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Abstract

Risk measure is a fundamental concept in finance and in the insurance industry,
it is used to adjust life insurance rates. In this current paper, we will study dynamic
risk measures by means of backward stochastic Volterra integral equations (BSVIEs)
with jumps. We prove a comparison theorem for such a type of equations. Since the
solution of a BSVIEs is not a semimartingale in general, we will discuss some particular
semimartingale issues.
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1 Introduction

Consider the solution couple (Y, Z) of the following nonlinear backward stochastic differential
equation (BSDE)

dY (t) = �F (t, Y (t), Z(t))dt+ Z(t)dB(t), Y (T ) = �ξ. (1.1)
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It is known that under mild conditions this equation has a unique solution. This was first
proved by Pardoux and Peng [13], for a Lipschitz driver F and a square integrable random
variable ξ. Such a type of equation first appeared in its linear form as an adjoint equation
when Bismut [5] studied the stochastic version of the Pontryagin’s maximum principle. Due
to their significant applications to finance and insurance, BSDEs have gained a lot of interest
since 1990. See e.g. the seminal work by El Karoui et al [7] for more details. Subsequently,
it was discovered that BSDEs could also be used to represent risk measures. We recall this
connection briefly. First, let us recall the definition of a convex risk measure, see for instance
Föllmer and Schied [8], Frittelli and Rosazza Gianin [9].

Definition 1.1 A convex risk measure is a map ρ : Lp (FT ) ! R, p 2 [2,1] that satisfies
the following properties:

• (Convexity) ρ(λϕ1 + (1 � λ)ϕ2)  λρ(ϕ1) + (1 � λ)ρ(ϕ2) for all λ 2 [0, 1] and all
ϕ1,ϕ2 2 Lp (FT ).

• (Monotonicity) If ϕ1  ϕ2, then ρ(ϕ1) � ρ(ϕ2).

• (Translation invariance) ρ(ϕ+ a) = ρ(ϕ)� a for all ϕ 2 Lp (FT ) and all constants a.

• ρ(0) = 0.

The last axiom is known as a normalisation and usually it is assumed for convenience.
The construction of risk measures from solutions to BSDEs is given as follows:
Let Y (t) = Y �ξ(t) be the first component of the solution of the BSDE (1.1). Assume that
the driver F (t, y, z) of the BSDE (1.1) does not depend on y and that z 7! F (t, z) is convex
for all t. Then

ρ(ξ) := Y �ξ(0)

defines a convex risk measure. This shows how crucial is the choice of the functional F . This
relation extends to the concept of dynamic risk measure. See for example Barrieu and El
Karoui [4], Quenez and Sulem [16]. Peng [14], Rosazza Gianin [18] have used the notion of
the nonlinear expectation (g-BSDE) to represent a dynamic risk measures.
The connection above has also been generalised to BSDEs with jumps by Quenez and Sulem
[15] and Øksendal and Sulem [12]. Yong [26] extended the notion of dynamic risk measures
by means of BSDEs to a specific class of dynamic risk measures that arise as a solutions to the
so-called BSVIEs, as follows: Consider a position (wealth) process ψ 2 L2

FT
(0, T ) instead of

a random variable ξ and let the couple (Y (t), Z(t, s)) be the solution of the following BSVIE

Y (t) = �ψ (t) +
R T

t
g(t, s, Y (s), Z(t, s))ds�

R T

t
Z(t, s)dB(s), t 2 [0, T ]. (1.2)

More generally, he considers the BSVIE

Y (t) = �ψ (t) +
R T

t
g(t, s, Y (s), Z(t, s), Z(s, t))ds�

R T

t
Z(t, s)dB(s), t 2 [0, T ] . (1.3)
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We may remark here, the difference between the two above equations is that the driver in
(1.3) depends on both Z(t, s) and Z(s, t). This type of equations appeared in its linear form
when Yong [23] proved the duality principle between linear forward stochastic Volterra in-
tegral equations (SVIEs) and linear BSVIEs.
Moreover, differentiability of BSDEs and BSVIEs were used for the purpose of capital allo-
cation for risk measures by Kromer and Overbeck [11]. We recall now the definition of the
dynamic risk measure by means of BSVIEs from Yong [26].

Definition 1.2 A map ρ : [0, T ] ⇥ L2
FT

(0, T ) ! L2
F(0, T ) is called a dynamic risk measure

if the following hold:

• (Past independence) For any ψ (·) ,ψ0 (·) 2 L2
FT

(0, T ), if

ψ (s) = ψ0 (s) , a.s., ω 2 Ω, s 2 [t, T ],

for some t 2 [0, T ), then

ρ(t;ψ (·)) = ρ(t;ψ0 (·)), a.s., ω 2 Ω.

• (Monotonicity) For any ψ (·) ,ψ0 (·) 2 L2
FT

(0, T ), if

ψ (s)  ψ0 (s) , a.s., ω 2 Ω, s 2 [t, T ],

for some t 2 [0, T ), then

ρ(t;ψ (·)) � ρ(t;ψ0 (·)), a.s., ω 2 Ω.

Definition 1.3 A dynamic risk measure ρ : L2
FT

(0, T ) ! L2
F(0, T ) is called a convex risk

measure if

• (Convexity) For any ψ (·) ,ψ0 (·) 2 L2
FT

(0, T ) and λ 2 [0, 1],

ρ(t;λψ (·) + (1� λ)ψ0 (·))  λρ(t;ψ (·)) + (1� λ)ρ(t;ψ0 (·)), a.s., ω 2 Ω, t 2 [0, T ].

• (Translation invariance) For any ψ (·) and any constant a it holds that

ρ(t;ψ (·) + a) = ρ(t;ψ (·))� a, a.s., ω 2 Ω, s 2 [t, T ],

This type of equation can also be used as a model for recursive utility, because the
equivalent formulation of (1.2) is

Y (t) = E[�ψ(t) +
R T

t
g(t, s, Y (s), Z(t, s))ds|Ft].

This can be regarded as an extension of the classical recursive utility concept of Duffie and
Epstein [6] to systems with memory. For example, for the consumption process c(t) � 0, we
consider its recursive utility process Y (t) defined by

Y (t) = E[�ψ(t) +
R T

t
g(t, s, Y (s), Z(t, s), c(s))ds|Ft].
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For more details about BSVIEs and their applications, we refer to Yong et al [23], [24], [25]
and to Agram et al [2],[3], [1]. In Wang and Yong [21] comparison theorems for different
classes of BSVIEs have been proved. In all the above works, only BSVIEs driven by Brownian
motion are considered.

In the current paper we are interested in BSVIEs with jumps of the form

Y (t) = �ψ (t) +
R T

t
g(t, s, Y (s), Z(t, s), K(t, s, ·))ds�

R T

t
Z(t, s)dB(s)

�
R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,
(1.4)

where B is a standard Brownian motion and Ñ is an independent compensated Poisson
random measure (see below for definitions). For a Lipschitz driver, Agram et al [2] have
proved that there exists a unique solution of equation (1.4). Under weaker assumptions
(non-Lipschitz driver), we refer to Wang and Zhang [22] and to Ren [17].
The general nature of the BSVIEs does not allow us to write explicitly the solution of a
linear BSVIEs in general. However, Hu and Øksendal [10] have obtained a closed solution
formula for a special class of linear BSVIEs with jumps. Using their result, we will prove
comparison theorems for BSVIEs with jumps.

The main contributions in this paper is the extension to jumps of the comparison theorems
in Wang and Yong [21] and also the dynamic measures by BSVIEs with jumps of the paper
by Yong [26].

Moreover, due to the dependence on t in the coefficients, such BSVIEs are complicated
to deal with. It is not even clear if the solution of a BSVIE is a semimartingale in general.
We will discuss some particular cases where the solution can be a semimartingale.

Here is an outline of our paper:
In Section 2 we give some preliminaries on BSVIEs with jumps. Then in Section 3 we prove
a comparison theorem for BSVIEs with jumps. In Section 4 we study dynamic risk measures
by means of BSVIEs with jumps. Finally, in Section 5 we discuss some semimartingale issues
for BSVIEs.

2 Preliminaries on BSVIEs with jumps

Let (Ω,F ,P) be a given probability space with filtration F = (Ft)t�0 generated by a one-
dimensional Brownian motion B and an independent Poisson random measure N(dt, dζ). Let
ν(dζ)dt denote the Lévy measure of N , and let Ñ(dt, dζ) denote the compensated Poisson
random measure N(dt, dζ)� ν(dζ)dt.
Put 4 := {(t, s) 2 [0, T ]2 : t  s}. We define the following sets:

• L2
y consists of the F-adapted càdlàg processes Y : [0, T ] ⇥ Ω ! R equipped with the

norm
k Y k2L2

y
:= E[

R T

0
|Y (t)|2dt] < 1.
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• L2
z consists of the F-predictable processes

Z : 4⇥ Ω ! R,

such that E[
R T

0

R T

t
|Z(t, s)|2 dsdt] < 1 with s 7! Z(t, s) being F-predictable on [t, T ].

We equip L2
z with the norm

k Z k2L2
z
:= E[

R T

0

R T

t
|Z(t, s)|2 dsdt].

• L2
ν consists of all Borel functions K : R0 ! R, such that

k K k2L2
ν

:=
R

R0

K(t, s, ζ)2ν(dζ) < 1.

• H2
ν consists of F-predictable processes K : 4⇥ R0 ⇥ Ω ! R, such that

E[
R T

0

R T

t

R

R0

|K(t, s, ζ)|2ν(dζ)dsdt] < 1

and s 7! K (t, s, ·) being F-predictable on [t, T ]. We equip H2
ν with the norm

k K k2H2
ν

:= E[
R T

0

R T

t

R

R0

|K(t, s, ζ)|2ν(dζ)dsdt].

• Let L2
FT

[0, T ] be the space of all processes ψ : [0, T ]⇥Ω ! R and ψ is FT -measurable
for all t 2 [0, T ], such that

||ψ||2L2

FT
[0,T ] = E[

R T

0
|ψ(t)|2dt] < 1.

• L2
F[0, T ] is the space of all ψ 2 L2

FT
[0, T ] that are F-adapted.

We are interested in the BSVIE (Y, Z,K) 2 L2
y ⇥ L2

z ⇥H2
ν , given by

Y (t) = ψ (t) +
R T

t
g(t, s, Y (s), Z(t, s), K(t, s, ·))ds�

R T

t
Z(t, s)dB(s)

�
R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,
(2.1)

where the following conditions are satisfied:

(i) The driver g : 4⇥ R2 ⇥ L2
ν ⇥ Ω ! R satisfies the following integrability condition:

E[
R T

0
(
R T

t
g(t, s, 0, 0, 0)ds)2dt] < +1. (2.2)
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(ii) The driver g satisfies the following Lipschitz condition:
There exists a constant C > 0, such that, for all (t, s) 2 4,

|g(t, s, y, z, k(·))� g(t, s, y0, z0, k0(·))|

 C(|y � y0|+ |z � z0|+ (
R

R0

|k(ζ)� k0 (ζ)|2 ν(dζ))
1

2 ),
(2.3)

for all y, y0, z, z0 2 R, k(·), k0(·) 2 L2
ν .

(iii) The terminal condition ψ (·) 2 L2
FT

[0, T ].

For this equation the following is known:

Theorem 2.1 (Agram et al [2]) Under the above assumptions, there exists a unique so-
lution (Y, Z,K) 2 L2

y ⇥ L2
z ⇥H2

ν of the BSVIEs with jumps (2.1), with

k(Y, Z,K)k2L2
y⇥L2

z⇥H2
ν

 CE[|ψ (t)|2 + (
R T

t
g (t, s, 0, 0, 0) ds)2].

In the next section we will prove a comparison theorem for some BSVIEs by using the
linearisation of the solutions.

3 Comparison theorem for BSVIEs with jumps

In order to be able to prove the comparison theorem for BSVIEs with jumps, let us first recall
the closed formula for linear BSVIEs with jumps. Consider the solution triplet (Y, Z,K) 2
L2
y ⇥ L2

z ⇥H2
ν of the following linear BSVIE

Y (t) := ψ (t) +
R T

t
[α(t, s)Y (s) + β (s)Z(t, s) +

R

R0

θ (s, ζ)K(t, s, ζ)ν (dζ)]ds

�
R T

t
Z(t, s)dB(s)�

R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,
(3.1)

where ψ (·) 2 L2
FT

[0, T ], α(t, s); 0  t  s  T and (β(s), θ(s, ζ); 0  s  T , ζ 2 R0 are
given (deterministic) measurable functions of t, s and ζ, with values in R. For simplicity we
assume that these functions are bounded, and we assume that there exists ε > 0 such that
θ(s, ζ) � �1 + ε for all s, ζ.
Define the measure Q by

dQ = M(T )dP on FT ,

where

M(t) := exp(
R t

0
β(s)dB(s)� 1

2

R t

0
β2(s)ds

+
R t

0

R

R0

ln(1 + θ(s, ζ))Ñ(ds, dζ)

+
R t

0

R

R0

{ln(1 + θ(s, ζ))� θ(s, ζ)}ν(dζ)ds).

Then under the new measure Q the process

BQ(t) := B(t)�
R t

0
β(s)ds , 0  t  T .
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is a Brownian motion, and the random measure

ÑQ(dt, dζ) := Ñ(dt, dζ)� θ(t, ζ)ν(dζ)dt

is the Q-compensated Poisson random measure of N(·, ·), in the sense that the process

Ñγ(t) :=
R t

0

R

R0

γ(s, ζ)ÑQ(ds, dζ)

is a local Q-martingale, for all predictable processes γ(t, ζ) such that

R T

0

R

R0

γ2(t, ζ)θ2(t, ζ)ν(dζ)dt < 1.

By this change of measure the equation (3.1) is equivalent to

Y (t) = ψ(t) +
R T

t
α(t, s)Y (s)ds�

R T

t
Z(t, s)dBQ(s)�

R T

t

R

R0

K(t, s, ζ)ÑQ(ds, dζ).

For all 0  t  r  T, define

α(1)(t, r) = α(t, r) , α(2)(t, r) =
R r

t
α(t, s)α(s, r)ds

and inductively
α(n)(t, r) =

R r

t
α(n�1)(t, s)α(s, r)ds , n = 3, 4, · · · .

Note that if |α(t, r)|  C (constant) for all t, r, then by induction on n 2 N

|α(n)(t, r)|  CnTn

n!
,

for all t, r, n. Put,
Ψ(t, r) := Σ

1
n=1|α

(n)(t, r)| < 1,

for all t, r. Then we have the following:

Theorem 3.1 (Hu and Øksendal [10]) The first component Y (t) of the solution of the
linear BSVIE with jumps (3.1) is given by

Y (t) =
E

h

dQ

dP
{ψ(t) +

R T

t
Φ(t, r)ψ(r)dr}|Ft

i

E
⇥

dQ

dP
|Ft

⇤ .

Remark 3.2 In the previous theorem, we can get the same result by considering predictable
processes (β(s), θ(s, ζ); 0  s  T , ζ 2 R0) instead of deterministic functions since the
Girsanov change of measure theorem is still valid.

We now state and prove the comparison theorem.
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Theorem 3.3 (Comparison Theorem) For i = 1, 2, let gi : 4 ⇥ R2 ⇥ L2
ν ⇥ Ω! R and

ψ1(t),ψ2(t) 2 L2
FT

[0, T ] and let (Y i, Zi, Ki)i=1,2 be the solutions of

Y i(t) = ψi (t) +
R T

t
gi (t, s, Y

i (s) , Zi (t, s) , Ki (t, s, ·)) ds�
R T

t
Zi(t, s)dB(s)

�
R T

t

R

R0

Ki(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .

Assume that the drivers (gi)i=1,2 are Lipschitz and satisfy

g1
�

t, s, y2, z2, k2
�

� g2
�

t, s, y2, z2, k2
�

, 8t,P-a.s., (3.2)

and that there exists a bounded predictable process θ (s, t, ζ) and a Π(·) 2 L2
ν such that

ds⌦ dP⌦ν(dζ)-a.s.,
θ (s, ζ) � �1 + ε and |θ (s, ζ) |  Π (ζ) , (3.3)

and the following inequality holds

g1 (t, s, Y
2 (s) , Z2 (t, s) , K1 (t, s, ·))� g1 (t, s, Y

2 (s) , Z2 (t, s) , K2 (t, s, ·))
�

R

R0

θ (s, ζ) (K1(t, s, ζ)�K2(t, s, ζ))ν(dζ).
(3.4)

Moreover, assume that the driver g is increasing on y, such that

g
�

t, s, y1, z, k
�

� g
�

t, s, y2, z, k
�

, if y1 � y2, 8t,P-a.s., (3.5)

and
ψ1(t) � ψ2(t) for each t 2 [0, T ] , P-a.s. (3.6)

Then Y 1(t) � Y 2(t) P-a.s. for each t.

Proof We set

ψ̂ = ψ1 � ψ2,

Ŷ = Y 1 � Y 2, Ẑ = Z1 � Z2, K̂ = K1 �K2,

we have
Ŷ (t) = ψ̂ (t) +

R T

t
[g1 (t, s, Y

1 (s) , Z1 (t, s) , K1 (t, s, ·))
�g2 (t, s, Y

2 (s) , Z2 (t, s) , K2 (t, s, ·))]ds

�
R T

t
Ẑ(t, s)dB(s)�

R T

t

R

R0

K̂(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .

Note that

g1
�

t, s, Y 1 (s) , Z1 (t, s) , K1 (t, s, ·)
�

� g2
�

t, s, Y 2 (s) , Z2 (t, s) , K2 (t, s, ·)
�

= g1
�

t, s, Y 1 (s) , Z1 (t, s) , K1 (t, s, ·)
�

� g1
�

t, s, Y 2 (s) , Z1 (t, s) , K1 (t, s, ·)
�

+ g1
�

t, s, Y 2 (s) , Z1 (t, s) , K1 (t, s, ·)
�

� g1
�

t, s, Y 2 (s) , Z2 (t, s) , K1 (t, s, ·)
�

+ g1
�

t, s, Y 2 (s) , Z2 (t, s) , K1 (t, s, ·)
�

� g1
�

t, s, Y 2 (s) , Z2 (t, s) , K2 (t, s, ·)
�

g1
�

t, s, Y 2 (s) , Z2 (t, s) , K2 (t, s, ·)
�

� g2
�

t, s, Y 2 (s) , Z2 (t, s) , K2 (t, s, ·)
�

� α (t, s) Ŷ (s) + β (s) Ẑ(t, s) +
R

R0

θ (s, ζ) K̂(t, s, ζ)ν (dζ) ,

8



where

α (t, s) =
g1(t,s,Y 1(s),Z1(t,s),K1(t,s,·))�g1(t,s,Y 2(s),Z1(t,s),K1(t,s,·))

Ŷ (s)
1{Ŷ (s) 6=0},

and
β (s) = g1(t,s,Y 2(s),Z1(t,s),K1(t,s,·))�g1(t,s,Y 2(s),Z2(t,s),K1(t,s,·))

Ẑ(t,s)
1{Ẑ(t,s) 6=0}.

Hence

Ŷ (t) � ψ̂ (t) +
R T

t
[α (t, s) Ŷ (s) + β (s) Ẑ(t, s) +

R

R0

θ (s, t, ζ) K̂(t, s, ζ)ν (dζ)]ds

�
R T

t
Ẑ(t, s)dB(s)�

R T

t

R

R0

K̂(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .
(3.7)

We proceed as in Theorem 3.1 and obtain

Ŷ (t) �
E

h

dQ

dP
{ψ̂(t) +

R T

t
Φ(t, r)ψ̂(r)dr}|Ft

i

E
⇥

dQ

dP
|Ft

⇤ ,

where Φ(t, r) =
P1

n=1 α
(n)(t, r).

By hypothesis (3.5), we get that α(t, r) � 0 for all t, r. Hence Φ(t, r) � 0 for all t, r together
with (3.6) implies that Ŷ (t) � 0 P-a.s. ⇤

The following particular case is essential for the next section.

3.1 BSVIEs with drivers independent of Y

In this subsection, we are interested in BSVIEs with drivers g independent of Y , as follows:

Y (t) = �ψ (t) +
R T

t
g(t, s, Z(t, s), K(t, s, ·))ds�

R T

t
Z(t, s)dB(s)

�
R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .
(3.8)

We impose the following set of assumptions.

• The driver g : 4⇥ R⇥ L2
ν ⇥ Ω ! R satisfies

E[
R T

0
(
R T

t
g(t, s, 0, 0)ds)2dt] < +1. (3.9)

• There exists a constant C > 0, such that, for all (t, s) 2 4,

|g(t, s, z, k(·))� g(t, s, z0, k0(·))|

 C(|z � z0|+ (
R

R0

|k(ζ)� k0 (ζ)|2 ν(dζ))
1

2 ),
(3.10)

for all z, z0 2 R, k(·), k0(·) 2 L2
ν .

• The terminal value ψ (·) 2 L2
FT

[0, T ].
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We know by Theorem 2.1 there exists a unique solution (Y, Z,K) 2 L2
y ⇥ L2

z ⇥ H2
ν for the

BSVIE (3.8). Consider the following the particular linear BSVIE with jumps

Y (t) := �ψ (t) +
R T

t
[β (s)Z(t, s) +

R

R0

θ (s, ζ)K(t, s, ζ)ν (dζ)]ds

�
R T

t
Z(t, s)dB(s)�

R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,
(3.11)

where ψ (·) 2 L2
FT

[0, T ] and (β(s), θ(s, ζ); 0  s  T , ζ 2 R0 are given (deterministic)
measurable functions of s and ζ, with values in R. For simplicity we assume that these
functions are bounded, and we assume that there exists ε > 0 such that θ(s, ζ) � �1+ ε for
all s, ζ.
Since the following results are just particular cases of the previous theorems, we will state
them without proofs.

Lemma 3.4 The part of the solution Y (t) of the linear BSVIE with jumps (3.11) can be
given on its closed formula, as

Y (t) =
�E

⇥

dQ

dP
ψ(t)|Ft

⇤

E
⇥

dQ

dP
|Ft

⇤ .

We can also get the comparison theorem for BSVIE with jumps of type (3.8).

Theorem 3.5 (Comparison Theorem ) For i = 1, 2, let gi : 4 ⇥ R ⇥ L2
ν ⇥ Ω! R and

ψ1(t),ψ2(t) 2 L2
FT

[0, T ] and let (Y i, Zi, Ki)i=1,2 be the solutions of

Y i(t) = �ψi (t) +
R T

t
gi (t, s, Z

i (t, s) , Ki (t, s, ·)) ds�
R T

t
Zi(t, s)dB(s)

�
R T

t

R

R0

Ki(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .

Assume that the driver (gi)i=1,2 is Lipschitz and satisfies

g1
�

t, s, z2, k2
�

� g2
�

t, s, z2, k2
�

, 8t,P-a.s., (3.12)

and that there exists a bounded predictable process θ (s, ζ) and a Π(·) 2 L2
ν such that ds ⌦

dP⌦ν(dζ)-a.s.,
θ (s, ζ) � �1 + ε and |θ (s, ζ) |  Π (ζ) ,

and the following inequality holds

g1 (t, s, Z
2 (t, s) , K1 (t, s, ·))� g1 (t, s, Z

2 (t, s) , K2 (t, s, ·))
�

R

R0

θ (s, ζ) (K1(t, s, ζ)�K2(t, s, ζ))ν(dζ).
(3.13)

Moreover,
ψ1(t)  ψ2(t) for each t 2 [0, T ] , P-a.s. (3.14)

Then Y 1(t) � Y 2(t) P-a.s. for each t.
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4 Dynamic risk measure by means of BSVIE

As we have seen in the introduction, a natural way to construct a dynamic risk measures by
means of a BSVIEs with jumps, is as follows: Define

ρ(t;ψ(·)) := Y �ψ(·)(t), for all t 2 [0, T ],

where Y is the first component of the solution (Y (t), Z(t, s), K(t, s, ζ)) of the BSVIE

Y (t) = �ψ (t) +
R T

t
g(t, s, Z(t, s), K(t, s, ·))ds�

R T

t
Z(t, s)dB(s)

�
R T

t

R

R0

K(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,

where the terminal condition ψ 2 L2
FT

(0, T ) and the generator g : 4 ⇥ R ⇥ L2
ν ⇥ Ω ! R

satisfies the assumptions (3.9), (3.10), (3.3).

Theorem 4.1 If ρ and g are defined as above then ρ is a convex dynamic risk measure, i.e.
the following holds:

(i) Convexity: Suppose that (z, k(·)) 7! g(t, s, z, k(·)) is convex, i.e.,

g(t, s,λz1 + (1� λ)z2,λk1(·) + (1� λ)k2(·))

 g(t, s,λz1,λk1(·)) + g(t, s, (1� λ)z2, (1� λ)k2(·)),

for all (t, s) 2 4, z1, z2 2 R, k1(·), k2(·) 2 R0 and λ 2 [0, 1].

Then ψ(·) 7! ρ(t;ψ(·)) is convex, i.e.,

ρ(t;λψ1(·) + (1� λ)ψ2(·))  λρ(t;ψ1(·)) + (1� λ)ρ(t;ψ2(·)), t 2 [0, T ].

(ii) Monotonicity: If ψ1(·)  ψ2(·), then ρ(t;ψ2(·))  ρ(t;ψ1(·)).

(iii) Translation invariance: If ψ(·) 2 L2
FT

(0, T ) and a constant a 2 R. Then ρ(t;ψ(·) +
a) = ρ(t;ψ(·))� a, for each t 2 [0, T ] .

(iv) Past independence: If ψ(·),ψ0(·) 2 L2
FT

(0, T ) and ψ(s) = ψ0(s) for all s 2 [t, T ] then
ρ(t;ψ(·)) = ρ(t,ψ0(·)).

Proof (i) Convexity: Fix λ 2 (0, 1) and for all ψ1(·),ψ2(·) 2 L2
FT

(0, T ). We want to prove
that

ρ(t;λψ1(·) + (1� λ)ψ2(·))  λρ(t;ψ1(·)) + (1� λ)ρ(t;ψ2(·)),

i.e.,

Y �(λψ1(·)+(1�λ)ψ2(·))(t)  λ(Y �ψ1(·)(t)) + (1� λ)(Y �ψ2(·)(t)).
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Set (Ŷ , Ẑ, K̂) 2 L2
y ⇥ L2

z ⇥H2
ν solution of the following BSVIE with jumps

Ŷ (t) = �λψ1(t)� (1� λ)ψ2(t) +
R T

t
g(t, s, Ẑ(t, s), K̂(t, s, ·))ds

�
R T

t
Ẑ(t, s)dB(s)�

R T

t

R

R0

K̂(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] .

Define
Ỹ (t) := λY �ψ1(·)(t) + (1� λ)Y �ψ2(·)(t),

Z̃(t, s) := λZ�ψ1(·)(t, s) + (1� λ)Z�ψ2(·)(t, s),

K̃(t, s, ·) := λK�ψ1(·)(t, s, ·) + (1� λ)K�ψ2(·)(t, s, ·).

Then

Ỹ (t) = �λψ1(t)� (1� λ)ψ2(t)

+
R T

t
[λg(t, s, Z�ψ1(·)(t, s), K�ψ1(·)(t, s, ·)) + (1� λ)g(t, s, Z�ψ2(·)(t, s), K�ψ2(·)(t, s, ·))]ds

�
R T

t
Z̃(t, s)dB(s)�

R T

t

R

R0

K̃(t, s, ζ)Ñ(ds, dζ)

� �λψ1(t)� (1� λ)ψ2(t) +
R T

t
g(t, s, Z̃(t, s), K̃(t, s, ·))

�
R T

t
Z̃(t, s)dB(s)�

R T

t

R

R0

K̃(t, s, ζ)Ñ(ds, dζ), t 2 [0, T ] ,

where we have used the convexity of g in the last inequality. By the comparison Theorem
3.5, we deduce that

Ŷ (t)  Ỹ (t), for each t 2 [0, T ] .

Hence

ρ(t;λψ1(·) + (1� λ)ψ2(·)) = Ŷ (t)  Ỹ (t)

= λY �ψ1(·)(t) + (1� λ)Y �ψ2(·)(t)

= λρ(t;ψ1(·)) + (1� λ)ρ(t;ψ2(·)).

(ii) Monotonicity: If ψ1(·)  ψ2(·), then, by the comparison Theorem 3.5, Y �ψ2(·)(t) 
Y �ψ1(·)(t). Consequently,

ρ(t;ψ2(·)) = Y �ψ2(·)(t)  Y �ψ1(·)(t) = ρ(t;ψ1(·)).

(iii) Translation invariant: If ψ(·) 2 L2
FT

(0, T ) and a 2 R is a real constant. Then we get
that

Y �ψ(·)+a(t) = Y �ψ(·)(t) + a.

Thus,

ρ(t;ψ(·) + a) = Y �ψ(·)+a(t) = Y �ψ(·)(t)� a

= ρ(t;ψ(·))� a, for each t 2 [0, T ] .

(iv) The past independence is a direct consequence of the definition of ρ. ⇤
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5 Semimartingale issues

In this section, we will discuss some particular cases where the solution Y of the above
BSVIE can be a semimartingale.
For simplicity, we do not consider jumps, since the jump terms do not play an essential role
here.

Consider the solution couple (Y, Z) 2 L2
y ⇥ L2

z of a BSVIE of the form

Y (t) = ψ (t) +
R T

t
g (t, s, Y (s) , Z (t, s)) ds�

R T

t
Z (t, s) dB(s), 0  t  T, (5.1)

where g : 4⇥R⇥R⇥Ω ! R is a Lipschitz driver and the terminal value ψ (t) 2 L2
FT

[0, T ].
In what follows, we denote by the semimartingale X(t) the solution of the stochastic differ-
ential equation

X(t) = x0 +
R t

0
b (s,X(s)) ds+

R t

0
σ (s,X(s)) dB(s), t 2 [0, T ]. (5.2)

Type 1 - BSVIE

Let the couple (Y, Z) 2 L2
y ⇥ L2

z be solution of the following BSVIE

Y (t) = F (X(t), X(T ))�
R T

t
Z(t, s)dB(s), (5.3)

for some function F : R2 ! R and X(t) as given above by (5.2).
Now define

F (X(t), X(T )) := F1(X(t))F2(X(T )),

for functions F1 : R ! R and F2 : R ! R which are assumed to be twice continuously
differentiable (C2). Consider

Y (t) := F1(X(t))Ỹ (t),

where Ỹ (t) is the solution of the BSDE

Ỹ (t) := F2(X(T ))�
R T

t
Z(s)dB(s),

and
Z(t, s) := F1(X(t))Z(s).

By the Itô formula, we get that Y (t) solution of (5.3) is a semimartingale.

Type 2 - BSVIE

Similarly as in the previous case, we consider a BSVIE of the form

Y (t) = F (X(t), X(T ))�
R T

t
Z(t, s)dB(s), (5.4)
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for functions F 2 C2(R2). Then, for

Ỹ (t, x) = F (x,X(T ))�
R T

t
Z̃(s, x)dB(s),

we have that
Y (t) := Ỹ (t,X(t)), Z(t, s) := Z̃(s,X(t)).

Using the Itô-Ventzell formula, we obtain that Y (t) given by (5.4) is a semimartingale.

Type 3 - BSVIE

Now we consider a BSVIE for a driver g which does not depend on Z, as follows:

Y (t) = F (X(t), X(T )) +
R T

t
g(X(t), X(s), Y (s))ds�

R T

t
Z(t, s)dB(s), t 2 [0, T ].

Knowing Y , we can consider

Ỹ (t, x) = F (x,X(T )) +
R T

t
g(x,X(s), Y (s))ds�

R T

t
Z̃(s, x)dB(s), t 2 [0, T ].

Define

Ȳ (t) := Ỹ (t,X(t)),

Z̄(t, s) := Z̃(s,X(t)).

Then

Ȳ (t) = F (X(t), X(T )) +
R T

t
g(X(t), X(s), Y (s))ds�

R T

t
Z̄(t, s)dB(s), t 2 [0, T ].

By uniqueness of the solution, we have

Y (t) = Ȳ (t) = Ỹ (t,X(t)),

Z(t, s) = Z̄(t, s) = Z̃(s,X(t)).

By Itô-Ventzel’s formula, we get that Y (t) = Ỹ (t,X(t)) is a semimartingale.

The most general case, i.e., when the driver depends on both Y and Z is still open and
it is a subject of further research.
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