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Abstract

This paper gives an overview of the theory of dynamic convex risk measures for random variables

in discrete time setting. We summarize robust representation results of conditional convex risk mea-

sures, and we characterize various time consistency properties of dynamic risk measures in terms of

acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty

functions.

1 Introduction

Risk measures are quantitative tools developed to determine minimum capital reserves, which are required
to be maintained by financial institutions in order to ensure their financial stability. An axiomatic analysis
of risk assessment in terms of capital requirements was initiated by Artzner, Delbaen, Eber, and Heath [2,
3], who introduced coherent risk measures. Föllmer and Schied [23] and Frittelli and Rosazza Gianin [25]
replaced subadditivity and positive homogeneity by convexity in the set of axioms and established the
more general concept of a convex risk measure. Since then, convex and coherent risk measures and
their applications have attracted a growing interest both in mathematical finance research and among
practitioners.

One of the most appealing properties of a convex risk measure is its robustness against model uncer-
tainty. Under some regularity condition, it can be represented as a suitably modified worst expected loss
over a whole class of probabilistic models. This was initially observed in [3, 23, 25] in the static setting,
where financial positions are described by random variables on some probability space and a risk measure
is a real-valued functional. For a comprehensive presentation of the theory of static coherent and convex
risk measures we refer to Delbaen [15] and Föllmer and Schied [24, Chapter 4].
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A natural extension of a static risk measure is given by a conditional risk measure, which takes into
account the information available at the time of risk assessment. As its static counterpart, a conditional
convex risk measure can be represented as the worst conditional expected loss over a class of suitably
penalized probability measures; see [37, 34, 18, 6, 29, 26, 12]. In the dynamical setting described by
some filtered probability space, risk assessment is updated over the time in accordance with the new
information. This leads to the notion of dynamic risk measure, which is a sequence of conditional risk
measures adapted to the underlying filtration.

A crucial question in the dynamical framework is how risk evaluations at different times are interre-
lated. Several notions of time consistency were introduced and studied in the literature. One of todays
most used notions is strong time consistency, which corresponds to the dynamic programming principle;
see [4, 16, 18, 29, 26, 12, 7, 22, 13, 17] and references therein. As shown in [16, 7, 22], strong time con-
sistency can be characterized by additivity of the acceptance sets and penalty functions, and also by a
supermartingale property of the risk process and the penalty function process. Similar characterizations
of the weaker notions of time consistency, so called rejection and acceptance consistency, were given in
[19, 33]. Rejection consistency, also called prudence in [33], seems to be a particularly suitable property
from the point of view of a regulator, since it ensures that one always stays on the safe side when up-
dating risk assessment. The weakest notions of time consistency considered in the literature are weak
acceptance and weak rejection consistency, which require that if some position is accepted (or rejected)
for any scenario tomorrow, it should be already accepted (or rejected) today; see [4, 43, 41, 9, 35].

As pointed out in [28, 21], risk assessment in the multi-period setting should also account for uncer-
tainty about the time value of money. This requires to consider entire cash flow processes rather than
total amounts at terminal dates as risky objects, and it leads to a further extension of the notion of risk
measure. Risk measures for processes were studied in [4, 34, 10, 11, 12, 13, 27, 28, 1]. The new feature in
this framework is that not only the amounts but also the timing of payments matters; cf. [12, 13, 28, 1].
However, as shown in [4] in the static and in [1] in the dynamical setting, risk measures for processes
can be identified with risk measures for random variables on an appropriate product space. This allows
a natural translation of results obtained in the framework of risk measures for random variables to the
framework of processes; see [1].

The aim of this paper it to give an overview of the current theory of dynamic convex risk measures
for random variables in discrete time setting; the corresponding results for risk measures for processes are
given in [1]. The paper is organized as follows. Section 2 recalls the definition of a conditional convex risk
measure and its interpretation as the minimal capital requirement from [18]. Section 3 summarizes robust
representation results from [18, 22, 8]. In Section 4 we first give an overview of different time consistency
properties based on [40]. Then we focus on the strong notion of time consistency, in Subsection 4.1,
and we characterize it by supermartingale properties of risk processes and penalty functions. The results
of this subsection are mainly based on [22], with the difference that here we give characterizations of
time consistency also in terms of absolutely continuous probability measures, similar to [8]. In addition,
we relate the martingale property of a risk process with the worst case measure, and we provide the
explicit form of the Doob- and the Riesz-decomposition of the penalty function process. Subsection 4.2
generalizes [33, Sections 2.4, 2.5] and characterizes rejection and acceptance consistency in terms of
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acceptance sets, penalty functions, and, in case of rejection consistency, by a supermartingale property
of risk processes and one-step penalty functions. Subsection 4.3 recalls characterizations of weak time
consistency from [43, 41, 9], and Subsection 4.4 characterizes the recursive construction of time consistent
risk measures suggested in [12, 13]. Finally, the dynamic entropic risk measure with a non-constant risk
aversion parameter is studied in Section 5.

2 Setup and notation

Let T ∈ N ∪ {∞} be the time horizon, T := {0, . . . , T} for T < ∞, and T := N0 for T = ∞. We
consider a discrete-time setting given by a filtered probability space (Ω,F , (Ft)t∈T, P ) with F0 = {∅, Ω},
F = FT for T < ∞, and F = σ(∪t≥0Ft) for T = ∞. For t ∈ T, L∞t := L∞(Ω,Ft, P ) is the space of
all essentially bounded Ft-measurable random variables, and L∞ := L∞(Ω,FT , P ). All equalities and
inequalities between random variables and between sets are understood to hold P -almost surely, unless
stated otherwise. We denote by M1(P ) (resp. by Me(P )) the set of all probability measures on (Ω,F)
which are absolutely continuous with respect to P (resp. equivalent to P ).

In this work we consider risk measures defined on the set L∞, which is understood as the set of
discounted terminal values of financial positions. In the dynamical setting, a conditional risk measure ρt

assigns to each terminal payoff X an Ft-measurable random variable ρt(X), that quantifies the risk of
the position X given the information Ft. A rigorous definition of a conditional convex risk measure was
given in [18, Definition 2].

Definition 1. A map ρt : L∞ → L∞t is called a conditional convex risk measure if it satisfies the
following properties for all X, Y ∈ L∞:

(i) Conditional cash invariance: For all mt ∈ L∞t

ρt(X + mt) = ρt(X)−mt;

(ii) Monotonicity: X ≤ Y ⇒ ρt(X) ≥ ρt(Y );

(iii) Conditional convexity: for all λ ∈ L∞t , 0 ≤ λ ≤ 1:

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y );

(iv) Normalization: ρt(0) = 0.

A conditional convex risk measure is called a conditional coherent risk measure if it has in addition the
following property:

(iv) Conditional positive homogeneity: for all λ ∈ L∞t , λ ≥ 0:

ρt(λX) = λρt(X).
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In the dynamical framework one can also analyze risk assessment for cumulated cash flow processes
rather than just for terminal payoffs, i.e. one can consider a risk measure that accounts not only for the
amounts but also for the timing of payments. Such risk measures were studied in [10, 11, 12, 13, 27, 28, 1].
As shown in [4] in the static and in [1] in the dynamical setting, convex risk measures for processes can be
identified with convex risk measures for random variables on an appropriate product space. This allows
to extend results obtained in our present setting to the framework of processes; cf. [1].

If ρt is a conditional convex risk measure, the function φt := −ρt defines a conditional monetary
utility function in the sense of [12, 13]. The term “monetary” refers to conditional cash invariance of the
utility function, the only property in Definition 1 that does not come from the classical utility theory.
Conditional cash invariance is a natural request in view of the interpretation of ρt as a conditional
capital requirement. In order to formalize this aspect we first recall the notion of the acceptance set of a
conditional convex risk measure ρt:

At :=
{

X ∈ L∞
∣∣ ρt(X) ≤ 0

}
.

The following properties of the acceptance set were given in [18, Proposition 3].

Proposition 2. The acceptance set At of a conditional convex risk measure ρt is

1. conditionally convex, i.e. αX + (1 − α)Y ∈ At for all X, Y ∈ At and α Ft-measurable such that
0 ≤ α ≤ 1;

2. solid, i.e. Y ∈ At whenever Y ≥ X for some X ∈ At;

3. such that 0 ∈ At and ess inf
{

X ∈ L∞t
∣∣ X ∈ At

}
= 0.

Moreover, ρt is uniquely determined through its acceptance set, since

ρt(X) = ess inf
{

Y ∈ L∞t
∣∣ X + Y ∈ At

}
. (1)

Conversely, if some set At ⊆ L∞ satisfies conditions 1)-3), then the functional ρt : L∞ → L∞t defined
via (1) is a conditional convex risk measure.

Proof. Properties 1)-3) of the acceptance set follow easily from properties (i)-(iii) in Definition 1. To
prove (1) note that by cash invariance ρt(X) + X ∈ At for all X, and this implies “≥” in (1). On the
other hand, for all Z ∈

{
Y ∈ L∞t

∣∣ X + Y ∈ At

}
we have

0 ≥ ρt(Z + X) = ρt(X)− Z,

thus ρt(X) ≤ ess inf
{

Y ∈ L∞t
∣∣ X + Y ∈ At

}
.

For the proof of the last part of the assertion we refer to [18, Proposition 3].

Due to (1), the value ρt(X) can be viewed as the minimal conditional capital requirement needed to
be added to the position X in order to make it acceptable at time t. Moreover, (1) can be used to define
risk measures; cf. Example 8.

4



3 Robust representation

As observed in [3, 24, 25] in the static setting, the axiomatic properties of a convex risk measure yield,
under some regularity condition, a representation of the minimal capital requirement as a suitably modi-
fied worst expected loss over a whole class of probabilistic models. In the dynamical setting, such robust
representations of conditional coherent risk measures were obtained in [37, 18, 6, 29, 22, 8] for random
variables and in [34, 12] for stochastic processes. In this section we mainly summarize the results from
[18, 22, 8].

The alternative probability measures in a robust representation of a risk measure ρt contribute to the
risk evaluation to a different degree. To formalize this aspect we use the notion of the minimal penalty
function αmin

t , defined for each Q ∈M1(P ) as

αmin
t (Q) = Q-ess sup

X∈At

EQ[−X | Ft ]. (2)

The following property of the minimal penalty function is a standard result, that will be used in the
proof of Theorem 4.

Lemma 3. For Q ∈M1(P ) and 0 ≤ s ≤ t,

EQ[αmin
t (Q)|Fs] = Q-ess sup

Y ∈At

EQ[−Y |Fs] Q-a.s.

and in particular
EQ[αmin

t (Q)] = sup
Y ∈At

EQ[−Y ].

Proof. First we claim that the set {
EQ[−X|Ft]

∣∣ X ∈ At

}
is directed upward for any Q ∈ M1(P ). Indeed, for X,Y ∈ At we can define Z := XIA + Y IAc , where
A := {EQ[−X|Ft] ≥ EQ[−Y |Ft]} ∈ Ft. Conditional convexity of ρt implies that Z ∈ At, and by definition
of Z

EQ[−Z|Ft] = max (EQ[−X|Ft], EQ[−Y |Ft]) Q-a.s..

Hence there exists a sequence (XQ
n )n∈N in At such that

αmin
t (Q) = lim

n
EQ[−XQ

n |Ft] Q-a.s., (3)

and by monotone convergence we get

EQ[αmin
t (Q)|Fs] = lim

n
EQ

[
EQ[−XQ

n |Ft]
∣∣Fs

]
≤ Q-ess sup

Y ∈At

EQ[−Y |Fs] Q-a.s..

The converse inequality follows directly from the definition of αmin
t (Q).

The following theorem relates robust representations to some continuity properties of conditional
convex risk measures. It combines [18, Theorem 1] with [22, Corollary 2.4]; similar results can be found
in [6, 29, 12].

5



Theorem 4. For a conditional convex risk measure ρt the following are equivalent:

1. ρt has a robust representation

ρt(X) = ess sup
Q∈Qt

(EQ[−X | Ft ]− αt(Q)), X ∈ L∞, (4)

where
Qt :=

{
Q ∈M1(P )

∣∣ Q = P |Ft

}
and αt is a map from Qt to the set of Ft-measurable random variables with values in R ∪ {+∞},
such that ess supQ∈Qt

(−αt(Q)) = 0.

2. ρt has the robust representation in terms of the minimal penalty function, i.e.

ρt(X) = ess sup
Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q)), X ∈ L∞, (5)

where αmin
t is given in (2).

3. ρt has the robust representation

ρt(X) = ess sup
Q∈Qf

t

(EQ[−X | Ft ]− αmin
t (Q)) P -a.s., X ∈ L∞, (6)

where
Qf

t :=
{

Q ∈M1(P )
∣∣ Q = P |Ft EQ[αmin

t (Q)] < ∞
}

.

4. ρt has the “Fatou-property”: for any bounded sequence (Xn)n∈N which converges P -a.s. to some X,

ρt(X) ≤ lim inf
n→∞

ρt(Xn) P -a.s..

5. ρt is continuous from above, i.e.

Xn ↘ X P -a.s =⇒ ρt(Xn) ↗ ρt(X) P -a.s

for any sequence (Xn)n ⊆ L∞ and X ∈ L∞.

Proof. 3) ⇒ 1) and 2) ⇒ 1) are obvious. 1) ⇒ 4): Dominated convergence implies that EQ[Xn|Ft] →
EQ[X|Ft] for each Q ∈ Qt, and lim infn→∞ ρt(Xn) ≥ ρt(X) follows by using the robust representation of
ρt as in the unconditional setting, see, e.g., [24, Lemma 4.20].

4) ⇒ 5): Monotonicity implies lim supn→∞ ρt(Xn) ≤ ρt(X), and lim infn→∞ ρt(Xn) ≥ ρt(X) follows
by 4).

5) ⇒ 2): The inequality

ρt(X) ≥ ess sup
Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q)) (7)

follows from the definition of αmin
t . In order to prove the equality we will show that

EP [ρt(X)] ≤ EP

[
ess sup
Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q))

]
.
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To this end, consider the map ρP : L∞ → R defined by ρP (X) := EP [ρt(X)]. It is easy to check that
ρP is a convex risk measure which is continuous from above. Hence [24, Theorem 4.31] implies that ρP

has the robust representation

ρP (X) = sup
Q∈M1(P )

(EQ[−X]− α(Q)) X ∈ L∞,

where the penalty function α(Q) is given by

α(Q) = sup
X∈L∞:ρP (X)≤0

EQ[−X].

Next we will prove that Q ∈ Qt if α(Q) < ∞. Indeed, let A ∈ Ft and λ > 0. Then

−λP [A] = EP [ρt(λIA)] = ρP (λIA) ≥ EQ[−λIA]− α(Q),

so
P [A] ≤ Q[A] +

1
λ

α(Q) for all λ > 0,

and hence P [A] ≤ Q[A] if α(Q) < ∞. The same reasoning with λ < 0 implies P [A] ≥ Q[A], thus P = Q

on Ft if α(Q) < ∞. By Lemma 3, we have for every Q ∈ Qt

EP [αmin
t (Q)] = sup

Y ∈At

EP [−Y ].

Since ρP (Y ) ≤ 0 for all Y ∈ At, this implies

EP [αmin
t (Q)] ≤ α(Q)

for all Q ∈ Qt, by definition of the penalty function α(Q).
Finally we obtain

EP [ρt(X)] = ρP (X) = sup
Q∈M1(P ),α(Q)<∞

(EQ[−X]− α(Q))

≤ sup
Q∈Qt,EP [αmin

t (Q)]<∞
(EQ[−X]− α(Q))

≤ sup
Q∈Qt,EP [αmin

t (Q)]<∞
EP [EQ[−X|Ft]− αmin

t (Q)]

≤ EP

[
ess sup

Q∈Qt,EP [αmin
t (Q)]<∞

(
EQ[−X|Ft]− αmin

t (Q)
)]

(8)

≤ EP

[
ess sup
Q∈Qt

EQ[−X|Ft]− αmin
t (Q)

]
,

proving equality (5).
5) ⇒ 3) The inequality

ρt(X) ≥ ess sup
Q∈Qf

t

(EQ[−X | Ft ]− αmin
t (Q))

follows from (7) since Qf
t ⊆ Qt, and (8) proves the equality.
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Remark 5. The penalty function αmin
t (Q) is minimal in the sense that any other function αt in a robust

representation (4) of ρt satisfies
αmin

t (Q) ≤ αt(Q) P -a.s.

for all Q ∈ Qt. An alternative formula for the minimal penalty function is given by

αmin
t (Q) = ess sup

X∈L∞
(EQ[−X | Ft ]− ρt(X)) for all Q ∈ Qt.

This follows as in the unconditional case; see, e.g., [24, Theorem 4.15, Remark 4.16].

In the coherent case the penalty function αmin
t (Q) can only take values 0 or ∞ due to positive

homogeneity of ρt. Thus representation (12) takes the following form.

Corollary 6. A conditional coherent risk measure ρt is continuous from above if and only if it is repre-
sentable in the form

ρt(X) = ess sup
Q∈Q0

t

EQ[−X | Ft ], X ∈ L∞, (9)

where
Q0

t :=
{

Q ∈ Qt

∣∣ αmin
t (Q) = 0 Q-a.s.

}
.

Remark 7. Another characterization of a conditional convex risk measure ρt that is equivalent to the
properties 1)-5) of Theorem 4 is the following: The acceptance set At is weak∗-closed, i.e., it is closed in
L∞ with respect to the topology σ(L∞, L1(Ω,F , P )). This equivalence was shown in [12] in the context of
risk measures for processes and in [29] for risk measures for random variables. Though in [29] a slightly
different definition of a conditional risk measure is used, the reasoning given there works just the same
in our case; cf. [29, Theorem 3.16].

Example 8. A class of examples of conditional convex risk measures can be obtained by considering a
conditional robust version of a shortfall risk introduced in [24, Section 4.9]. To this end, let lt : R → R
be a convex and strictly increasing loss function, and let Rt be some convex subset of Qt. Then the set

At :=
{

X ∈ L∞
∣∣ EQ[lt(−X)|Ft] ≤ lt(0) ∀ Q ∈ Rt

}
(10)

satisfies the properties 1)-3) of Proposition 2, and thus induces a conditional convex risk measure. Such
risk measures were introduced and studied in [41, Section 5], where they are called conditional robust
shortfall risk measures.

A conditional robust shortfall risk measure is continuous from above by Remark 7. Indeed, if (Xn)n∈N

is a bounded sequence in At converging to some X, then X ∈ At due to Lebesgue convergence theorem,
and thus the set At is weak∗-closed by Krein-Šmulian theorem; cf., e.g., [24, Theorem A.63, Lemma
A.64]. Moreover, if P ∈ Rt (or if there exists Q∗ ≈ P such that Q∗ ∈ Rt), then the set of equivalent
probability measures is dense in Rt, and the represenation (10) can be written as

At =
{

X ∈ L∞
∣∣ EQ[lt(−X)|Ft] ≤ lt(0) ∀ Q ∈ Re

t

}
, (11)

where Re
t denotes the set of all Q ∈Me(P ), such that the corresponding Ft-normalized measure Q̃ defined

by dQ̃
dP := ZT

Zt
belongs to Rt. Here Zs denotes the density of Q with respect to P on Fs, s ∈ T.
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Example 9. If one takes Rt = {P} and the exponential loss function lt(x) = eγtx− 1 with γt > 0 in the
previous example, one obtains the well known conditional entropic risk measure

ρt(X) =
1
γt

log E[e−γtX |Ft], X ∈ L∞.

The entropic risk measure was introduced in [24] in the static setting, in the dynamical setting it appeared
in [5, 31, 18, 12, 22, 13]. We characterize the dynamic entropic risk measure in Section 5 in a slightly
more general setting, where the risk aversion parameter γt might be random.

Example 10. Example 8 with a linear loss function lt(x) = x and

Rt :=
{

Q ∈ Qt

∣∣ dQ

dP
≤ λ−1

t

}
for some λt ∈ L∞t , 0 < λt ≤ 1, yields an important example of a conditional coherent risk measure, the
conditional Average Value at Risk

AV @Rt,λt
(X) := ess sup{EQ[−X|Ft]

∣∣ Q ∈ Rt}.

Static Average Value at Risk was introduced in [3] as a valid alternative to the widely used yet criticized
Value at Risk. The conditional version of Average Value at Risk appeared in [4], and was also studied in
[19, 42].

For the characterization of time consistency in Section 4 we will need a robust representation of
a conditional convex risk measure ρt under any measure Q ∈ M1(P ), where possibly Q /∈ Qt. Such
representation can be obtained as in Theorem 4 by considering ρt as a risk measure under Q, as shown
in the next corollary. This result is a version of [8, Proposition 1].

Corollary 11. A conditional convex risk measure ρt is continuous from above if and only if it has the
robust representations

ρt(X) = Q-ess sup
R∈Qt(Q)

(ER[−X | Ft ]− αmin
t (R)) (12)

= Q-ess sup
R∈Qf

t (Q)

(ER[−X | Ft ]− αmin
t (R)) Q-a.s., ∀X ∈ L∞, (13)

for all Q ∈M1(P ), where
Qt(Q) =

{
R ∈M1(P )

∣∣ R = Q|Ft

}
and

Qf
t (Q) =

{
R ∈M1(P )

∣∣ R = Q|Ft
, ER[αmin

t (R)] < ∞
}

.

Proof. To show that continuity from above implies representation (12), we can replace P by a probability
measure Q ∈ M1(P ) and repeat all the reasoning of the proof of 5)⇒2) in Theorem 4. In this case we
consider the static convex risk measure

ρQ(X) = EQ[ρt(X)] = sup
R∈M1(P )

(ER[−X]− α(R)), X ∈ L∞,

instead of ρP . The proof of (13) follows in the same way from [22, Corollary 2.4]. Conversely, continuity
from above follows from Theorem 4 since representation (12) holds under P .
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Remark 12. One can easily see that the set Qt in representations (4) and (5) can be replaced by
Pt :=

{
Q ∈M1(P )

∣∣ Q ≈ P on Ft

}
. Moreover, representation (4) is also equivalent to

ρt(X) = ess sup
Q∈M1(P )

(EQ[−X | Ft ]− α̂t(Q)), X ∈ L∞,

where the conditional expectation under Q ∈M1(P ) is defined under P as

EQ[X|Ft] :=
EP [ZT X|Ft]

Zt
I{Zt>0}

with Zs := dQ
dP |Fs

, s ∈ T, and the extended penalty function α̂t is given by

α̂t(Q) =

{
αt(Q) on {Zt > 0};
+∞ otherwise.

As observed, e.g., in [12, Remark 3.13], the minimal penalty function has the local property. In our
context it means that for any Q1, Q2 ∈ Qt(Q) with the corresponding density processes Z1 and Z2 with
respect to P , and for any A ∈ Ft, the probability measure R defined via dR

dP := IAZ1
T + IAcZ2

T has the
penalty function value

αmin
t (R) = IAαmin

t (Q1) + IAcαmin
t (Q2) Q-a.s..

In particular R ∈ Qf
t (Q) if Q1, Q2 ∈ Qf

t (Q). Standard arguments (cf., e.g., [18, Lemma 1]) imply then
that the set {

ER[−X | Ft]− αmin
t (R)

∣∣ R ∈ Qf
t (Q)

}
is directed upward, thus

EQ[ρt(X)|Fs] = Q-ess sup
R∈Qf

t (Q)

(
ER[−X|Fs]− ER[αmin

t (R)|Fs]
)

(14)

for all Q ∈M1(P ), X ∈ L∞(Ω,F , P ) and 0 ≤ s ≤ t.

4 Time consistency properties

In the dynamical setting risk assessment of a financial position is updated when new information is
released. This leads to the notion of a dynamic risk measure.

Definition 13. A a sequence (ρt)t∈T is called a dynamic convex risk measure if ρt is a conditional convex
risk measure for each t ∈ T.

A key question in the dynamical setting is how the conditional risk assessments at different times are
interrelated. This question has led to several notions of time consistency discussed in the literature. A
unifying view was suggested in [40].

Definition 14. Assume that (ρt)t∈T is a dynamic convex risk measure and let Yt be a subset of L∞ such
that 0 ∈ Yt and Yt + R = Yt for each t ∈ T. Then (ρt)t∈T is called acceptance (resp. rejection) consistent
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with respect to (Yt)t∈T, if for all t ∈ T such that t < T and for any X ∈ L∞ and Y ∈ Yt+1 the following
condition holds:

ρt+1(X) ≤ ρt+1(Y ) (resp. ≥) =⇒ ρt(X) ≤ ρt(Y ) (resp. ≥). (15)

The idea is that the degree of time consistency is determined by a sequence of benchmark sets (Yt)t∈T:
if a financial position at some future time is always preferable to some element of the benchmark set, then
it should also be preferable today. The bigger the benchmark set, the stronger is the resulting notion of
time consistency. In the following we focus on three cases.

Definition 15. We call a dynamic convex risk measure (ρt)t∈T

1. strongly time consistent, if it is either acceptance consistent or rejection consistent with respect to
Yt = L∞ for all t in the sense of Definition 14;

2. middle acceptance (resp. middle rejection) consistent, if for all t we have Yt = L∞t in Definition 14;

3. weakly acceptance (resp. weakly rejection) consistent, if for all t we have Yt = R in Definition 14.

Note that there is no difference between rejection consistency and acceptance consistency with respect
to L∞, since the role of X and Y is symmetric in that case. Obviously strong time consistency implies
both middle rejection and middle acceptance consistency, and middle rejection (resp. middle acceptance)
consistency implies weak rejection (resp. weak acceptance) consistency. In the rest of the paper we drop
the terms “middle” and “strong” in order to simplify the terminology.

4.1 Time consistency

Time consistency has been studied extensively in the recent work on dynamic risk measures, see [4, 16,
34, 18, 12, 29, 9, 8, 33, 22, 13, 17] and the references therein. In the next proposition we recall some
equivalent characterizations of time consistency.

Proposition 16. A dynamic convex risk measure (ρt)t∈T is time consistent if and only if any of the
following conditions holds:

1. for all t ∈ T such that t < T and for all X,Y ∈ L∞:

ρt+1(X) ≤ ρt+1(Y ) P -a.s =⇒ ρt(X) ≤ ρt(Y ) P -a.s.; (16)

2. for all t ∈ T such that t < T and for all X, Y ∈ L∞:

ρt+1(X) = ρt+1(Y ) P -a.s =⇒ ρt(X) = ρt(Y ) P -a.s.; (17)

3. (ρt)t∈T is recursive, i.e.
ρt = ρt(−ρt+s) P -a.s.

for all t, s ≥ 0 such that t, t + s ∈ T.
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Proof. It is obvious that time consistency implies condition (16), and that (16) implies (17). By cash
invariance we have ρt+1(−ρt+1(X)) = ρt+1(X) and hence one-step recursiveness follows from (17). We
prove that one-step recursiveness implies recursiveness by induction on s. For s = 1 the claim is true for
all t. Assume that the induction hypothesis holds for each t and all k ≤ s for some s ≥ 1. Then we obtain

ρt(−ρt+s+1(X)) = ρt(−ρt+s(−ρt+s+1(X)))

= ρt(−ρt+s(X))

= ρt(X),

where we have applied the induction hypothesis to the random variable −ρt+s+1(X). Hence the claim
follows. Finally, due to monotonicity, recursiveness implies time consistency.

Remark 17. The recursivity property 3) of Proposition 16 corresponds to the dynamic programming
principle, and it is crucial for many applications. In continuous time and in Brownian setting, it allows
to relate time consistent dynamic risk measures to the solutions of a certain type of backward stochastic
differential equations, so called g-expectations; cf. [32, 20, 38, 26]. Indeed, as shown in [38, Proposition
19], a conditional g-expectation defines a time consistent dynamic convex risk measure on L2(P ), if
the BSDE generator g is convex (and satisfies the usual assumptions ensuring existence of a solution).
Conversely, as shown in [38, Proposition 20], if (ρt)t∈[0,T ] is a strictly monotone time consistent dynamic
convex risk measure in Brownian setting, and if ρ0 satisfies a certain boundedness condition, then (ρt)
can be identified as a conditional g-expectation. This relation allows in particular to characterize penalty
functions of time consistent dynamic convex risk measures in Brownian setting; cf. [17].

If we restrict a conditional convex risk measure ρt to the space L∞t+s for some s ≥ 0, the corresponding
acceptance set is given by

At,t+s :=
{

X ∈ L∞t+s

∣∣ ρt(X) ≤ 0 P -a.s.
}

,

and the minimal penalty function by

αmin
t,t+s(Q) := Q-ess sup

X∈At,t+s

EQ[−X | Ft ], Q ∈M1(P ). (18)

The following lemma recalls equivalent characterizations of recursive inequalities in terms of accep-
tance sets from [22, Lemma 4.6]; property (19) was shown in [16].

Lemma 18. Let (ρt)t∈T be a dynamic convex risk measure. Then the following equivalences hold for all
s, t such that t, t + s ∈ T and all X ∈ L∞:

X ∈ At,t+s +At+s ⇐⇒ −ρt+s(X) ∈ At,t+s (19)

At ⊆ At,t+s +At+s ⇐⇒ ρt(−ρt+s) ≤ ρt P -a.s. (20)

At ⊇ At,t+s +At+s ⇐⇒ ρt(−ρt+s) ≥ ρt P -a.s.. (21)

Proof. To prove “⇒” in (19) let X = Xt,t+s + Xt+s with Xt,t+s ∈ At,t+s and Xt+s ∈ At+s. Then

ρt+s(X) = ρt+s(Xt+s)−Xt,t+s ≤ −Xt,t+s

12



by cash invariance, and monotonicity implies

ρt(−ρt+s(X)) ≤ ρt(Xt,t+s) ≤ 0.

The converse direction follows immediately from X = X + ρt+s(X)− ρt+s(X) and X + ρt+s(X) ∈ At+s

for all X ∈ L∞.
In order to show “⇒” in (20), fix X ∈ L∞. Since X + ρt(X) ∈ At ⊆ At,t+s +At+s, we obtain

ρt+s(X)− ρt(X) = ρt+s(X + ρt(X)) ∈ −At,t+s,

by (19) and cash invariance. Hence

ρt(−ρt+s(X))− ρt(X) = ρt(−(ρt+s(X)− ρt(X))) ≤ 0 P -a.s..

To prove “⇐” let X ∈ At. Then −ρt+s(X) ∈ At,t+s by the right hand side of (20), and hence X ∈
At,t+s +At+s by (19).

Now let X ∈ L∞ and assume At ⊇ At,t+s +At+s. Then

ρt(−ρt+s(X)) + X = ρt(−ρt+s(X))− ρt+s(X) + ρt+s(X) + X

∈ At,t+s +At+s ⊆ At.

Hence
ρt(X)− ρt(−ρt+s(X)) = ρt(X + ρt(−ρt+s(X))) ≤ 0

by cash invariance, and this proves “⇒” in (21). For the converse direction let X ∈ At,t+s +At+s. Since
−ρt+s(X) ∈ At,t+s by (19), we obtain

ρt(X) ≤ ρt(−ρt+s(X)) ≤ 0,

hence X ∈ At.

We also have the following relation between acceptance sets and penalty functions; cf. [33, Lemma
2.2.5].

Lemma 19. Let (ρt)t∈T be a dynamic convex risk measures. Then the following implications hold for all
t, s such that t, t + s ∈ T and for all Q ∈M1(P ):

At ⊆ At,t+s +At+s ⇒ αmin
t (Q) ≤ αmin

t,t+s(Q) + EQ[αmin
t+s(Q)|Ft] Q-a.s.

At ⊇ At,t+s +At+s ⇒ αmin
t (Q) ≥ αmin

t,t+s(Q) + EQ[αmin
t+s(Q)|Ft] Q-a.s..

Proof. Straightforward from the definition of the minimal penalty function and Lemma 3.

The following theorem gives equivalent characterizations of time consistency in terms of acceptance
sets, penalty functions, and a supermartingale property of the risk process.

Theorem 20. Let (ρt)t∈T be a dynamic convex risk measure such that each ρt is continuous from above.
Then the following conditions are equivalent:
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1. (ρt)t∈T is time consistent.

2. At = At,t+s +At+s for all t, s such that t, t + s ∈ T.

3. αmin
t (Q) = αmin

t,t+s(Q)+EQ[ αmin
t+s(Q) | Ft ] Q-a.s. for all t, s such that t, t+s ∈ T and all Q ∈M1(P ).

4. For all X ∈ L∞(Ω,F , P ) and all t, s such that t, t + s ∈ T and all Q ∈M1(P ) we have

EQ[ ρt+s(X) + αmin
t+s(Q) | Ft] ≤ ρt(X) + αmin

t (Q) Q-a.s..

Equivalence of properties 1) and 2) of Theorem 20 was proved in [16]. Characterizations of time
consistency in terms of penalty functions as in 3) of Theorem 20 appeared in [22, 7, 13, 8]; similar results
for risk measures for processes were given in [12, 13]. In [7, 8] property 3) is called cocycle property. The
supermartingale property as in 4) of Theorem 20 was obtained in [22]; cf. also [8] for continuous time
setting.

Proof. The proof of 1)⇒2)⇒3) follows from Lemma 18 and Lemma 19. To prove 3)⇒4) fix Q ∈M1(P ).
By (14) we have

EQ[ρt+s(X)|Ft] = Q-ess sup
R∈Qf

t+s(Q)

(
ER[−X|Ft]− ER[αmin

t+s(R)|Ft]
)
.

On the set
{

αmin
t (Q) = ∞

}
property 4) holds trivially. On the set

{
αmin

t (Q) < ∞
}

property 3) implies
EQ[αmin

t+s(Q)|Ft] < ∞ and αmin
t,t+s(Q) < ∞, then for R ∈ Qf

t+s(Q)

αmin
t (R) = αmin

t,t+s(Q) + ER[αmin
t+s(R)|Ft] < ∞ Q-a.s..

Thus
EQ[ρt+s(X) + αmin

t+s(Q)|Ft] = Q-ess sup
R∈Qf

t+s(Q)

(
ER[−X|Ft]− αmin

t (R)
)

+ αmin
t (Q)

on
{

αmin
t (Q) < ∞

}
. Moreover, since Qf

t+s(Q) ⊆ Qt(Q), (12) implies

EQ[ρt+s(X) + αmin
t+s(Q)|Ft] ≤ Q-ess sup

R∈Qt(Q)

(
ER[−X|Ft]− αmin

t (R)
)

+ αmin
t (Q) = ρt(X) + αmin

t (Q) Q-a.s..

It remains to prove 4)⇒1). To this end fix Q ∈ Qf
t and X, Y ∈ L∞ such that ρt+1(X) ≤ ρt+1(Y ). Note

that EQ[αt+s(Q)] < ∞ due to 4), hence Q ∈ Qf
t+s(Q). Using 4) and representation (13) for ρt+s under

Q, we obtain

ρt(Y ) + αmin
t (Q) ≥ EQ[ρt+1(Y ) + αmin

t+1(Q)|Ft]

≥ EQ[ρt+1(X) + αmin
t+1(Q)|Ft]

≥ EQ[EQ[−X|Ft+1]− αmin
t+1(Q) + αmin

t+1(Q)|Ft]

= EQ[−X|Ft].

Hence representation (6) yields ρt(Y ) ≥ ρt(X), and time consistency follows from Proposition 16.
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Properties 3) and 4) of Theorem 20 imply in particular supermartingale properties of penalty function
processes and risk processes. This allows to apply martingale theory for characterization the the dynamics
of these processes, as we do in Proposition 21 and Proposition 24; cf. also [16, 22, 33, 8, 17].

Proposition 21. Let (ρt)t∈T be a time consistent dynamic convex risk measure such that each ρt is
continuous from above. Then the process

V Q
t (X) := ρt(X) + αmin

t (Q), t ∈ T

is a Q-supermartingale for all X ∈ L∞ and all Q ∈ Q0, where

Q0 :=
{

Q ∈M1(P )
∣∣ αmin

0 (Q) < ∞
}

.

Moreover, (V Q
t (X))t∈T is a Q-martingale if Q ∈ Q0 is a “worst case” measure for X at time 0, i.e. if

the supremum in the robust representation of ρ0(X) is attained at Q:

ρ0(X) = EQ[−X]− αmin
0 (Q) Q-a.s..

In this case Q is a “worst case” measure for X at any time t, i.e.

ρt(X) = EQ[−X|Ft]− αmin
t (Q) Q-a.s. for all t ∈ T.

The converse holds if T < ∞ or limt→∞ ρt(X) = −X P -a.s. (what is called asymptotic precision in [22]):
If (V Q

t (X))t∈T is a Q-martingale then Q ∈ Q0 is a “worst case” measure for X at any time t ∈ T.

Proof. The supermartingale property of (V Q
t (X))t∈T under each Q ∈ Q0 follows directly from properties

3) and 4) of Theorem 20. To prove the remaining part of the claim, fix Q ∈ Q0 and X ∈ L∞. If Q is a
“worst case” measure for X at time 0, the process

Ut(X) := V Q
t (X)− EQ[−X|Ft], t ∈ T

is a non-negative Q-supermartingale beginning at 0. Indeed, the supermartingale property follows from
that of (V Q

t (X))t∈T, and non-negativity follows from the representation (13), since Q ∈ Qf
t (Q). Thus

Ut = 0 Q-a.s. for all t, and this proves the “if” part of the claim. To prove the converse direction, note
that if (V Q

t (X))t∈T is a Q-martingale and ρT (X) = −X (resp. limt→∞ ρt(X) = −X P -a.s.), the process
U(X) is a Q-martingale ending at 0 (resp. converging to 0 in L1(Q)), and thus Ut(X) = 0 Q-a.s. for all
t ∈ T.

Remark 22. The fact that a worst case measure for X at time 0, if it exists, remains a worst case
measure for X at any time t ∈ T was also shown in [13, Theorem 3.9] for a time consistent dynamic risk
measure in finite time horizon without using the supermartingale property from Proposition 21.

Remark 23. In difference to [22, Theorem 4.5], without the additional assumption that the set

Q∗ :=
{

Q ∈Me(P )
∣∣ αmin

0 (Q) < ∞
}

(22)

is nonempty, the supermartingale property of (V Q
t (X))t∈T for all X ∈ L∞ and all Q ∈ Q∗ is not sufficient

to prove time consistency. In this case we also do not have the robust representation of ρt in terms of the
set Q∗.
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The process (αmin
t (Q))t∈T is a Q-supermartingale for all Q ∈ Q0 due to Property 3) of Theorem 20.

The next proposition provides the explicit form of its Doob- and its Riesz-decomposition; cf. also [33,
Proposition 2.3.2].

Proposition 24. Let (ρt)t∈T be a time consistent dynamic convex risk measure such that each ρt is con-
tinuous from above. Then for each Q ∈ Q0 the process (αmin

t (Q))t∈T is a non-negative Q-supermartingale
with the Riesz decomposition

αmin
t (Q) = ZQ

t + MQ
t Q-a.s., t ∈ T,

where

ZQ
t := EQ

[
T−1∑
k=t

αmin
k,k+1(Q)

∣∣Ft

]
Q-a.s., t ∈ T

is a Q-potential and

MQ
t :=

{
0 if T < ∞,

lim
s→∞

EQ [αs(Q) | Ft ] if T = ∞ Q-a.s., t ∈ T

is a non-negative Q-martingale.
Moreover, the Doob decomposition of (αmin

t (Q))t∈T is given by

αmin
t (Q) = EQ

[
T−1∑
k=0

αmin
k,k+1(Q)

∣∣Ft

]
+ MQ

t −
t−1∑
k=0

αmin
k,k+1(Q), t ∈ T

with the Q-martingale

EQ

[
T−1∑
k=0

αmin
k,k+1(Q)

∣∣Ft

]
+ MQ

t , t ∈ T

and the non-decreasing predictable process (
∑t−1

k=0 αmin
k,k+1(Q))t∈T.

Proof. We fix Q ∈M1(P ) and applying property 3) of Theorem 20 step by step we obtain

αmin
t (Q) = EQ

[
t+s−1∑

k=t

αmin
k,k+1(Q)

∣∣Ft

]
+ EQ[ αmin

t+s(Q) | Ft ] Q-a.s. (23)

for all t, s such that t, t + s ∈ T. If T < ∞, the Doob- and Riesz-decompositions follow immediately from
(23), since αT (Q) = 0 Q-a.s.. If T = ∞, by monotonicity there exists the limit

ZQ
t = lim

s→∞
EQ

[
s∑

k=t

αmin
k,k+1(Q)

∣∣Ft

]
= EQ

[ ∞∑
k=t

αmin
k,k+1(Q)

∣∣Ft

]
Q-a.s.

for all t ∈ T, where we have used the monotone convergence theorem for the second equality. Equality
(23) implies then that there exists

MQ
t = lim

s→∞
EQ

[
αmin

t+s(Q) | Ft

]
Q-a.s., t ∈ T
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and
αmin

t (Q) = ZQ
t + MQ

t Q-a.s.

for all t ∈ T.
The process (ZQ

t )t∈T is a non-negative Q-supermartingale. Indeed,

EQ[ ZQ
t ] ≤ EQ

[ ∞∑
k=0

αmin
k,k+1(Q)

]
≤ αmin

0 (Q) < ∞ (24)

and EQ[ ZQ
t+1 | Ft ] ≤ ZQ

t Q-a.s. for all t ∈ T by definition. Moreover, monotone convergence implies

lim
t→∞

EQ[ ZQ
t ] = EQ

[
lim

t→∞

∞∑
k=t

αmin
k,k+1(Q)

]
= 0 Q-a.s.,

since
∑∞

k=0 αmin
k,k+1(Q) < ∞ Q-a.s. by (24). Hence the process (ZQ

t )t∈T is a Q-potential.
The process (MQ

t )t∈T is a non-negative Q-martingale, since

EQ[ MQ
t ] ≤ EQ

[
αmin

t (Q)
]
≤ αmin

0 (Q) < ∞

and

EQ[MQ
t+1 −MQ

t |Ft] = EQ[αmin
t+1(Q)|Ft]− αmin

t (Q)− EQ[ZQ
t+1 − ZQ

t |Ft]

= αmin
t,t+1(Q)− αmin

t,t+1(Q) = 0 Q-a.s.

for all t ∈ T by property 3) of Theorem 20 and the definition of (ZQ
t )t∈T.

The Doob-decomposition follows straightforward from the Riesz-decomposition.

Remark 25. It was shown in [22, Theorem 5.4] that the martingale MQ in the Riesz decomposition of
(αmin

t (Q))t∈T vanishes if and only if limt→∞ ρt(X) ≥ −X P -a.s., i.e. the dynamic risk measure (ρt)t∈T

is asymptotically safe. This is not always the case; see [22, Example 5.5].

For a coherent risk measure we have

Qf
t (Q) = Q0

t (Q) :=
{

R ∈M1(P )
∣∣ R = Q|Ft , αmin

t (R) = 0 Q-a.s.
}

.

In order to give an equivalent characterization of property 3) of Theorem 20 in the coherent case, we
introduce the sets

Q0
t,t+s(Q) =

{
R ¿ P |Ft+s

∣∣ R = Q|Ft , αmin
t,t+s(R) = 0 Q-a.s.

}
∀ t, s ≥ 0 such that t, t + s ∈ T.

For Q1 ∈ Q0
t,t+s(Q) and Q2 ∈ Q0

t+s(Q) we denote by Q1 ⊕t+s Q2 the pasting of Q1 and Q2 in t + s via
Ω, i.e. the measure Q̃ defined via

Q̃(A) = EQ1

[
EQ2 [IA|Ft+s]

]
, A ∈ F . (25)

The relation between stability under pasting and time consistency of coherent risk measures that can
be represented in terms of equivalent probability measures was studied in [4, 16, 29, 22]. In our present
setting, Theorem 20 applied to a coherent risk measure takes the following form.
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Corollary 26. Let (ρt)t∈T be a dynamic coherent risk measure such that each ρt is continuous from
above. Then the following conditions are equivalent:

1. (ρt)t∈T is time consistent.

2. For all Q ∈M1(P ) and all t, s such that t, t + s ∈ T

Q0
t (Q) =

{
Q1 ⊕t+s Q2

∣∣ Q1 ∈ Q0
t,t+s(Q), Q2 ∈ Q0

t+s(Q
1)

}
.

3. For all Q ∈M1(P ) such that αmin
t (Q) = 0 Q-a.s.,

EQ[ρt+s(X) | Ft] ≤ ρt(X) and αmin
t+s(Q) = 0 Q-a.s.

for all X ∈ L∞(Ω,F , P ) and for all t, s such that t, t + s ∈ T.

Proof. 1) ⇒ 2): Time consistency implies property 3) of Theorem 20, and we will show that this implies
property 2) of Corollary 26. Fix Q ∈M1(P ). To prove “⊇” let Q1 ∈ Q0

t (Q), Q2 ∈ Q0
t+s(Q

1), and consider
Q̃ defined as in (25). Note that Q̃ = Q1 on Ft+s and

E eQ[X|Ft+s] = EQ2 [X|Ft+s] Q1-a.s. for all X ∈ L∞(Ω,F , P ).

Hence, using 3) of Theorem 20 we obtain

αmin
t (Q̃) = αmin

t,t+s(Q̃) + E eQ[αmin
t+s(Q̃)|Ft]

= αmin
t,t+s(Q

1) + EQ1 [αmin
t+s(Q

2)|Ft] = 0 Q-a.s.,

and thus Q̃ ∈ Q0
t (Q). Conversely, for every Q̃ ∈ Q0

t (Q) we have αmin
t+s(Q̃) = αmin

t,t+s(Q̃) = 0 Q̃-a.s. by 3) of
Theorem 20, and Q̃ = Q̃⊕ Q̃. This proves “⊆”.

2) ⇒ 3): Let R ∈ M1(P ) with αmin
t (R) = 0 R-a.s.. Then R ∈ Q0

t (R), and thus R = Q1 ⊕t+s Q2 for
some Q1 ∈ Q0

t,t+s(R) and Q2 ∈ Q0
t+s(Q

1). This implies R = Q1 on Ft+s and

ER[X|Ft+s] = EQ2 [X|Ft+s] R-a.s..

Hence αmin
t,t+s(R) = αmin

t,t+s(Q
1) = 0 R-a.s., and αmin

t+s(R) = αmin
t+s(Q

2) = 0R-a.s.. To prove the inequality
3) note that due to (14)

ER[ ρt+s(X) | Ft] = R-ess sup
Q∈Q0

t+s(R)

EQ[−X | Ft]

≤ R-ess sup
Q∈Q0

t (R)

EQ[−X | Ft ] = ρt(X) R-a.s.,

where we have used that the pasting of R|Ft+s
and Q belongs to Q0

t (R).
3) ⇒ 1): Obviously property 3) of Corollary 26 implies property 4) of Theorem 20 and thus time

consistency.
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4.2 Rejection and acceptance consistency

Rejection and acceptance consistency were introduced and studied in [40, 41, 19, 33]. These properties
can be characterized via recursive inequalities as stated in the next proposition; see [40, Theorem 3.1.5]
and [19, Proposition 3.5].

Proposition 27. A dynamic convex risk measure (ρt)t∈T is rejection (resp. acceptance) consistent if and
only if for all t ∈ T such that t < T

ρt(−ρt+1) ≤ ρt (resp. ≥) P -a.s.. (26)

Proof. We argue for the case of rejection consistency; the case of acceptance consistency follows in the
same manner. Assume first that (ρt)t∈T satisfies (26) and let X ∈ L∞ and Y ∈ L∞(Ft+1) such that
ρt+1(X) ≥ ρt+1(Y ). Using cash invariance, (26), and monotonicity, we obtain

ρt(X) ≥ ρt(−ρt+1(X)) ≥ ρt(−ρt+1(Y )) = ρt(Y ).

The converse implication follows due to cash invariance by applying (15) to Y = −ρt+1(X).

Remark 28. As shown in [19, Proposition 3.9], for a dynamic coherent risk measure weak acceptance
consistency and acceptance consistency are equivalent. Indeed, let (ρt)t∈T be a coherent dynamic risk
measure that is weakly acceptance consistent. Then

ρt(X) ≤ ρt(X + ρt+1(X)) + ρt(−ρt+1(X)) ∀ X ∈ L∞

due to subadditivity. Since ρt+1(X+ρt+1(X)) = 0, weak acceptance consistency implies ρt(X+ρt+1(X)) ≤
0, and thus ρt(X) ≤ ρt(−ρt+1(X)) for all t and all X ∈ L∞.

Example 29. One obtains acceptance consistent dynamic risk measures by taking suprema over families
of time consistent dynamic risk measures. Indeed, if R is a collection of time consistent dynamic convex
risk measures, then

ρ̂t(X) := ess sup
ρ∈R

ρt(X), t ∈ T, X ∈ L∞,

defines a dynamic convex risk measure. Moreover, monotonicity of (ρ̂t) and time consistency of (ρt) imply
ρ̂t(X) ≤ ρ̂t(−ρ̂t+1(X)) for all t, i.e., (ρ̂t)t∈T is acceptance consistent. This was noted in [36, Lemma 7.1].

Rejection consistency can be characterized as follows.

Proposition 30. A dynamic convex risk measure (ρt)t∈T is rejection consistent if only if any of the
following conditions holds:

1. For all t ∈ T such that t < T and all X ∈ L∞

ρt(X)− ρt+1(X) ∈ At,t+1; (27)

2. For all t ∈ T such that t < T and all X ∈ At, we have −ρt+1(X) ∈ At.
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Proof. Since
ρt(−ρt+1(X)) = ρt(ρt(X)− ρt+1(X)) + ρt(X)

by cash invariance, (27) implies rejection consistency, and obviously rejection consistency implies condition
2). If 2) holds, then for any X ∈ L∞

ρt(ρt(X)− ρt+1(X)) = ρt (−ρt+1(X + ρt(X))) ≤ 0,

due to cash invariance and the fact that X + ρt(X) ∈ At.

Property (27) was introduced in [33] under the name prudence. It means that the adjustment ρt+1(X)−
ρt(X) of the minimal capital requirement for X at time t + 1 is acceptable at time t. In other words, one
stays on the safe side at each period of time by making capital reserves according to a rejection consistent
dynamic risk measure.

Similar to time consistency, rejection and acceptance consistency can be characterized in terms of
acceptance sets and penalty functions.

Theorem 31. Let (ρt)t∈T be a dynamic convex risk measure such that each ρt is continuous from above.
Then the following properties are equivalent:

1. (ρt)t∈T is rejection consistent (resp. acceptance consistent).

2. The inclusion
At ⊆ At,t+1 +At+1 resp. At ⊇ At,t+1 +At+1

holds for all t ∈ T such that t < T .

3. The inequality
αmin

t (Q) ≤ (resp. ≥)αmin
t,t+1(Q) + EQ[ αmin

t+1(Q) | Ft ] Q-a.s.

holds for all t ∈ T such that t < T and all Q ∈M1(P ).

Proof. Equivalence of 1) and 2) was proved in Proposition 27 and Lemma 18, and the proof of 2) ⇒ 3)
is given in Lemma 19.

Let us show that property 3) implies property 1). We argue for the case of rejection consistency; the
case of acceptance consistency follows in the same manner. We fix t ∈ T such that t < T , and consider
the risk measure

ρ̃t(X) := ρt(−ρt+1(X)), X ∈ L∞.

It is easily seen that ρ̃t is a conditional convex risk measure that is continuous from above. Moreover, the
dynamic risk measure (ρ̃t, ρt+1) is time consistent by definition, and thus it fulfills properties 2) and 3)
of Theorem 20. We denote by Ãt and Ãt,t+1 the acceptance sets of the risk measure ρ̃t, and by α̃min

t its
penalty function. Since

ρ̃t(X) = ρt(−ρt+1(X)) = ρt(X)

for all X ∈ Lt+1, we have Ãt,t+1 = At,t+1, and thus

Ãt = At,t+1 +At+1
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by 2) of Theorem 20. Lemma 19 and property 3) then imply

α̃min
t (Q) = αmin

t,t+1(Q) + EQ[αmin
t+1(Q)|Ft] ≥ αmin

t (Q)

for all Q ∈ Qt. Thus
ρt(X) ≥ ρ̃t(X) = ρt(−ρt+1(X))

for all X ∈ L∞, due to representation (6).

Remark 32. Similar to Corollary 26, condition 3) of Theorem 31 can be restated for a dynamic coherent
risk measure (ρt)t∈T as follows:

Q0
t (Q) ⊇

{
Q1 ⊕t+1 Q2

∣∣ Q1 ∈ Q0
t,t+1(Q), Q2 ∈ Q0

t+1(Q
1)

}
(resp. ⊆)

for all t ∈ T such that t < T and all Q ∈M1(P ).

The following proposition provides an additional equivalent characterization of rejection consistency,
that can be viewed as an analogon of the supermartingale property 4) of Theorem 20.

Proposition 33. Let (ρt)t∈T be a dynamic convex risk measure such that each ρt is continuous from
above. Then (ρt)t∈T is rejection consistent if and only if the inequality

EQ [ ρt+1(X) | Ft ] ≤ ρt(X) + αmin
t,t+1(Q) Q-a.s. (28)

holds for all Q ∈M1(P ) and all t ∈ T such that t < T . In this case the process

UQ
t (X) := ρt(X)−

t−1∑
k=0

αmin
k,k+1(Q), t ∈ T

is a Q-supermartingale for all X ∈ L∞ and all Q ∈ Qf , where

Qf :=

{
Q ∈M1(P )

∣∣ EQ

[
t∑

k=0

αmin
k,k+1(Q)

]
< ∞ ∀ t ∈ T

}
.

The proof of Proposition 33 is a special case of Theorem 35, which involves the notion of sustainability;
cf. [33].

Definition 34. Let (ρt)t∈T be a dynamic convex risk measure. We call a bounded adapted process X =
(Xt)t∈T sustainable with respect to the risk measure (ρt)t∈T if

ρt(Xt −Xt+1) ≤ 0 for all t ∈ T such that t < T .

Consider X to be a cumulative investment process. If it is sustainable, then for all t ∈ T the adjustment
Xt+1 −Xt is acceptable with respect to ρt.

The next theorem characterizes sustainable processes in terms of a supermartingale inequality; it is a
generalization of [33, Corollary 2.4.10].
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Theorem 35. Let (ρt)t∈T be a dynamic convex risk measure such that each ρt is continuous from above
and let (Xt)t∈T be a bounded adapted process. Then the following properties are equivalent:

1. The process (Xt)t∈T is sustainable with respect to the risk measure (ρt)t∈T.

2. For all Q ∈M1(P ) and all t ∈ T, t ≥ 1, we have

EQ [ Xt | Ft−1 ] ≤ Xt−1 + αmin
t−1,t(Q) Q-a.s.. (29)

Proof. The proof of 1) ⇒ 2) follows directly from the definition of sustainability and the definition of the
minimal penalty function.

To prove 2) ⇒ 1), let (Xt)t∈T be a bounded adapted process such that (29) holds. In order to prove

Xt −Xt−1 =: At ∈ −At−1,t for all t ∈ T, t ≥ 1,

suppose by way of contradiction that At /∈ −At−1,t. Since the set At−1,t is convex and weak∗-closed due
to Remark 7, the Hahn-Banach separation theorem (see, e.g., [24, Theorem A.56 ]) ensures the existence
of Z ∈ L1(Ft, P ) such that

a := sup
X∈At−1,t

E[ Z(−X) ] < E[ Z At ] =: b < ∞. (30)

Since λI{Z<0} ∈ At−1,t for every λ ≥ 0, (30) implies Z ≥ 0 P -a.s., and in particular E[Z] > 0. Define a
probability measure Q ∈M1(P ) via dQ

dP := Z
E[Z] and note that, due to Lemma 3 and (30), we have

EQ[αmin
t−1,t(Q)] = sup

X∈At−1,t

EQ[ (−X) ] = sup
X∈At−1,t

E[ Z(−X) ]
1

E[Z]
=

a

E[Z]
< ∞. (31)

Moreover, (30) and (31) imply

EQ

[(
Xt −Xt−1 − αmin

t−1,t(Q)
)]

= E[Z]
(
E[ZAt]− EQ

[
αmin

t−1,t(Q)
])

= E[Z](b− a) > 0,

which cannot be true if (29) holds under Q.

Remark 36. In particular, property 2) of Theorem 35 implies that the process

Xt −
t−1∑
k=0

αmin
k,k+1(Q), t ∈ T

is a Q-supermartingale for all Q ∈ Qf , if X is sustainable with respect to (ρt). As shown in [33, Theorem
2.4.6, Corollary 2.4.8], this supermartingale property is equivalent to sustainability of X under some
additional assumptions.

4.3 Weak time consistency

In this section we characterize the weak notions of time consistency from Definition 15. Due to cash
invariance, they can be restated as follows: A dynamic convex risk measure (ρt)t∈T is weakly acceptance
(resp. weakly rejection) consistent, if and only if

ρt+1(X) ≤ 0 (resp. ≥) =⇒ ρt(X) ≤ 0 (resp. ≥)

22



for any X ∈ L∞ and for all t ∈ T such that t < T . This means that if some position is accepted (or
rejected) for any scenario tomorrow, it should be already accepted (or rejected) today. In this form,
weak acceptance consistency was introduced in [4]. Both weak acceptance and weak rejection consistency
appeared in [43, 40, 41, 35].

Weak acceptance consistency was characterized in terms of acceptance sets in [41, Corollary 3.6], and
in terms of a supermartingale property of penalty functions in [9, Lemma 3.17]. We summarize these
characterizations in our present setting in the next proposition.

Proposition 37. Let (ρt)t∈T be a dynamic convex risk measure such that each ρt is continuous from
above. Then the following properties are equivalent:

1. (ρt)t∈T is weakly acceptance consistent.

2. At+1 ⊆ At for all t ∈ T such that t < T .

3. The inequality
EQ[ αmin

t+1(Q) |Ft ] ≤ αmin
t (Q) Q-a.s. (32)

holds for all Q ∈ M1(P ) and all t ∈ T such that t < T . In particular (αmin
t (Q))t∈T is a Q-

supermartingale for all Q ∈ Q0.

Proof. The equivalence of 1) and 2) follows directly from the definition of weak acceptance consistency.
Property 2) implies 3), since by Lemma 3

EQ[ αmin
t+1(Q) |Ft ] = Q-ess sup

Xt+1∈At+1

EQ[−Xt+1|Ft]

≤ Q-ess sup
X∈At

EQ[−X|Ft] = αmin
t (Q) Q-a.s.

for all Q ∈M1(P ).
To prove that 3) implies 2), we fix X ∈ At+1 and note that

EQ[−X|Ft+1] ≤ αmin
t+1(Q) Q-a.s. for all Q ∈M1(P )

by the definition of the minimal penalty function. Using (32) we obtain

EQ[−X|Ft] ≤ EQ[ αmin
t+1(Q) |Ft ] ≤ αmin

t (Q) Q-a.s.

for all Q ∈M1(P ), in particular for Q ∈ Qf
t (P ). Thus ρt(X) ≤ 0 by (6).

Example 38. Consider a dynamic risk measure (ρt)t∈T, where each ρt is a conditional robust shortfall
risk measure as defined in Example 8.

1. If Rt = {P} and lt = l0 for all t, then it is easy to see that (ρt)t∈T is both weakly acceptance and
weakly rejection consistent; see, e.g., [43], [39, Example 3.6], [41, Remark 5.3]. However, (ρt)t∈T is
in general not time consistent, as illustrated in [39, Example 3.7].
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2. Assume that lt = l0, and that we have the represenation (11) in terms of equivalent probability
measures for all t. Then (ρt)t∈T is weakly acceptance consistent if Re

t ⊆ Re
t+1 for all t. This was

noted in [41, Corollary 5.4], and follows directly from Proposition 37, since At+1 ⊆ At for all t in
this case.
This applies in particular to dynamic Average Value at Risk (AV @Rt,λt

)t∈T from Example 10.
Indeed, in this case P ∈ Rt for all t, and thus represenation (11) holds. Condition Re

t ⊆ Re
t+1 is

satisfied if

λt+1 ≤ λt ess inf
Q∈Rt

E

[
dQ

dP

∣∣Ft+1

]
∀ t ∈ T.

Thus (AV @Rt,λt
)t∈T is weakly acceptance consistent in this case, and it is even acceptance consistent

due to Remark 28. A dynamic Average Value at Risk with constant parameter λ is in general neither
weakly acceptance nor weakly rejection consistent, see, e.g., [4, 35].

3. Consider the case when we have the represenation (11) and Re
t = Re

0 for all t. Assume further that
all loss functions lt are twice continuously differentiable, and let γt := l′′t

l′t
denote the corresponding

Arrow-Pratt coefficient of risk aversion. Than (ρt)t∈T is weakly acceptance consistent if γt ≤ γt+1

for all t ∈ T. This was shown in [41, Corollary 5.5].

4.4 A recursive construction

In this section we assume that the time horizon T is finite. Then one can define a time consistent dynamic
convex risk measure (ρ̃t)t=0,...,T in a recursive way, starting with an arbitrary dynamic convex risk measure
(ρt)t=0,...,T , via

ρ̃T (X) := ρT (X) = −X

ρ̃t(X) := ρt(−ρ̃t+1(X)), t = 0, . . . , T − 1, X ∈ L∞.
(33)

The recursive construction (33) was introduced in [12, Section 4.2], and also studied in [19, 13]. It is easy
to see that (ρ̃t)t=0,...,T is indeed a time consistent dynamic convex risk measure, and each ρ̃t is continuous
from above if each ρt has this property.

Remark 39. If the original dynamic convex risk measure (ρt)t=0,...,T is rejection (resp. acceptance)
consistent, then the time consistent dynamic convex risk measure (ρ̃t)t=0,...,T defined via (33) lies below
(resp. above) (ρt)t=0,...,T , i.e.

ρ̃t(X) ≤ (resp. ≥)ρt(X) for all t = 0, . . . , T and all X ∈ L∞.

This can be easily proved by backward induction using Proposition 27, monotonicity, and (33). More-
over, as shown in [19, Theorem 3.10] in the case of rejection consistency, (ρ̃t)t=0,...,T is the biggest time
consistent dynamic convex risk measure that lies below (ρt)t=0,...,T .

For all X ∈ L∞, the process (ρ̃t(X))t=0,...,T has the following properties: ρ̃T (X) ≥ −X, and

ρt(ρ̃t(X)− ρ̃t+1(X)) = −ρ̃t(X) + ρt(−ρ̃t+1(X)) = 0 ∀ t = 0, . . . , T − 1, (34)
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by definition and cash invariance. In other words, the process (ρ̃t(X))t=0,...,T covers the final loss −X

and is sustainable with respect to the original risk measure (ρt)t=0,...,T . The next proposition shows that
(ρ̃t(X))t=0,...,T is in fact the smallest process with both these properties. This result is a generalization
of [33, Proposition 2.5.2], and, in the coherent case, related to [16, Theorem 6.4].

Proposition 40. Let (ρt)t=0,...,T be a dynamic convex risk measure such that each ρt is continuous from
above. Then, for each X ∈ L∞, the risk process (ρ̃t(X))t=0,...,T defined via (33) is the smallest bounded
adapted process (Ut)t=0,...,T such that (Ut)t=0,...,T is sustainable with respect to (ρt)t=0,...,T and UT ≥ −X.

Proof. We have already seen that ρ̃T (X) ≥ −X and (ρ̃t(X))t=0,...,T is sustainable with respect to
(ρt)t=0,...,T due to (34). Now let (Ut)t=0,...,T be another bounded adapted process with both these prop-
erties. We will show by backward induction that

Ut ≥ ρ̃t(X) P -a.s. ∀ t = 0, . . . , T. (35)

Indeed, we have
UT ≥ −X = ρ̃T (X) P -a.s..

If (35) holds for t + 1, Theorem 35 yields for all Q ∈ Qf
t :

Ut ≥ EQ

[
Ut+1 − αmin

t,t+1(Q) | Ft

]
≥ EQ

[
ρ̃t+1(X)− αmin

t,t+1(Q) | Ft

]
P -a.s..

Thus

Ut ≥ ess sup
Q∈Qf

t

(
EQ [ρ̃t+1(X)|Ft]− αmin

t,t+1(Q)
)

= ρt(−ρ̃t+1(X)) = ρ̃t(X) P -a.s.,

where we have used representation (6). This proves (35).

The recursive construction (33) can be used to construct a time consistent dynamic Average Value at
Risk, as shown in the next example.

Example 41. It is well known, that dynamic Average Value at Risk (AV @Rt,λt)t=0,...,T (cf. Example 10)
is not time consistent; see, e.g., [4, 35, 14]. Moreover, since αmin

0 (P ) = 0 in this case, the set Q∗ in (22)
is not empty, and [22, Corollary 4.12] implies that there exists no time consistent dynamic convex risk
measure (ρt)t∈T such that each ρt is continuous from above and ρ0 = AV @R0,λ0 . However, for T < ∞, the
recursive construction (33) can be applied to (AV @Rt,λt)t=0,...,T in order to modify it to a time consistent
dynamic coherent risk measure (ρ̃t)t=0,...,T . This modified risk measure takes the form

ρ̃t(X) = ess sup

{
EQ[−X|Ft]

∣∣ Q ∈ Qt,
ZQ

s+1

ZQ
s

≤ λ−1
s , s = t, . . . , T − 1

}

= ess sup

{
EP

[
−X

T∏
s=t+1

Ls

∣∣ Ft

] ∣∣ Ls ∈ L∞s , 0 ≤ Ls ≤ λ−1
s , E[Ls|Fs−1] = 1, s = t + 1, . . . , T

}

for all t = 0, . . . , T − 1, where ZQ
t = dQ

dP |Ft . This was shown, e.g., in [13, Example 3.3.1].
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5 The dynamic entropic risk measure

In this section we study time consistency properties of the dynamic entropic risk measure

ρt(X) =
1
γt

log E[e−γtX |Ft], t ∈ T, X ∈ L∞, (36)

where the risk aversion parameter γt is random and satisfies γt > 0 P -a.s. and γt,
1
γt
∈ L∞t for all t ∈ T;

cf. also Example 9.
It is well known (see, e.g., [18, 22]) that the conditional entropic risk measure ρt has the robust

representation (5) with the minimal penalty function αt given by

αt(Q) =
1
γt

Ht(Q|P ), Q ∈ Qt,

where Ht(Q|P ) denotes the conditional relative entropy of Q with respect to P at time t:

Ht(Q|P ) = EQ

[
log

dQ

dP

∣∣ Ft

]
, Q ∈ Qt.

The dynamic entropic risk measure with constant risk aversion parameter γt = γ0 ∈ R for all t was
studied in [18, 12, 22, 13]. It plays a particular role, as explained in the following remark.

Remark 42. Kupper and Schachermayer [30] showed that the entropic risk measure with constant risk
aversion parameter γ0 ∈ [0,∞] is the only time consistent dynamic convex risk measure (ρt)t∈N0 such
that ρ0 is law invariant.

In this section we consider an adapted risk aversion process (γt)t∈T, that depends both on time and
on the available information. As shown in the next proposition, the process (γt)t∈T determines time
consistency properties of the corresponding dynamic entropic risk measure. This result corresponds to
[33, Proposition 4.1.4], and generalizes [19, Proposition 3.13].

Proposition 43. Let (ρt)t∈T be the dynamic entropic risk measure with risk aversion given by an adapted
process (γt)t∈T such that γt > 0 P -a.s. and γt, 1/γt ∈ L∞t . Then the following assertions hold:

1. (ρt)t∈T is rejection consistent if γt ≥ γt+1 P -a.s. for all t ∈ T, t < T ;

2. (ρt)t∈T is acceptance consistent if γt ≤ γt+1 P -a.s. for all t ∈ T, t < T ;

3. (ρt)t∈T is time consistent if γt = γ0 ∈ R P -a.s. for all t ∈ T.

Moreover, assertions 1), 2) and 3) hold with “if and only if”, if γt ∈ R for all t, or if the filtration (Ft)t∈T

is rich enough in the sense that for all t and for all B ∈ Ft such that P [B] > 0 there exists A ⊂ B such
that A /∈ Ft and P [A] > 0.

Proof. Fix t ∈ T and X ∈ L∞. Then

ρt(−ρt+1(X)) =
1
γt

log
(

E

[
exp

{
γt

γt+1
log

(
E

[
e−γt+1X |Ft+1

])} ∣∣Ft

])
=

1
γt

log
(
E

[
E

[
e−γt+1X |Ft+1

] γt
γt+1

∣∣Ft

])
.
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Thus ρt(−ρt+1) = ρt if γt = γt+1 and this proves time consistency. Rejection (resp. acceptance) consis-
tency follow by the generalized Jensen inequality that will be proved in Lemma 44. We apply this inequal-
ity at time t + 1 to the bounded random variable Y := e−γt+1X and the B ((0,∞)) ⊗ Ft+1-measurable
function

u : (0,∞)× Ω → R, u(x, ω) := x
γt(ω)

γt+1(ω) .

Note that u(·, ω) is convex if γt(ω) ≥ γt+1(ω) and concave if γt(ω) ≤ γt+1(ω). Moreover, u(X, ·) ∈ L∞

for all X ∈ L∞ and u(·, ω) is differentiable on (0,∞) with

|u′(x, ·)| = γt

γt+1
x

γt
γt+1

−1 ≤ axb P -a.s.

for some a, b ∈ R if γt ≥ γt+1, due to our assumption γt

γt+1
∈ L∞. On the other hand, for γt ≤ γt+1 we

obtain
|u′(x, ·)| = γt

γt+1
x

γt
γt+1

−1 ≤ a
1
xc

P -a.s.

for some a, c ∈ R. Thus the assumptions of Lemma 44 are satisfied and we obtain

ρt(−ρt+1) ≤ ρt if γt ≥ γt+1 P -a.s. for all t ∈ T such that t < T

and
ρt(−ρt+1) ≥ ρt if γt ≤ γt+1 P -a.s. for all t ∈ T such that t < T .

The “only if” direction for constant γt follows by the classical Jensen inequality.
Now we assume that the sequence (ρt)t∈T is rejection consistent and our assumption on the filtration

(Ft)t∈T holds. We will show that the sequence (γt)t∈T is decreasing in this case. Indeed, for t ∈ T such that
t < T , consider B := {γt < γt+1} and suppose that P [B] > 0. Our assumption on the filtration allows
us to choose A ⊂ B with P [B] > P [A] > 0 and A /∈ Ft+1. We define a random variable X := −xIA for
some x > 0. Then

ρt(−ρt+1(X)) =
1
γt

log
(

E

[
exp

(
γt

γt+1
log

(
E

[
eγt+1xIA

∣∣Ft+1

])) ∣∣Ft

])
=

1
γt

log
(

E

[
exp

(
γt

γt+1
IB log

(
E

[
eγt+1xIA

∣∣Ft+1

])) ∣∣Ft

])
,

where we have used that A ⊂ B. Setting

Y := E
[
eγt+1xIA

∣∣Ft+1

]
= eγt+1xP [A|Ft+1] + P [Ac|Ft+1]

and bringing γt

γt+1
inside of the logarithm we obtain

ρt (−ρt+1 (X)) =
1
γt

log
(
E

[
exp

(
IB log

(
Y

γt
γt+1

IB
)) ∣∣Ft

])
. (37)

The function x 7→ xγt(ω)/γt+1(ω) is strictly concave for almost each ω ∈ B, and thus

Y
γt

γt+1 = (eγt+1xP [A|Ft+1] + (1− P [A|Ft+1]))
γt

γt+1

≥ eγtxP [A|Ft+1] + (1− P [A|Ft+1]) P -a.s. on B, (38)
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with strict inequality on the set

C := {P [A|Ft+1] > 0} ∩ {P [A|Ft+1] < 1} ∩B.

Our assumptions P [A] > 0, A ⊂ B and A /∈ Ft+1 imply P [C] > 0 and using

eγtxP [A|Ft+1] + (1− P [A|Ft+1]) = E
[
eγtxIA |Ft+1

]
(39)

we obtain from (37), (38) and (39)

ρt (−ρt+1 (X)) ≥ 1
γt

log
(
E

[
exp

(
IB log

(
E

[
eγtxIA |Ft+1

])) ∣∣Ft

])
, (40)

with the strict inequality on some set of positive probability due to strict monotonicity of the exponential
and the logarithmic functions. For the right hand side of (40) we have

1
γt

log
(
E

[
exp

(
IB log

(
E

[
eγtxIA |Ft+1

])) ∣∣Ft

])
=

=
1
γt

log
(
E

[
IBE

[
eγtxIA |Ft+1

]
+ IBc

∣∣Ft

])
=

1
γt

log
(
E

[
exp (γtxIA)

∣∣Ft

])
= ρt (X) ,

where we have used A ⊂ B and B ∈ Ft+1. This is a contradiction to rejection consistency of (ρt)t∈T, and
we conclude that γt+1 ≤ γt for all t. The proof in the case of acceptance consistency follows in the same
manner. And since time consistent dynamic risk measure is both acceptance and rejection consistent, we
obtain γt+1 = γt for all t.

The following lemma concludes the proof of Proposition 43.

Lemma 44. Let (Ω,F , P ) be a probability space and Ft ⊆ F a σ-field. Let I ⊆ R be an open interval
and

u : I × Ω → R

be a B (I)⊗Ft-measurable function such that u(·, ω) is convex (resp. concave) and finite on I for P -a.e.
ω. Assume further that

|u′+(x, ·)| ≤ c(x) P -a.s. with some c(x) ∈ R for all x ∈ I,

where u′+(·, ω) denotes the right-hand derivative of u(·, ω). Let X : Ω → [a, b] ⊆ I be an F-measurable
bounded random variable such that E [ |u(X, ·)| ] < ∞. Then

E [ u(X, ·) | Ft ] ≥ u (E[X|Ft], ·) (resp ≤) P -a.s..

Proof. We will prove the assertion for the convex case; the concave one follows in the same manner. Fix
ω ∈ Ω such that u(·, ω) is convex. Due to convexity we obtain for all x0 ∈ I

u(x, ω) ≥ u(x0, ω) + u′+(x0, ω)(x− x0) for all x ∈ I.
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Take x0 = E[X|Ft](ω) and x = X(ω). Then

u(X(ω), ω) ≥ u(E[X|Ft](ω), ω) + u′+(E[X|Ft](ω), ω)(X(ω)− E[X|Ft](ω)) (41)

for P -almost all ω ∈ Ω. Note further that B (I)⊗Ft-measurability of u implies B (I)⊗Ft-measurability
of u+. Thus

ω → u(E[X|Ft](ω), ω) and ω → u′+(E[X|Ft](ω), ω)

are Ft-measurable random variables, and ω → u(X(ω), ω) is F-measurable. Moreover, due to our as-
sumption on X, there are constants a, b ∈ I such that a ≤ E[X|Ft] ≤ b P -a.s.. Since u′+(·, ω) is increasing
by convexity, by using our assumption on the boundedness of u′+ we obtain

−c(a) ≤ u′+(a, ω) ≤ u′+(E[X|Ft], ω) ≤ u′+(b, ω) ≤ c(b),

i.e. u′+(E[X|Ft], ·) is bounded. Since E [ |u(X, ·)| ] < ∞, we can build conditional expectation on the both
sides of (41) and we obtain

E[ u(X, ·) | Ft ] ≥ E
[
u(E[X|Ft], ·) + u′+(E[X|Ft], ·)(X − E[X|Ft]) | Ft

]
= E [ u(E[X|Ft], ·) | Ft ] P -a.s.,

where we have used Ft-measurability of u(E[X|Ft], ·) and of u′+(E[X|Ft], ·) and the boundedness of
u′+(E[X|Ft], ·). This proves our claim.
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sures for bounded càdlàg processes. Stochastic Process. Appl., 112(1):1–22, 2004.

[11] Patrick Cheridito, Freddy Delbaen, and Michael Kupper. Coherent and convex monetary risk mea-
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[23] Hans Föllmer and Alexander Schied. Convex measures of risk and trading constraints. Finance
Stoch., 6(4):429–447, 2002.

30
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