal 1 =

(

C = ∅, R =

[

air − ticket price =

departure time =

]

)

Subgoal 2 =

(

C =

[

location from = Beijing

location to = Guangzhou

]

,

R = [ air − ticket price = ]

)

(2)

According to Definition 1, Equation 2 shows two example
subgoals (out of many) in the air-ticket booking example.
For instance, Subgoal 2 corresponds to the request of ”What
is the price of the air-ticket from Beijing to Guangzhou ?”

Typically, in a successful dialogue, the agent gets a 2L
reward (L is the maximum length of a dialogue), otherwise
it gets a −L reward, which encourages the agent complete
the entire user goal. Furthermore, in each turn, the agent re-
ceives a reward of -1. But if the user’s goal is not completed,
it is considered that the dialogue is failed, which lacks any
explicit guidance for agents on how to drive the dialogue
(Barlier, Laroche, and Pietquin 2018).

It should be noted that some subgoals do not make
sense to users, but can be useful for dialogue learning.
For instance, Subgoal 1 corresponds to a query about air-
ticket price and departure time without any constraints.
Real users do not have such goals, but an agent can still learn
from the experience of achieving such subgoals.

Continuing the ”air-ticket booking” example, if the agent
has not achieved sugoal 2, the dialogues will be deemed un-
successful, meaning that the agent cannot learn much from
it, even though the agent has correctly achieved the other
subgoals. In this work, we not only make use of the success-
ful dialogues that the agent has achieved the whole goal, but
also leverage such unsuccessful dialogues that the agent has
achieved partial subgoals in the training process.

Dynamic Segmentation Algorithm Give dialogue D and
D′, we say D′ is a segment of D, if D′ includes a consec-
utive sequence of turns of D. We introduce an assessment
function, success(G,D) provided by dialogue simulators ,
that outputs true or false representing whether dialogue D
accomplishes goal (or subgoal) G or not. Using the dialogue
segments and the assessment function, we define the validity
of subgoals:

Definition 2. Validity of subgoals: Given dialogue D, user
goal G, and dialogue segment D′ (of D). If there exists a
subgoal G′ ⊂ G, and success(G′, D′) is true, we say G′ is
a valid subgoal.

Using Definition 1 and 2, we can obtain the valid sub-
goal G′. Due to the combinatorial explosion, there are many
subgoals of the entire goal, making it infeasible to assess the
validity of the subgoal using all subgoals. Formally, Given
goal G, the number of subgoals Ng is shown in Equation 3.
For instance, if |C| = 5 and |R| = 5, the number of subgoals
Ng is 1598.

Ng =
∑|C|

i=0

(

i

|C|

)

·
∑|R|

j=0

(

j

|R|

)

− 2 (3)
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Algorithm 1 Dynamic Dialogue Segmentation

Require: Dialogue D from real and simulator experience;
Entire user goal G = (C,R); Assessment function
success(·, ·);

Ensure: A collection of valid subgoal, Ω;
1: Intialize G

′ = ∅, and G = C ∪R;
2: Intialize Ω = ∅;
3: while Dialogue D in not ended do
4: Outcome flag segment outcome = False
5: for q ∈ G ∩ q �∈ G

′ do
6: Construct a subgoal G′ = G

′ ∪ q
7: if success(G′, D′) then
8: segment outcome = True
9: G

′ ← G
′ ∪ q

10: end if
11: end for
12: if segment outcome = True then
13: Ω ← Ω ∪G

′

14: end if
15: end while

Based on previous research on dialogue policy learning
(Schatzmann et al. 2007), we aim at using only the ones with
the so-far-highest ”cardinality”, instead of assessing the va-
lidity of a dialogue segment using exhaustive subgoal. First,
we initialize two collections G′ and G. G′ is the subgoal set
accomplished by dialogue segments, and G is the entire user
goal set. Therefore, at the beginning of dialogues G

′ is an
empyty set, and G stores all constrains and requests. For-
mally, G′ = (C ′, R′) = ∅, and G = (C,R). After each
dialogue turn, we will leverage the NLU to identify the slot
q of the current dialogue turn. If the slot meets the condi-
tion that the slot belongs to the set G but is not one of the
set G′, we update sugoal set G′ and continue until the di-
alogue is ended. Therefore, we get a subgoal set G′ where
all subgoals share the same (so far highest) cardinality. For-
mally, G′ = {G′ | G′ = G

′ ∪ q, ∀q ∈ G ∩ q �∈ G
′}. If

G′ ∈ G is accomplished by the current dialogue segment,
the corresponding q is add into G

′, which is used to gener-
ate the subgoal set for the next dialogue segment. So at each
dialogue turn, only a small set of subgoals is used to as-
sess a dialogue segment. More detailed procedure is shown
in Algorithm 1. Compared to exhaustive subgoal identifica-
tion that suffers form combinatorial explosion, our dynamic
segment algorithm has O (|C|+ |R|) time complexity.

Dynamic Reward Obtaining Building on our dynamic
segment algorithm, we utilize valid subgoals to generate
dynamic rewards for dueling direct reinforcement learn-
ing and planning. We want to encourage the agent to ac-
complish more challenging subgoals using positive reward,
while avoiding the agent sticking to accomplishing only the
simple subgoals. Given Rmax and Rmin being the reward
and penalty to successful and failed dialogues with users, we
design the following dynamic reward function for agents:

R(D′) = α · |G′| , ensuringα · |G′| < Rmax (4)

where α is a weight, G′ is a subgoal, D′ is a dialogue seg-

ment, and |G′| is the number of slots of G′ that have be iden-
tified. The agent receives a big positive reward to encourage
accomplish entire user goal, receives a small penalty (-1 in
our case) each turn to encourage shorter dialogues, and it
will be punished when the dialogue fails.

2.2 Dueling Direct Reinforcement Learning and
Dueling Planning

In this stage, we employ a variant of DQN method, Dueling
DQN method to improve the dialogue policy. Both the du-
eling direct reinforcement learning and dueling planning are
implemented by the Dueling DQN method, operating on real
experience in Bu for dueling direct reinforcement learning
and on simulator experience in Bs for dueling planning.

The Dueling DQN architecture is decomposed into two
separate streams: one for the state value function V and one
for the state-dependent action advantage function A. Fea-
ture learning is the same as DQN is carried out by a number
of convolutional and pooling layers. The activations of the
last of these layers are sent to both separate streams which
contains a number of fully-connected layers. The final layer
combines the output of the two streams, and the outputs of
the network is a set of Q values, one for each action. The
aggregator for the two outputs of the advantage and value
streams is:

Q(s, a; θ, α, β) =V (s; θ, β) + (A(s, a; θ, α)

−
1

|A|

∑

a′

A(s, a′; θ, α))
(5)

β refers to the parameters specific to the value network, the
α refers to the parameters specific to the advantage network,
and the θ refers to the parameters to the function Q(·) by a
Multi-Layer Perceptron (MLP).

Typically, we consider task-oriented dialogue as a Markov
Decision Process (MDP), where the agent interacts with a
user or simulator through a sequence of actions to accom-
plish a user goal. In each step, the agent observes the state
s and selects an action a to further accomplish user goal,
using an ǫ − greedy policy, that selects a random action
with probability ǫ or otherwise the action that maximizes the
Q(s, a; θ, α, β) function. Afterwards, the agent receives a re-
ward r provided by dynamic reward, and a corresponding
response, updates the dialogue state to s′. Finally, we store
the experience (s, a, r, s′) into the real experience buffer Bu

or simulator experience buffer Bs respectively. This cycle
continues until the dialogue terminates.

We adjust the parameter θQ by minimizing the mean-
squared loss function to optimize the value function Q(·)
as follows:

Li(θQ) =

E(s,a,r,s′)∼Bu∪Bs [(yi −Q(s, a; θQ, α, β))
2]

yi = r +R(D′) + γEa′∼π(s′)[Q(s′, a′; θQ′ , α′, β′)]

(6)

Where γ ∈ [0, 1] is a discount factor, and Q′(·) is the target
value function that is only updated periodically. Q(·) can
be optimized through ∇θQL(θQ) by back-propagation and
mini-batch gradient descent.
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2.3 World Model Learning

We utilize the same design of the world model in DDQ
model (Peng et al. 2018). Specifically, the world model
M(s, a; θM ) is trained using a multi-task deep neutral net-
work (Liu et al. 2015) to generate the simulated experiences
that can be used to improve dialogue policy and enable the
dueling planning.

In each turn of dialogue, the world model takes the current
dialogue state s and the last system action a as the input,
through an MLP generates the corresponding user response
o, reward r, and a binary variable t which indicates whether
the dialogue terminates. The MLP has a common sharing
representation in the first layer (referred to as layer h). The
computation for each term can be shown as below:

h = tanh(Wh(s, a) + bh), (7)

r = Wrh+ br, (8)

o = softmax(Wah+ ba), (9)

t = sigmoid(Wth+ bt) (10)

3 Experiments

We evaluate the proposed DR-D3Q method on a movie-
ticket booking task with both simulated users and real users
in a noise-free environment and noisy environments, we fo-
cus on comparing the results of different methods in the
noisy environments.

3.1 Dataset

In the experiment, we use a movie-ticket booking dataset
which contains raw conversational data collected via Ama-
zon Mechanical Turk. The dataset has been manually la-
beled based on a schema defined by domain experts, as
shown in Table 1, consisting of 11 intents and 16 slots.
We simulate the noisy environments by setting the value of
slot error in dataset. In total, the dataset contains 280 an-
notated dialogues, the average length of which is approxi-
mately 11 turns.

Annotations

Intent
request, inform, deny, comfirm question,
confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theaterchain, ticket, video format, zip

Table 1: The data annotation schema

3.2 Baselines

To evaluate the effectiveness of the DR-D3Q agent, we have
developed different baselines to compare with:

• The DQN agents are implemented with only direct rein-
forcement learning in each epoch.

Figure 3: The learning curves of DDQ(K) without noise,
where (K − 1) denotes the number of planning steps. The
DQN agent is identical to a DDQ(K) agent with K = 0.

• The DQN(K) has (K − 1) times more real experiences
that the DQN agent. The performance of DQN(K) can be
viewed as the upper bound of DDQ(K), with the same
number of planning steps (K − 1), as they have the same
training settings and the same amount of training samples
during the entire learning process.

• The DDQ(K) agents are trained using an initial world
model pre-trained on human conversational data and a
DQN network for direct RL and planning, with (K − 1)
planning steps.

• The proposed DR-D3Q(K) agents are trained by utilizing
a Dueling DQN network based dynamic reward.

3.3 Implementation Details

Agent and Hyper-parameters Settings For all the mod-
els the world models (DQN, DDQ, and DR-D3Q) and their
variants, we use MLPs to parameterize the value networks
Q(·) with one hidden layer of size 80 and ReLU activa-
tion. We simulate the noise level of the environment s by
setting the value of the slot error prob. ǫ-greedy is always
applied for exploration. We set the discount factor γ = 0.9.
The buffer size of Bu and Bs is set to 2000 and 2000 ×K
planning steps, respectively. The batch size is 16, and the
learning rate is 0.001. We applied gradient clipping on all
the model parameters with a maximum norm of 1 to prevent
gradient explosion. The target network is updated at the be-
ginning of each training episode. The maximum length of
a simulated dialogue is 30 turns (L = 30). The dialogues
are counted as failed, if exceeding the maximum length of
turns. For training the agents more efficiently, we utilized
a variant of imitation learning, called Reply Buffer Spiking
(RBS) (Lipton et al. 2018) at the beginning stage to build a
naive but occasionally successful rule-based agent based on
human conversational dataset. We also pre-filled the real ex-
perience replay buffer Bu with 100 dialogues before training
for all the variants of agents.

World Model For all the models the world models (DDQ
and DR-D3Q) and their variants, the M(·) are MLPs with
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Agent noise
Epoch = 100 Epoch = 200 Epoch = 300 Epoch = 400

Success Reward Turns Success Reward Turns Success Reward Turns Success Reward Turns

DQN

0

0.3439 -11.19 26.27 0.4998 4.28 23.39 0.5909 13.37 21.64 0.7385 28.27 18.39
DQN(20) 0.6288 17.56 20.05 0.7590 30.63 17.37 0.7672 31.96 16.17 0.7810 33.73 15.12
DDQ(5) 0.4699 1.49 23.60 0.6284 17.53 20.04 0.7174 26.72 17.70 0.7257 27.75 17.12
DDQ(10) 0.5090 5.26 23.10 0.6019 14.81 20.72 0.6417 19.21 19.08 0.6319 18.47 18.82
DDQ(20) 0.6072 15.41 20.47 0.7043 25.06 18.66 0.7080 25.79 17.86 0.7126 26.66 16.94
DR-D3Q(20) 0.6183 15.94 21.42 0.6812 22.67 19.27 0.7899 33.75 16.68 0.7705 32.38 15.93

DQN

0.1

0.2814 -16.86 26.46 0.4128 -3.44 23.19 0.4678 1.72 22.76 0.4609 1.30 22.36
DQN(20) 0.4265 -1.97 22.71 0.5749 13.02 19.43 0.55794 13.37 19.55 0.6162 17.20 18.50
DDQ(20) 0.3382 -11.15 25.17 0.5235 7.87 20.48 0.5283 8.57 19.94 0.4742 3.27 20.82
DR-D3Q(20) 0.5052 5.86 21.21 0.6169 17.46 18.11 0.6134 17.40 17.60 0.6028 16.38 17.75

DQN

0.2

0.1570 -28.51 22.28 0.2533 -18.23 22.05 0.3956 -5.04 23.28 0.3991 -4.44 22.72
DQN(20) 0.3552 -9.22 24.39 0.4921 5.09 20.41 0.5158 7.65 19.55 0.5215 8.14 19.56
DDQ(20) 0.1628 -28.11 27.51 0.4192 -2.42 22.29 0.4653 2.31 21.12 0.4478 0.77 21.08
DR-D3Q(20) 0.4654 1.97 21.83 0.5440 10.26 19.40 0.5769 13.25 19.34 0.5565 11.62 18.92

DQN

0.3

0.1050 -34.27 29.45 0.2703 -17.63 25.94 0.2233 -22.28 26.77 0.2371 -20.91 26.50
DQN(20) 0.1092 -33.83 29.32 0.3364 -10.46 23.47 0.3290 -10.88 22.99 0.3725 -6.72 22.49
DDQ(20) 0.15026 -29.52 28.09 0.2860 -15.49 24.47 0.3124 -12.33 22.90 0.3169 -11.43 21.92
DR-D3Q(20) 0.3033 -14.54 25.67 0.4113 -2.96 21.96 0.4466 0.52 21.36 0.4120 -2.65 21.47

Table 2: Result of different agents at training epoch = {100, 200, 300, 400}. Each number is averaged over 4 turns, each
run tested on 50 dialogues. Success: Evaluated at the same epoch (except one groups: at epoch 200, DDQ(20)), DR-D3Q
outperforms DQN and DDQ variants in mean, especially the environment with louder noise, where DQN(20) serves as the
upper bound. Best scores are labeled in blue.

(a) The setting of noise is 0.1 (b) The setting of noise is 0.2

(c) The setting of noise is 0.3 (d) The setting of noise is 0.4

Figure 4: The learning curves of DQN, DQN(20), DDQ(20) and DR-D3Q(20) under different noise settings.

one shared hidden layer of size 160, hyperbolic-tangent ac- tivation, and one encoding layer of hidden size 80 for each
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state and action input.

3.4 Simulation Evaluation

The dialogue agents are trained by interacting with the user
simulators instead of real users. In simple terms, the world
model is trained to mimic user simulators. The simulation
setting allows us to perform a detailed analysis of models
without much cost and to reproduce the experimental results
easily, in spite of the discrepancy between simulators and
real users.

User Simulator We adapted a publicly available task-
oriented user simulator (Li et al. 2016) in our simulated eval-
uation. A dialogue is considered successful if and only if a
move ticket is booked successfully and the information pro-
vided by the agent satisfies all the constraint slots in the sam-
pled user goal. In our work, we define a dialogue with one
(or more) valid subgoal is considered semi-successful, oth-
erwise it is considered failed. At each completed dialogue,
the agent will first receive a subgoal reward R(D′) for semi-
success, and then receive a corresponding reward based on
whether the dialogue is successful or not (a positive reward
2L for success, or a negative reward −L for failure). Fur-
thermore, in each turn, a reward −1 is provided to encourage
shorter dialogues.

Main Results The main performance results including
success rate, average reward and average number of turns
over different of models reported in Table 2. As illustrated in
Figure 3, a large number of planning steps means leveraging
a large amount of simulated experience to train the agents.
Hence, the performance of DDQ(K) agents are highly sen-
sitive to parameter K and its improved for all values of K.
Therefore, we only keep the best performing DDQ(20) as
the baseline in the following figures. We report the main
performance detail in Table 2, the results show that the agent
of DR-D3Q(20) significantly outperforms the baselines with
a higher success rates and a smaller number of interaction
turns in different noise level of environments. Even in a
noise-free environment, its results are comparable to the best
results (DQN(20)).

Figure 4 show the learning curves of different agents
trained using different noise setting. From the figures and
table, When in the noise-free environment, the difference
between DR-D3Q and DDQ may not be significant, where
both the DDQ(20) and DR-D3Q(20) agents achieve about
0.68 success rate after 200 epoch and DR-D3Q(20) agents
maintains a success rate of over 0.75 after 300 epochs. How-
ever, with increase of the noise level, the experimental set-
ting makes the training environment more complicated and
unstable than the previous noise-free one, the DDQ agents is
degraded significantly, while the performance for DR-D3Q
demonstrates a higher degree of robustness to the noise level
of environment, where DDQ(20) agents suffer from 30% in-
correct slot values and achieve about 0.3 success rate after
250 epochs, DR-D3Q(20) still achieve higher than 0.3 suc-
cess rate after 100 epoch. The result show that DR-D3Q can
be more effective and robust against noisy than DDQ. A po-
tential reason might be that the dueling network architecture

Figure 5: The learning curves of DDQ, D3Q, DR-DDQ and
DR-D3Q, where DR-DDQ uses a uniform reward function
with DR-D3Q, D3Q uses a original reward function with
DDQ under 0.3 noise setting.

could detect the nuances of the action under noisy condi-
tions by extracting the effects of action and state separately
for better policy evaluation in such unstable and noisy envi-
ronments.

Ablation Test To further examine the effectiveness of the
dynamic reward module, we conduct an ablation test by re-
placing original reward function of DDQ with the dynamic
reward, referred to as DR-DDQ and updating with a Dueling
DQN network with original reward function, referred to as
D3Q. In order to observe the influence of dynamic reward
module more clearly, we choose to compare models in the
noisy environments and set the noise to 0.3. The result in
Figure 5 demonstrate that DR-D3Q can consistently outper-
form DR-DDQ and D3Q, and the performance of the D3Q
agent with dynamic reward improves more rapidly. This is
due to the fact that there is a gap between the game and the
dialogue tasks, where the game usually contains a small re-
ward for each subgoals and the dialogue only receives pos-
itive reward for success, resulting in the D3Q agent is more
sensible to the reward function in dialogue task.

3.5 Human Evaluation

We recruited real users to evaluate different systems by in-
teracting with different systems without identifying which
the agent system is, where the users can give some noise. At
the beginning of each dialogue session, the user randomly
selected one of the agents to converse using a randomly sam-
pled user goal provided by the corpus and randomly extracts
the 30% of slots in user goal for making an error answer de-
liberately. The user can terminate the dialogue at any time,
”if the user deems that the dialogue is too tedious or repeti-
tive and it is unlikely that they’ll complete their goal. In our
experiments, such dialogue sessions are considered as failed.

Three agents (DQN, DDQ(20), DR-D3Q(20)) trained in
noisy environments (Figure 4) at epoch 200 are selected for
human evaluation.3 As illustrated in Figure 6, the results of

3Epoch 200 is picked since we are testing the effectiveness of

9682



Figure 6: The human evaluation resuts of DQN, DDQ(20),
adn DR-D3Q(20) in the noisy settings. The number of dia-
logues is indicated on each bar and the one-sided p-value is
from a two-sample permulation test (difference in mean is
significant with p < 0.05).

human evaluation confirm what we observed those in the
simulation evaluations (Section 3.4). We find that DQN is
abandoned more often as it takes so many turns to reach a
promising result, DDQ is kept not good enough since they
could not adapt the noisy environment and the proposed DR-
D3Q outperforms all the other agents.

4 Conclusion

In this work, we developed a new approach Dynamic
Reward-based Dueling Deep Dyna-Q (DR-D3Q) for task-
oriented dialogue policy learning in noisy environments.
Our method mainly solves three problems: (1) Utilizing the
DDQ framework to alleviate the problem that the existing
methods developed for noise are costly and the discrepancies
existed between the real users and user simulators; (2) Uti-
lizing the Dueling DQN to mitigate the negative impact of
noise in real dialogue environments; (3) Utilizing Dynamic
Reward module to solve the problem that the vanilla Dueling
DQN cannot be directly applied to dialogue domain. Vali-
dating DR-D3Q on the movie-ticket booking task with sim-
ulation experiments and human evaluation, we show that the
DR-D3Q agent significantly outperforms the agents trained
by other state-of-the-art methods. Furthermore, DR-D3Q
can be viewed as a generic model-based RL approach easily-
extensible to other RL problems.

This is the first work that applies the Dueling DQN idea
to the problem of dialogue policy learning in noisy envi-
ronment. In the future, we plan to explore the impact of
using different kinds of noise on dialogue policy learning
and evaluate the robustness of our approach with different
types of noise. Furthermore, we will recover the errors from
ASR/NLU through other RL algorithm, or investigate other
dimensions of dialogue to improve dialogue policy learning.

methods using a small number of real experiences.
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