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Abstract
Natural scene classification is a fundamental chal-

lenge in computer vision. By far, the majority of stud-
ies have limited their scope to scenes from single image
stills and thereby ignore potentially informative tempo-
ral cues. The current paper is concerned with determin-
ing the degree of performance gain in considering short
videos for recognizing natural scenes. Towards this end,
the impact of multiscale orientation measurements on
scene classification is systematically investigated, as re-
lated to: (i) spatial appearance, (ii) temporal dynamics
and (iii) joint spatial appearance and dynamics. These
measurements in visual space, x-y, and spacetime, x-
y-t, are recovered by a bank of spatiotemporal oriented
energy filters. In addition, a new data set is introduced
that contains 420 image sequences spanning fourteen
scene categories, with temporal scene information due
to objects and surfaces decoupled from camera-induced
ones. This data set is used to evaluate classification
performance of the various orientation-related repre-
sentations, as well as state-of-the-art alternatives. It is
shown that a notable performance increase is realized
by spatiotemporal approaches in comparison to purely
spatial or purely temporal methods.

1. Introduction

Natural scene classification is a fundamental chal-
lenge in the goal of automated image understanding.
Here, “scene” refers to a place where an action or event
occurs. The ability to distinguish scenes is very useful,
as it can serve to provide priors for the presence of ac-
tions [25], surfaces [15] and objects [34] (e.g., for street
scenes, it is highly probable to find cars and pedestri-
ans), as well as their locations and scales. Moreover,
similar scenes could be retrieved from a database.

A critical challenge to dynamic scene understanding
arises from the wide range of naturally occurring phe-
nomena that must be encompassed. Figure 1 shows
sample frames from the data set introduced in this pa-
per that highlight such diversity. Although of obvious
importance, image motion (i.e., spatial displacement of
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Figure 1. Sample frames of all scene categories from the
data set introduced in this paper; see Sec. 3 for details.

image elements with time), as arises from the projected
movement of scene elements (e.g., cars in “highway”
and opening doors in “elevator”), represents a partic-
ular instance of the myriad spatiotemporal patterns
encountered in the world. Examples of non-motion-
related patterns of significance include, non-textured
regions (e.g., sky in “sky-cloud”), flicker (i.e., pure tem-
poral intensity change, e.g., fire in “forest fire” and
lightning in “lightning storm”), and dynamic texture
(e.g., as typically associated with stochastic phenom-
ena, such as the turbulence in “rushing river” and
waves in “ocean”).

The present paper is concerned with investigating
the early representation (i.e., the building blocks) of
image sequences for the purpose of recognizing natu-
ral scene categories. Numerous studies have reported
success in classifying scenes through bypassing object
recognition and segmentation processes and instead
rely on the global layout (the schema or gist) of aggre-
gated statistics of early visual cues, such as the power
spectrum, orientation and color, e.g., [26, 11, 36].

An emerging theme of previous work in (spatial)



scene recognition, is that gradient-based features that
capture orientation (e.g., GIST, SIFT, HOG, etc.)
yield a rich set of cues. Consonant with these find-
ings, the current paper extends such ideas to the tem-
poral domain by adopting a representation that natu-
rally integrates both spatial appearance and dynamic
information according to local measurements of 3D,
x-y-t, orientation structure that are accumulated over
fixed subregions of visual spacetime and then related
via their global layout. In particular, each spacetime
subregion is associated with a distribution of measure-
ments indicating the relative presence of a particular
set of spatiotemporal orientations.

Several early studies considered a small number of
broad scene categories from image stills, such as indoor
vs. outdoor and city vs. landscape (e.g., [11, 35]). More
recently, focus has been placed on distinguishing cate-
gories numbering in the tens [10, 20] and hundreds [38].
As noted above, common among most approaches to
scene recognition is the use of early visual features (but
see [21] for an object-centric approach), e.g., spectral
features [33, 26], local orientation [11, 14, 29, 20, 31]
and color [13, 36], that are in turn aggregated over the
entire image (e.g., [29]) or within fixed image subre-
gions (e.g., [11, 20]) to drive recognition.

Others have considered modeling scenes hierarchi-
cally through intermediate substrates built upon early
visual features. These representations have come in
the form of semantic descriptions (e.g., water vs. sky
[4, 37] and ruggedness vs. openness [26]) and latent
theme models [10, 24, 3, 28].

While the vast majority of the literature has cen-
tered on scene recognition from image stills, two no-
table exceptions have appeared [25, 30], where his-
tograms of optical flow (HOF) [25] and chaotic system
parameters [30] are used to model scene dynamics. A
drawback of optical flow is that it is limited in the
complexity of patterns it can capture, as local non-
translational image motions, such as, multiple motions
at an image point, temporal flicker (e.g., lightning)
and dynamic textures (e.g., dynamic water), violate
the underlying assumptions of the flow computation,
e.g., brightness constancy.

Linear dynamical systems (LDS) have been pro-
posed as models to the restricted class of video pat-
terns termed dynamic textures [9]. While LDS models
have shown promise on dynamic texture classification,
their application to classifying the wider set of patterns
found in dynamic scenes has been shown to perform
poorly [30]. More closely related to the present research
is previous work on dynamic textures that have made
use of spatiotemporal oriented energy features to cap-
ture pattern structure [8]. Indeed, the present research

makes use of the same primitive filtering operations
to derive orientation features; however, it significantly
differs in three ways. First, the two efforts are con-
cerned with very different problem domains, dynamic
texture vs. dynamic scene analysis. In texture analysis
one typically is concerned with a single relatively uni-
formly structured region; whereas, in scene analysis it
is typical for several regions of differing type and their
inter-relationships to be of concern. Second, the previ-
ous work applied its filtering at a single spatiotemporal
scale; whereas, the present work employs multiscale fil-
tering to capture a more detailed feature set. Third,
the previous work aggregated its filter responses across
an entire image; whereas, the present work aggregates
over subregions defined over a spatiotemporal grid to
maintain scene layout information not available in the
previous work. As noted above, maintenance of scene
layout is of much greater concern in scene analysis in
comparison to texture analysis.

In addition to dynamic texture analysis [8], mea-
sures of spatiotemporal oriented energy have been used
previously to capture a wide range of dynamic patterns,
including image motion [1, 12, 32], semi-transparency
[6] and human actions [5, 16, 7]. Moreover, energy mea-
surements of purely spatial orientation are popular in
the analysis of static scenes [26] and have a long history
in the analysis of (static) visual texture [2]. Neverthe-
less, it appears that the present work is the first to
use spatiotemporal oriented energies as the computa-
tional basis for the representation of information in the
context of recognizing dynamic natural scenes.

For evaluation, two data sets previously have been
introduced based on natural scenes culled from “in-the-
wild” sources (i.e., cinematic movies [25] and amateur
footage from the Internet [30]). While these sources
are appealing because they are readily available and
representative of the type of footage that certain ap-
plications would be expected to process, there remain
significant drawbacks in experimenting with such data
(cf., [27]). Most prominent is the inclusion of significant
(distracting) camera motion and scene cuts; thus, tem-
poral information is confounded by both scene-related
dynamics and camera-related motion. Consequently,
it is difficult to tell whether success of a particular ap-
proach arises as it captures critical aspects of scenes vs.
temporal regularities introduced by extraneous sources
(e.g., camera movement). Furthermore, for failures
there is no clear indication of the source (e.g., fail-
ure of representation to capture critical scene-related
dynamics or lack of invariance to camera motion).

Contributions: The present paper makes three main
contributions. First, the impact of multiscale orienta-
tion measurements on scene classification are system-



atically investigated, as related to: (i) spatial appear-
ance, (ii) temporal dynamics and (iii) joint spatial ap-
pearance and dynamics. These orientation measure-
ments are realized as distributions capturing oriented
structure in visual space, x-y, and spacetime, x-y-t, as
recovered by a bank of spatiotemporal oriented filters.
The spatiotemporal orientation measurements capture
a wide range of dynamic patterns in natural scenes,
both motion (e.g., object movement) and more compli-
cated dynamics (e.g., flickering prominent in fire, light-
ning and water) as well as purely spatial pattern (e.g.,
static surface texture). While spatiotemporal filters
have been used before for analyzing image sequences
in a variety of contexts, they have not been applied to
the recognition of natural scenes. Second, given the
aim of exploring temporal information present in nat-
ural scenes, a new data set is introduced that contains
420 videos spanning fourteen scene categories. Em-
phasis is placed on isolating temporal scene informa-
tion due to objects and surfaces from camera-induced
ones, as present in previous data sets [25, 30]. Third,
a detailed empirical evaluation on both extant pub-
lic data and the data introduced in this paper is pro-
vided that demonstrates overall strong performance of
jointly modeling spatial appearance and dynamics via
multiscale oriented energies. These comparisons are
conducted with representations focused on static ap-
pearance alone as well as the previous state-of-the-art
in joint modeling of appearance and dynamic informa-
tion.

2. Methodology

There are two key parts to the analysis of dynamic
scene recognition considered in this paper: (i) a repre-
sentation based on the global layout of local spacetime
orientation measurements that are aggregated across
image subregions; (ii) a match measure between any
two samples under consideration. Section 2.1 provides
a summary of the oriented energy measurements used
in this work to systematically evaluate the relative im-
pact of spatial appearance [26], temporal/dynamic [8]
and joint spatial appearance and dynamic information,
on scene classification. Section 2.2 extends the spa-
tiotemporal oriented energy model by introducing two
scale parameters that determine the spatiotemporal de-
tails captured by the oriented energy representation
and the layout of the energies.

2.1. Spatiotemporal oriented energy features

In the current investigation, orientation features are
used to describe subregions of an imaged scene that are
derived via application of an orientation tuned filter
bank. In particular, the employed filtering operations
follow previous work [8], where it was used instead for

dynamic texture analysis and without concern for mul-
tiscale analysis that is employed in the current work.

The spacetime orientation measurements are con-
structed by filtering using a set of Gaussian derivative
filters, pointwise squaring and summation over a given
spacetime region,

E
θ̂,σ

=
∑

x

Ω(x)[GN
θ̂,σ

(x) ∗ I(x)]2, (1)

where x = (x, y, t)⊤ denotes the spatiotemporal image
coordinates, I(x) the input image sequence, ∗ convolu-
tion, Ω(x) a mask defining the aggregation region and
GN

θ̂,σ
(x) the Nth derivative of the Gaussian with scale

σ and θ̂ the direction of the filter’s axis of symmetry,
and care taken to normalize the filters to ensure that
their energy across scale is constant [22].

The initial definition of local energy measurements,
(1), is confounded by local image contrast that appear
as a multiplicative constant in the set of energies. To
remove contrast-related information, the energy mea-
sures, (1), are normalized by the ensemble of oriented
responses,

Ê
θ̂i,σj

= E
θ̂i,σj

/

(

ǫ+
∑

θ̂×σ∈S

E
θ̂,σ

)

, (2)

where S denotes the set of considered multiscale ori-
ented energies, (1), and ǫ is a constant that serves as
a noise floor. In addition, a normalized ǫ is computed,
as in (2), to explicitly capture lack of texture within
the region. (Note that regions where texture is less
apparent, e.g., region of sky, the summation in the de-
nominator approaches zero; hence, the normalized ǫ ap-
proaches one and thereby indicates lack of structure.)

The normalized oriented energy responses, (2), form
the local basis for analyzing dynamic scenes in this pa-
per, as they jointly capture static spatial and dynamic
structure in imagery. The GIST representation [26] for
scene classification can be seen as a spatial analogue of
the presented spatiotemporal oriented energy method,
in its use of purely spatial oriented energy measure-
ments in (1) to characterize local image structure.

As an approach to understanding the contribution
of just the dynamic component, it is possible to dis-
count the impact of purely spatial appearance on the
presented oriented energy filtering via a marginaliza-
tion process [8]. The local spacetime orientation struc-
ture of a visual pattern (remaining after marginaliza-
tion) has been previously shown to capture significant,
meaningful aspects of its dynamics [8]. As examples:
Purely spatial pattern structure (e.g., surface texture)
is captured by orientations that are parallel to the im-
age plane; whereas, dynamic attributes of the scene
(e.g., velocity and flicker) are captured by orientations
extending into time. In particular, to remove the de-
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Figure 2. Outer scale and scene layout examples. The in-
put image sequence is spatially subdivided. Outer scale is
determined by the spatiotemporal support of the individual
subdivided regions. Relative position of subdivided regions
captures scene layout. The illustrated histograms corre-
spond to the energy distributions, (2), within each image
sequence subdivision.

pendence on the spatial orientation component, linear
combinations of the initial energy measures, (1), sup-
porting a single spacetime orientation are taken, given
by the unit normal n̂, corresponding to its frequency
domain plane. (Recall, a pattern exhibiting a sin-
gle spacetime orientation, e.g., velocity, manifests as a
plane through the origin in the frequency domain [1].)
The resulting energy measures are expressed as:

Ẽn̂,σ =
N
∑

i=0

E
θ̂i,σ

, (3)

where θ̂i represents one of N + 1 equal spaced orien-
tation tunings consistent with direction n̂ and N the
order of the Gaussian derivative filter; for details see
[8]. To complete this filtering process, the appearance
marginalized responses, (3), are normalized for con-
trast, (2).

In summary, (1)-(2) yield a distribution/histogram
indicating the relative presence of a particular set of
spacetime orientations in the input imagery and spa-
tial orientations when filtering is restricted to the spa-
tial domain. Significantly, the derived measurements
are invariant to additive and multiplicative bias in the
image signal, due to the bandpass nature of (1) and
the normalization, (2), resp. Invariance to such biases
provides a degree of robustness to various potentially
distracting photometric effects (e.g., overall scene il-
lumination, sensor sensitivity). Application of these
filters thereby provides an integrated approach to cap-
turing both the local spatial and temporal structure
of imagery. Further, to study the descriptive power of
dynamic information alone, the initial filter responses,
(1), can be marginalized for purely spatial appearance,
(3), prior to normalization, (2).

2.2. Spatiotemporal scale: Inner vs. Outer

Within the spatiotemporal oriented energy represen-
tation, (1)-(2), one can identify two types of scale pa-
rameters, namely, the inner and outer scale [17] that
serve distinct roles. Notably, these parameters were

both limited to a single scale in previous work [8].
The inner scale, corresponding to the Gaussian fil-

ter standard deviation, σ, in the energy computation,
(1), determines the range of spatiotemporal details cap-
tured by the representation. The outer scale, given
by Ω(x, y, t) in (1), specifies the spatiotemporal scale
of the support region for aggregating measurements.
Limiting the outer scale to the entire image sequence
itself (cf., [8]) disregards the spatiotemporal layout of
dynamic structure and thus ignores a potentially di-
agnostic cue for scene classification. Similar to previ-
ous work (e.g., [11, 20, 19]), coarse spatiotemporal lay-
out information is introduced by subdividing the spa-
tial dimensions of the image sequence at increasingly
finer outer scales; the oriented energy representation is
computed within each region separately and the grid
arrangement of the subdivisions captures scene layout
(see Fig. 2).

2.3. Classification

To emphasize the relative strengths of the orienta-
tion representations to tease out critical scene regular-
ities, while not confounding success with classifier so-
phistication, a Nearest Neighbour (NN) classifier was
used in all evaluations. The set of normalized oriented
energy measurements, (2), within each outer scale form
a histogram. Preliminary investigation considered a
variety of (dis)similarity measures, e.g., Bhattachayya,
L1, L2 and χ2, that yielded little difference in clas-
sification performance. The Bhattacharyya coefficient
provided slightly better overall performance, similar to
previous work [8]. Consequently, only results for this
measure are presented here. The final global similarity
between two scenes is realized as the sum across the
histogram similarities computed for each outer scale,

s(u,v) =
∑

i

∑

j

√
ui,jvi,j , (4)

where u and v denote the scene descriptors, (2), i and
j index over the outer scale partition of the scene and
the individual entries in the histograms, resp., and the
innermost summation is the Bhattacharyya coefficient.

2.4. Implementation details

In the presented experiments, 3D Gaussian third
derivative filters, G3, were used to realize the spa-
tiotemporal oriented energy representation; alternative
oriented filters are also applicable, e.g., Gabor [12].
Ten spacetime orientations were selected as they cor-
respond to the minimal spanning set for G3 [12]. To
uniformly sample 3D, the particular orientations were
taken as the corners of a dodecahedron with antipo-
dal directions identified. Each filter was computed
over three inner scales, σ. Outer scale was realized
by aggregation over regions, Ω, that resulted from di-



viding the image sequences into 4 × 4 × 1 grids for
capturing spatial layout, unless otherwise noted. The
grid choice was made to allow for direct comparison
to previously reported results [30]. For the appear-
ance marginalized energy measures, (3), 27 spacetime
orientations were used (realized through linear combi-
nations of the G3 basis set). The orientations selected
correspond to static (no motion/orientation orthogo-
nal to the image plane), slow (half pixel/frame move-
ment), medium (one pixel/frame movement) and fast
(two pixel/frame movement) motion in the directions
leftward, rightward, upward, downward and diagonal,
and flicker/infinite vertical and horizontal motion (ori-
entation orthogonal to the temporal axis), as they were
found useful for dynamic texture analysis [8].

3. Empirical evaluation

In addition to the purely spatial (i.e., GIST [26]) and
spatiotemporal orientation representations described in
Sec. 2.1, several alternative approaches are compared.
First, to capture spatial appearance, a simple three bin
color histogram model consisting of averaged RGB val-
ues [13] is compared; for an extensive evaluation of spa-
tial representations, see [38]. For the purpose of deter-
mining the relative merits of color as a cue, GIST was
computed on the intensity image alone. Second, given
the intense research activity in capturing temporal in-
formation via optical flow, comparison is made to the
histogram of optical flow (HOF) [25] recovered using
a recent global flow implementation [23]; here a nor-
malized 25 bin histogram consisting of eight quantized
flow directions vs. three magnitudes and an additional
bin capturing approximately zero velocity is computed
at three inner scale levels and fused together to yield
the final descriptor. Each of the representations de-
scribed so far are computed over a 4×4×1 outer scale
parceling of the video. Third, a feature representa-
tion adapted from the chaotic dynamic systems liter-
ature is compared [30]. This 9600-dimensional repre-
sentation was recently shown empirically to outperform
many existing substrates in the literature (e.g., LDS)
in application to dynamic scene recognition; results are
based on the same code and parameters as [30]. Com-
parative results for additional dynamic representations
(e.g., LDS) are available elsewhere [30]. All approaches
were evaluated on a recently introduced data set con-
taining “in-the-wild” type scene footage and the new
data set introduced in this paper containing scenes cap-
tured from stationary cameras.
Maryland “in-the-wild” scenes data set: This
data set contains thirteen dynamic scene classes with
ten color videos per class; see Fig. 3 for representa-
tive imagery. The average dimensions of the videos are
308 × 417 (pixels) × 617 (frames). The videos were

Figure 3. Maryland “in-the-wild” scenes data set [30]. (left-
to-right, top-to-bottom) avalanche, boiling water, chaotic
traffic, forest fire, fountain, iceberg collapse, landslide,
smooth traffic, tornado, volcanic eruption, waterfall, waves
and whirlpool.

collected from Internet-based video hosting sites, e.g.,
YouTube (www.youtube.com). The set captures large
variations in illumination, frame rate, viewpoint, im-
age scale and various degrees of camera-induced motion
(e.g., panning and jitter) and scene cuts.

“Stabilized” dynamic scenes data set: This new
data set is introduced to emphasize scene specific tem-
poral information over short time durations due to ob-
jects and surfaces rather than camera-induced ones, as
predominant in the Maryland data set. This improves
the understanding of the task of concern. The data set
is comprised of fourteen dynamic scene categories each
containing 30 color videos; see Fig. 1 for representa-
tive imagery. The average dimensions of the videos
are 250 × 370 (pixels) × 145 (frames). The videos
were obtained from various sources, including footage
captured by the authors using a Canon HFS20 cam-
corder and online video repositories, such as YouTube,
BBC Motion Gallery (www.bbcmotiongallery.com)
and Getty Images (www.gettyimages.com). Owing
to the diversity within and across the video sources,
the videos contain significant differences in image res-
olution, frame rate, scene appearance, scale, illumina-
tion conditions (e.g., diurnal) and camera viewpoint.
Importantly, video samples were restricted to those
from a stationary camera and without scene cuts. In
practice, small degrees of camera motion can be han-
dled via image stabilization prior to feature extrac-
tion. The “Stabilized” dynamic scenes data set is
available at: www.cse.yorku.ca/vision/research/

dynamic-scenes.shtml.

“In-the-wild” scene recognition: The first exper-
iment followed the same leave-one-video-out protocol
set forth with the original investigation of the “in-the-
wild” scenes data set [30]. Results are summarized in
Table 1 (a); those based on feature combinations (e.g.,
HOF+GIST, etc.) were realized as a weighted sum of
the similarities between the individual features listed
in the table. In all combination cases the weight given



(a) Spatial Temporal Spatiotemporal

Scene Color GIST HOF Chaos
MSOE

Chaos+
HOF+

SOE
classes [13] [26] [25] [30]

GIST+
GIST

Color
avalanche 50 10 (50) 0 30 10 40 30 (20) 10 (10)
b. water 30 60 (60) 40 30 50 40 50 (50) 60 (50)
c. traffic 20 70 (40) 20 50 90 70 40 (30) 80 (80)
f. fire 70 10 (60) 0 30 10 40 30 (50) 40 (40)

fountain 50 30 (20) 10 20 10 70 20 (20) 10 (10)
i. collapse 0 10 (20) 10 10 10 50 10 (20) 20 (10)
landslide 10 20 (30) 20 10 30 50 20 (20) 50 (50)
s. traffic 50 40 (30) 30 20 70 50 30 (30) 60 (70)
tornado 60 40 (60) 0 60 80 90 40 (40) 60 (60)

v. eruption 30 30 (40) 0 70 10 50 30 (20) 10 (30)
waterfall 20 50 (30) 20 30 30 10 20 (20) 10 (20)
waves 40 80 (80) 40 80 80 90 80 (80) 80 (80)

whirlpool 10 40 (30) 30 30 30 40 20 (30) 40 (40)

Avg. (%) 34 38 (43) 17 36 39 52 32 (33) 41 (42)

(b) Spatial Temporal Spatiotemporal
Scene Color GIST HOF Chaos

MSOE
Chaos+ HOF+

SOE
classes [13] [26] [25] [30] GIST GIST
beach 50 90 (90) 37 27 83 30 (30) 76 (87) 87 (90)

c. street 47 50 (63) 83 17 63 17 (17) 80 (77) 83 (87)
elevator 83 53 (80) 93 40 60 40 (47) 90 (87) 67 (90)
f. fire 47 50 (57) 67 50 60 17 (17) 63 (63) 83 (87)

fountain 13 40 (50) 30 7 40 3 (3) 37 (43) 47 (50)
highway 30 47 (53) 33 17 60 23 (23) 53 (47) 77 (73)
l. storm 83 57 (70) 47 37 87 40 (37) 70 (63) 90 (90)
ocean 73 93 (97) 60 43 97 43 (43) 93 (97) 100 (97)
railway 43 50 (53) 83 3 60 7 (7) 87 (83) 87 (90)
r. river 57 63 (80) 37 3 90 10 (10) 73 (77) 93 (90)
sky 30 90 (93) 83 33 80 43 (47) 87 (87) 90 (93)

snowing 53 20 (20) 57 10 17 10 (10) 40 (47) 33 (50)
waterfall 30 33 (40) 60 10 37 10 (10) 50 (47) 43 (47)
w. farm 57 47 (60) 53 17 47 17 (17) 60 (53) 57 (73)

Avg. (%) 50 56 (65) 59 20 63 22 (23) 69 (68) 74 (79)

Table 1. Comparison of classification rates among the vari-
ous spatial, temporal and spatiotemporal image representa-
tions on the Maryland “in-the-wild” and “stabilized” data
sets in (a) and (b), resp. The results for Chaos-related sub-
strates in (a) are reproduced from [30]. Parentheses denote
classification rates where Color is additionally considered.

to a feature was set to its average classification accu-
racy (cf., [38]) and the Bhattacharyya coefficient was
used as the similarity measure. The exception is Chaos,
where the result is reproduced from the original inves-
tigation, which did not publish the weighting factors
nor the distance measure used. (Table 1 (a) does not
show results for Chaos+GIST without Color, as the
original authors do not provide such.)

Best overall results for spatial only information were
achieved by GIST (38%), which was further improved
when combined with Color (43%). The highest recog-
nition rate among the approaches considering temporal
information alone was 39%, achieved by Marginalized
Spatiotemporal Oriented Energy (MSOE), (2) com-
bined with (3). Considering the closest three matches,
average classification across the entire data set im-
proved to 54% for MSOE.

Under the Spatiotemporal heading in Table 1 (a)
several cue combinations are considered. Notice that
the Spatiotemporal Oriented Energy (SOE), (2) with-
out (3), is the natural extension of MSOE to include
both temporal and spatial information; therefore, no
explicit combination of MSOE with a spatial only rep-
resentation (e.g., GIST) is considered. Here, the fused
Chaos feature with GIST and Color provided the best
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i. collapse 4 2 1 1 1 1
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Sky 27 1 1 1
Beach 26 3 1
Ocean 30

Street 25 3 1 1
Railway 1 26 2 1
R. River 1 28 1
Highway 1 1 3 23 2
Snowing 1 6 10 4 2 3 1 3
Waterfall 2 2 13 7 3 2 1
Fountain 3 9 14 4
L. Storm 27 3
F. Fire 2 1 2 25

W. Farm 3 3 1 1 5 17

Elevator 2 3 4 1 20

Table 2. Confusion matrix for SOE (4× 4× 1) on the “in-
the-wild” and “stabilized” data sets in (a) and (b), resp.
Bold shows top classification for each actual set.

result. The recognition rate of SOE was 41% and 42%,
considered alone and when fused with Color, resp., with
classification rising to 57% when considering the three
closest matches. Interestingly, SOE improves on purely
spatial or temporal information taken alone, but not to
the same degree as Chaos+GIST. It also is of interest
to note that Histogram of Flow (HOF) performs rela-
tively poorly as both purely temporal and spatiotem-
poral features. Finally, various alternative samplings
of both SOE (e.g., oversampling the space of orienta-
tions beyond the reported basis set) and HOF (finer
and coarser binning of initial flow estimates) did not
yield appreciably different results.

Since the “in-the-wild” data set contains large cam-
era motions and scene cuts, it is difficult to understand
whether the performance of approaches depends on
their success in capturing underlying scene structure
vs. characteristics induced by the camera. This situa-
tion is shown in the confusion matrix in Table 2 (a) for
SOE, where there is no apparent trend in the failures.
To shed light on this question, the next set of exper-
iments tests the same set of approaches on dynamic
scenes captured from stationary cameras.

“Stabilized” dynamic scene recognition: The sec-
ond experiment follows the same procedure as the first.
Results are summarized in Table 1 (b). Similar to
the first experiment, the best overall results for spatial
only information were achieved by GIST (56%). Fur-



Inner scale
0 1 2 all

O
u
te
r
sc
a
le

1 × 1 × 1
MSOE [8] 52 53 51 55

SOE 56 54 56 63

2 × 2 × 1
MSOE 55 58 58 61
SOE 66 67 66 69

4 × 4 × 1
MSOE 52 57 60 63
SOE 64 69 69 74

all
MSOE 53 60 62 63
SOE 65 70 70 75

Table 3. Impact of inner and outer scales on overall classi-
fication on the “stabilized” scenes data set. The “all” row
for outer scale is constructed from a weighted sum of the
similarities of the individual outer scale levels with the in-
dividual weights proportional to the corresponding level’s
average accuracy. The “all” column for inner scale is con-
structed as a natural consequence of combining the individ-
ual inner scales via the normalization process, (2).

thermore, among the approaches that consider tempo-
ral only information, MSOE again attains the highest
recognition rate (63%) with classification improving to
81% when considering the closest three matches. In-
terestingly, HOF performs relatively well in this evalu-
ation, while Chaos is comparatively poor. The highest
recognition rate among the approaches considering spa-
tiotemporal information were achieved by SOE (74%
and 79% with Color), with classification rising to 90%
when considering the three closest matches.

As shown in the confusion matrix for SOE in Table 2
(b), many of the confusions in SOE now have intuitive
appeal. For instance, scenes that predominately con-
tain flowing patterns (e.g., “street” vs. “railway” vs.
“rushing river”) are confused. Furthermore, a cluster
of confusions arise among dynamic patterns that con-
tain a significant flicker component (e.g., “snowing” vs.
“waterfall” vs. “forest fire” vs. “lighting storm”). This
is reasonable because the SOE representation explic-
itly captures flicker as one of its components. Finally,
Table 3 shows the utility of considering multiple inner
and outer scales for MSOE and SOE.

Discussion: Overall, different results are observed for
the various dynamic scene representations when evalu-
ated on the two data sets. Of the purely dynamic repre-
sentations, MSOE performs best across both data sets;
however, the relative performance of Chaos and HOF
switch. The poor performance of HOF on the “in-the-
wild” data can be explained by the erratic camera mo-
tions and scene cuts that are difficult to capture, even
with a state-of-the-art flow estimator. The results for
Chaos are more difficult to explain; however, it is inter-
esting that it seems relatively insensitive to the more
purely scene dynamics that are present in the stabilized
experiment, as it fails to make the necessary inter-class
distinctions. MSOE is able to perform well on both
data sets, as the structure of the imagery projects in a
discriminatory fashion onto its energy sampling.

For the spatiotemporal approaches, it is found that

SOE is the best performer on the stabilized data and
the second best on in-the-wild data. Also notable is
that while SOE has average classification 10% below
Chaos+GIST for the in-the-wild case, Chaos+GIST
is more than 50% below SOE for the stabilized case.
While Chaos is best on in-the-wild data it is worst
on the stabilized data; indeed, it is a factor of three
below the second best HOF+GIST in terms of aver-
age percent correct. This pattern of results suggest
that SOE is consistently able to characterize dynamic
scenes whether operating in the presence of strictly
scene dynamics (stabilized case) or when confronted
with overlaid, non-trivial camera motions (in-the-wild
case). The alternative approaches considered are less
capable of such wide ranging performance.

The results also indicate the inadequacy of concep-
tualizing dynamic scene recognition simply as dynamic
texture recognition, even when common oriented en-
ergy features underlie the approaches, e.g., [8]: Table
3 shows that combined spatial and dynamic informa-
tion (SOE) bests dynamic information alone (MSOE)
at all scales. Moreover, maintenance of spatial layout
of image subregions (finer outer scale subdivisions) also
improves results over texture analysis-based aggrega-
tion across the entire image (i.e., 1×1×1 outer scale).
Note, in particular, that application of the most closely
related approach from the dynamic texture recogni-
tion literature corresponds to the upper-left most cell
in Table 3, i.e., with 52% accuracy, compared to the
best scale parameters for the proposed approach, which
achieve 75%.

Finally, a more general observation is that for both
data sets and all approaches, notable performance in-
crease is had by spatiotemporal approaches in compar-
ison to purely spatial or purely temporal methods.

4. Conclusions and summary

The main contribution of the presented paper is a
systematic investigation of the impact of early mul-
tiscale orientation measurements on scene classifica-
tion, as related to: (i) spatial appearance, (ii) tem-
poral/dynamics and (iii) joint spatial appearance and
dynamics. Even given the relative simplicity of the
spatiotemporal oriented feature set, it is able to achieve
consistent, relatively high performance, as compared to
other representations considered in this paper. Points
of distinction with previous work include: (i) joint con-
sideration of a wider range of patterns, typical of dy-
namic scenes (e.g., motion, flicker and dynamic tex-
ture) and (ii) two multiscale extensions of the basic
orientation energy filtering architecture. In addition,
a new data set was introduced that highlights various
important non-motion-related structures that are com-
monly encountered in the world. Interesting future ex-



tensions include the investigation of intermediate rep-
resentations for scene classification, akin to those pro-
posed in the spatial domain literature; for instance,
semantic classes or attributes (e.g., [18]) that capture
both appearance and dynamics, e.g., describing a re-
gion as “fluid-like”. It also is of interest to perform
a comparative evaluation of dynamic scene recognition
algorithms on a data set that captures the same set of
scenes with and without camera motion to tease apart
further the relative performance of various approaches.

In summary, this paper has presented a systematic
analysis of the impact of low-level representations to
dynamic scene classification. Key to the investiga-
tion are multiscale oriented energy measurements that
capture the underlying pattern’s spatial appearance,
temporal/dynamics and joint spatial appearance and
dynamics, and their coarse layout across spacetime.
Empirical evaluation on a challenging public dataset
and an additional evaluation with control to remove
effects of camera motion shows the usefulness of cap-
turing joint spatial appearance and dynamics through
oriented energy filtering in comparison to alternative
state-of-the-art techniques, especially when scene dy-
namics are emphasized relative to camera motions.
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