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We derive a stochastic nonlinear equation 10 describe the evolution and scaling propenies of surfaces 

eroded by ion bombardment. The coefficients appearing in the equation can be calculated explicitly in 

terms of the physical parameters characterizing the sputtering process. We fi nd that transitions may take 

place between various scaling behaviors when experimental parameters, such as the angle of incidence 

of the incoming ions or their average penetration depth, are varied. 
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Recently there has been much inlerest in understand
ing the formation and roughening of nonequilibrium in

terfaces [I]. A common feature of most rough interfaces 
observed experimentally or in discrete models is that their 

roughening follows simple scaling laws. The associated 

scaling exponents can be obtained using numerical simu

lations or stochastic evolution equations. The morphology 

and dynamics of a rough interface can be characterized 

by the surface width, wCt, L), that scales as w 2(t,L) ~ 
{[h(r ,t) - lI(t )J2) - LTij f(,f t t

), where a is the roughness 

exponent for the interface h(r , t) and the dynamic exponent 

z describes the scal ing of the relaxation times with the sys

tem size L; het) is the mean height of the interface at time 
t and ( ) denotes both ensemble and space average. The 

scaling function f has the properties feu _ 0) - u.2a / l 

and f{u - (0) - const. 

Much of the attention has focLlsed so far on the kinet

ics of interfaces generated in growth processes. However, 

for a class of technologically important phenomena, such 

as sputter etching, the surface morphology evolves as a re

sult of erosion processe"S [2]. Motivated by the advances 

in understanding growth, recently a number of experimen

tal studies have focused on the scaling properties of sur

faces eroded by ion bombardment [3-5]. For graphite 
bombarded with 5 keY Ar ions, Eklund et al. [3] reported 

a ~ 0.2-0.4 and z ~ 1.6-1.8, values consisteni ~ with the 

predictions of the Kar dar~Parisi-Z han g (KPZ) equation in 

2 + I dimensions [6,7]. Krim et al. [4] observed a self
affine surface generated by 5 keY Ar bombardment of an 

Fe sample, with a larger exponent, a = 0.52. On the other 

hand, there exists ample evidence about the development 

of a periodic ripple structure in sputter-etched surfaces 

(sce, e.g., [8]). Chason et al. [5] have recently studied the 

dynamics of such eroded surfaces for both Si02 and Ge 

bombarded with Xe ions at 1 keY, and found that it differs 

from the dynamics expected for the self-affine morpholo

gies observed in [3] and [4J. 

In this paper we investigate the large scale propelties of 

ion-sputtered surfaces aiming to understand in a unified 
framework the various dynamic and scaling behaviors 

of the experimentally observed surfaces. For this we 

derive a stochastic nonlinear equation that describes the 

time evolution of the surface height. The coefficients 

appearing in the equ'ation are functions of the physical 

parameters characterizing the sputtering process. We 

find that transitions may take place between various 

surface morphologies as the experimental parameters 

(e.g., angle of incidence, penetration depth) are varied. 

Namely, at short length scales the equation describes 

th:e de.velopment of a periodic ripple structure, while at 

larger length scales the surface morphology may be either 
logarithmically (a = 0) or algebraically (a > 0) rough. 

Usually stochastic equations describing growth models are 

constructed using symmetry principles and conservation 

laws. In contrast, here we show that for sputter eroded 

surfaces the growth equation can be derived directly from 

a simple model of the elementary processes taking place 

in the sys~erf!.. 
Most of the theoretical approaches focusing on the 

scaling properties of sputter roughened surfaces have 

assumed that essentially all relevant processes take place 
at the surface, and that nonlinear effects would appear 

only due to nonlocal effects such as shadowi ng [9]. 

However, ion sputtering is in general determined by 

atomic processes taking place along a finite penetration 

depth inside the bombarded material. The incoming ions 

penetrate the surface and transfer the ir kinetic energy 

to the '!toms of the substrate by inducing cascades of 

collisions among the substrate atoms, or through other 

processes such as electronic excitations. Whereas most 

of the sputtered atoms are located at the surface, the 

scattering events thal might lead to spuuering take place 
withi n a certain layer of average depth a. As described 

by Sigmund's transport theory of sputtering [10), the 

average value of the ion deposition deplh depends on the 

energy of the bombarding ions, their angle of incidence, 

the micross opic str:ucture of the target material, and the 

features of the scattering processes taking place inside the 

sample. 

A convenient picture of the ion bombardment process 

is sketched in the inset of Fig. I. According to it the 

ions penetrate a distance a inside the solid before they 
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FIG. I. Reference frames for the computation of the erosion 
velocity at point O. Inset: Followin,g a straight ltajeclory (solid 
line) the ion penetrates an average distance a inside the solid 
(dotted line) after which it completely spreads out its kinetic 
energy. The dotted curves are equal energy C<lntoufS. Energy 
released al point P contributes 10 erosion at O. 

completely spread out their kinetic energy with some 

assumed spatial distribution. An ion releasing its energy 
at point P in the solid contributes an amount of energy 

to the surface point 0 that may induce the atoms in 0 

to break their bonds and leave Ihe surface. Following 
{lO,1 q, we consider that the average energy deposited at 

point 0 due to the ion aniving at P follows the Gaussian 

distribution 

, , 1 z.fJ. x
12

+ yfJ.\ 
E(r ) = (27r)lfl

U
fJ-2 exp - 2u2 - 2fJ-2 . (I) 

In (I) z.' is the distance measured along the ion trajectory, 
and x', y' are measured in the plane perpendicular to 

it (see Fig. 1; for simplicity in the figure x' has been 
set to 0); ~ denotes the total energy carried by the 
ion and u and J1. are the widths of the distribution 
in directions parallel and perpendicular to the incoming 
beam, respectively. However. the sample is subject to a 
uniform flux J of bombarding ions. A large number of 
ions penetrate the solid at different points simultaneously, 

and the velocity of erosion at 0 depends on the total 
power Co contributed by all the ions deposited within the 
range of the distribution (I). If we ignore shadowing 
effects among neighboring points, as well as further 

redeposition of lhe eroded material, the normal velocity 
of erosion at 0 is given by 

v ~ P f'R. dr<J?(r)E(r), (2) 

where the integral is taken over the region 'R of all the 
points at which the deposited energy contributes to to, 
<J?(r) is a local correction to the uniform flux J, and p is 
a proportionality constant between power deposition and 
rate of erosion. In the fo llowing we outline the basic steps 
in the calculation of v; further details can be found in 
Refs. [11,12]. 

The calculation of (2) is most efficiently perfomed in 

the focal coordinate system eX.Y.Z) shown in Fig. 1. 

The ion beam lies in the X-Z plane, fonni ng an angle 
rp with the Z axis, Z being normal to the surface at O. To 

simpl ify the calculations, we assume the following: (a) the 
radii of curvature (Rx , Ry) of the surface at 0 are much 
larger than the penetration depth a, so that only terms up 

to first order in a/Rx.y are kept; and (b) the curvatures 
attain their maximum and minimum values along either 

of the X and Y directions, and thus we can expand the 

value of the sutface height at 0 by taking a second order 
approximation in the ex, Y) coordinates and consistently 

ignoring cross term contributions. Performing the integral 

(2) the velocity v(,p,Rx.R y ) is found to be a fu nction of 
the angle rp and the curvatures l/Rx,y [11]. 

Finally, from the expression of v we can obtain the 

equation of motion for the profile. Now it is convenient 
to use the laboratory coordinate frame (x,y,h) . In the 
absence of overhangs the surface can be described by 
a single valued height function h(X,y,I), measured from 

an initial Hat configuration which is taken to lie in the 
(x,y) plane. The ion beam is parallel to the x-h plane 

fonning an angle 0 < () < 7r/2 with the z. axis. The time 
evolution of h is given by· 

ah(x,y,t) =--v(rp,Rx,Ry).JI + (Vh)2, 

" 
(3) 

where rp is the angle of the beam direction with the local 
nonnalto the surface at h{x,y). Now q; is a function of 

the angle of incidence () and the values of the local slopes 
o",h and oyh, and can be expanded in powers of the laller. 
We will assume that the surface varies smoothly enough 
so that products of derivatives of h can be neglected for 

third or higher orders. 
At this stage additional relevant physical processes must 

be taken into account to describe the evolution of the 
surface. First, the bombarding ions reach the surface at 
random positions and times. We account for the stochastic 
arrival of ions by adding 10 (3) a Gaussian white noise 
71(X.y, t) with zero mean and variance proportional to the 
flux J. Second, at finite temperature atoms diffuse on the 
surface [3,5]. To include this surface self-diffusion we 
allow for a term _KV2(V2h) [13], where K is a temperature 
dependent positive coefficient. Expanding (3) and adding 

the noise and the surface-diffusion terms we obtain the 
equation of motion [14J 

ah ah a2h a2h 
~- - vo+'Y-+'" -+ v, -, 
at ax '" ax2 ay 

+ A, (,,)2 + Ay (0,)2 _ KV2{V2h) + 71. (4) 
2ax 2ay 

From (3) we can compute the expressions for the coeffi
cients appearing in (4) in terms of the physical parame
ters Characterizing the sputtering process. To simplify 
the discussion we restrict ourselves to the symmetric case 

u - JL. The gener.al case is discussed in [12J. If we 
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write F ... (eJp/J2ii)exp(-a!/2),:; - sinB, c - cose, 

and a.,. E a/u, we find for the coefficients in (4) 

F F 
Vo"'" -e, ')' = - :;(a;c1 - 1), 

u u 

(5) 

F 
I'y = -Ta.,.cZ; 

Consistent with the direction of the bombarding beam and 

the choice of coordinates, the tenns in (4) are symmetric 

under y -- -y but not under x -- -x, while for f) -- 0 we 

get')' '"" {x "'" {y = 0, Ax = Ay, and J'~ = I'y [15). The 

equation studied in Ref. [11] corresponds to the detennin

istic linear version o f (4), i.e., A .. ... Ay - 11 ""' O. 

If I'~ and I'y are positive, the surface-diffusion tenn is 

expected to contribute negligibly to tile relevant surface 

relaxation mechanism when we probe the system at 

increasingly large length scales. Scaling properties are 

then described by the anisotropic KPZ equation (AKPZ), 

which predicts two possible behaviors depending on the 

relati ve signs of the coefficients A" and Ay [16.17 ). rf 
A .. Ay > 0, then a ... 0.38 and z ... 1.6, Lhe surface width 

w(L, I) increases algebraically, being characterized by the 

exponents of the KPZ equatio n in 2 + I dimensions [7J. 

For A .. Ay < 0, the nonli near terms A .. and Ay become 

irrelevant, and the width grows only logarithmically, i.e .• 

a - O. 
In our case I'k can change sign as e and aD' are 

varied, whi le I'y is always negative. The negative I' 

causes an instability, whose origin is the faster erosion 

for the bottom of a trough than for the peak of a crest, 

as predicted by (2) (sce also Fig. 3 of Ref. (J I]). An 

instability due to a negative surface tension is also known 

to take place in the Kuramoto-Sivashinsky (KS) equation 

(1 8], which is the noiseless and isotrop"ic -version of (4). 

It has been argued for the KS equation that in I + I 

dimensions I' renonnalizcs to a positive value [I9}, and 

the large length scale behavior is described by the KPZ 

equation. In 2 + I dimensions it is not completely settled 

whether the large distance behaviors of KS and KPZ 

fall in the same universality class, d ifferent approaches 

leading to conflicting results [20]. 
In contrast 10 the KS equation, Eq. (4) is anisotropic. 

and explicitly contains a noise tenn. The competition 

between surface tension and surface diffusion gencrates 

a characteristic length scale in the system ee = JK7l"VT. 
where I' is the largest in absolute value of the negative 

surface tension coefficients. Below we discuss a possible 

scenario for the scaling behavior predicted by (4) based 

primarily on the results available in the literature for 

some of its limits. The complete scaling picture should 

be provided by either a dynamical renonnalization group 

analysis capable of coping wilh the linear instabilities 

present in the system or a numerical integration of (4). 

The scali ng behavior depends on the relative signs 

of 1'..-. I'y, A ... and Ay [21]. The variations of these 

coefficients as func tions of a.,. and 8 lead to the phase 

diagram shown in Fig. ~. 

Regions I and /I. - For small B both I'~ and 1',/ are 

negative. As discussed by Bradley and Harper [ I iJ and 

- experi mentally studied by Chason et at. (5), a periodic 

structure dominates the surface morphology. with ripples 

oriented along the direction (x or y) which presents the 

largest absolute value for its surface tension coefficient. 

The observed wavelength of the ripples is Ae ~ 21T.,fi ec. 

The large length scale behavior e » ec is expected to 

be different. Now both nonl inearities and the noise may 

become relevant. The scaling properties of the surface 

morphologies predicted by (4) are unknown. A possible 

scenario is that the I"S renormalize to positive values, as 

they do for the KS equation in I + I dimensions. and 

the large scale scaling properties of the system are de· 

scriQed by the AKPZ equation. Then one would observe 

algebraic scal ing in region I , where both nonlinearities 

have the same (negative) sign, whereas scaling would be

come logarithmic through an AKPZ-like mechanism in 

region 11 , where Ax and Ay have opposite signs. 

Region lIl.-This region is characterized by a positive 

I'~ and a negative 1':;- Now the periodic structure associ

ated with the instability is directed along the y direction 

and is the dominant morphology at scales e - ec . Agai n, 

such an anisotropic and linearly unstable equation is unex· 

plored in the context of growth equations. Assuming that 

1', renonnalizes to a positive value, and that the AKPZ 

mechanism operates, one would expect logarithmic scal

ing in region Ill , si nce the nonlinear tenns have opposite 

signs. 

a 

'" ~,---,~,!---.,;;;-----!., 
e 

AG. 2. Phase diagram for the isotropic case u - p. - I. 
Region I: v. < 0, 1', < 0, A. < 0, A, < 0; region 11: v. < 0, 
1', < O. A. > 0, A, < 0; region m: 1', > 0, 1', < 0, A, > 0, 
.A, < O. Here a is measured in arbitrary units and (J is 
measured in degrees. 
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Even though several aspects of the scali ng behavior 

predicted by (4) and (5) remain to be clarified. we believe 

that these equations contain the relevant ingredients for 

understanding roughening by ion bombardment (22). 

To summarize, at short length scales the morphology 

consists of a periodic structure oriented along the direction 

determined by the largest in absolute value of the negative 

surface tension coefficients [5J. Modifying the values of 

aq or (j changes the orientation of the ripples [8.11]. 

At large length scales we expect two different scaling 

regimes. One is characterized by the KPZ exponents. 

which might be observed in region I in Fig. 2. Indeed, 

the values of the exponenCs reported by Eklund et al. [31 

are consistent within the experimental errors with the KPZ 

exponents in 2 + I dimensions. The olher regions ( 11 

and I I I) are characterized by logarithmic scaling (a -

0), which has not been observed experimentally so far. 

Moreover. by tuning the values of 8 and/or aq one may 

induce transitions among the different scaling behaviors. 

For example. fixing aq and increasing the value of 8 

would lead from KPZ scaling (region I) to logarithmic 

scaling (l I. I I I) for large enough angles. 

The experimental verification of the above possibilities 

would constitute an important step to elucidate the in

terplay between the mechanisms leading to the different 

morphologies and dynamics for sputter-etched surfaces. 

It will also provide additional insight into the scal ing be

haviors to be expected from Eq. (4). 
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