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Abstract—Time-triggered periodic control imple-
mentations are over provisioned for many execution
scenarios in which the states of the controlled plants
are close to equilibrium. To address this inefficient use
of computation resources, researchers have proposed
self-triggered control approaches in which the con-
trol task computes its execution deadline at runtime
based on the state and dynamical properties of the
controlled plant. The potential advantages of this con-
trol approach cannot, however, be achieved without
adequate online resource-management policies. This
paper addresses scheduling of multiple self-triggered
control tasks that execute on a uniprocessor platform,
where the optimization objective is to find trade-
offs between the control performance and CPU usage
of all control tasks. Our experimental results show
that efficiency in terms of control performance and
reduced CPU usage can be achieved with the heuristic
proposed in this paper.

I. Introduction and Related Work

Control systems have traditionally been designed and
implemented as tasks that periodically sample and read
sensors, compute control signals, and write the computed
control signals to actuators [1]. Many systems comprise
several such control loops (several physical plants are
controlled concurrently) that share execution platforms
with limited computation bandwidth [2]. Moreover, re-
source sharing is not only due to multiple control loops
but can also be due to other (noncontrol) application
tasks that execute on the same platform. In addition
to optimizing control performance, it is important to
minimize the CPU usage of the control tasks, in order to
accommodate several control applications on a limited
amount of resources and, if needed, provide a certain
amount of bandwidth to other noncontrol applications.
For the case of periodic control systems, research efforts
have been made recently towards efficient resource man-
agement with additional hard real-time tasks [3], mode
changes [4], [5], and overload scenarios [6], [7].

Control design and scheduling of periodic real-time
control systems have well-established theory that sup-
ports their practical implementation and deployment. In
addition, the interaction between control and scheduling
for periodic systems has been elaborated in literature [2].
Nevertheless, periodic implementations can result in

inefficient resource usage in many execution scenarios.
The control tasks are triggered and executed periodically
merely based on the elapsed time and not based on the
states of the controlled plants, leading to inefficiencies
in two cases: (1) the resources are used unnecessarily
much when a plant is in or close to equilibrium, and (2)
depending on the period, the resources might be used too
little to provide good control when a plant is far from
the desired state in equilibrium (the two inefficiencies
also arise in situations with small and large disturbances,
respectively). Event-based and self-triggered control are
the two main approaches that have been proposed re-
cently to address inefficient resource usage in control
systems.

Event-based control [8] is an approach that can result
in similar control performance as periodic control but
with more relaxed requirements on CPU bandwidth [9],
[10], [11], [12], [13]. In such approaches, plant states
are measured continuously to generate control events
when needed, which then activate the control tasks that
perform sampling, computation, and actuation (periodic
control systems can be considered to constitute a class
of event-based systems that generate control events with
a constant time-period independent of the states of
the controlled plant). While reducing resource usage,
event-based control loops typically include specialized
hardware (e.g., ASIC or FPGA implementations) for
continuous measurement or very high-rate sampling of
plant states to generate control events.

Self-triggered control [14], [15], [16], [17] is an alter-
native that achieves similar reduced levels of resource
usage as event-based control. A self-triggered control
task computes deadlines on its future executions, by
using the sampled states and the dynamical properties
of the controlled system, thus canceling the need of spe-
cialized hardware components for event generation. The
deadlines are computed based on stability requirements
or other specifications of minimum control performance.
Since the deadline of the next execution of a task is
computed already at the end of the latest completed
execution, a resource manager has, compared to event-
based control systems, a larger time window and more
options for task scheduling and optimization of control
performance and resource usage. In event-based control
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Figure 1. Control-system architecture. The three feedback-control
loops include three control tasks on a uniprocessor computation
platform. Deadlines are computed at runtime and given to the
scheduler.

systems, a control event usually implies that the control
task has immediate or very urgent need to execute, thus
imposing very tight constraints on the resource manager
and scheduler.

The contribution of this paper is a software-based
middleware component for scheduling and optimization
of control performance and CPU usage of multiple self-
triggered control loops on a uniprocessor platform. To
our knowledge, the resource management problem at
hand has not been treated before in literature. Our
heuristic is based on cost-function approximations and
search strategies. Stability of the control system is
guaranteed through a design-time verification and by
construction of the scheduling heuristic.

The remainder of this paper is organized as follows.
We present the system and plant model in Section II. In
Section III, we discuss the temporal properties of self-
triggered control. Section IV shows an example of the ex-
ecution of multiple self-triggered tasks on a uniprocessor
platform. The example further highlights the scheduling
and optimization objectives of this paper. The schedul-
ing problem is defined in Section V and is followed by our
scheduling heuristic in Section VI. Experimental results
with comparisons to periodic control are presented in
Section VII. The paper is concluded in Section VIII.

II. System Model

Let us in this section introduce the system model and
components that we consider in this paper. Figure 1
shows an example of a control system with a CPU
hosting three control tasks (depicted with white circles)
τ1, τ2, and τ3 that implement feedback-control loops
for the three plants P1, P2, and P3, respectively. The
outputs of a plant are connected to A/D converters
and sampled by the corresponding control task. The
produced control signals are written to the actuators
through D/A converters and are held constant until the
next execution of the task. The tasks are scheduled on
the CPU according to some scheduling policy, priori-
ties, and deadlines. The contribution of this paper is a
scheduler component for efficient CPU usage and control
performance.

The set of self-triggered control tasks and its index
set are denoted with T and IT, respectively. Each task

τi ∈ T (i ∈ IT) implements a given feedback controller
of a plant. The dynamical properties of this plant are
given by a linear, continuous-time state-space model

ẋi(t) = Aixi(t) + Biui(t) (1)

in which the vectors xi and ui are the plant state and
controlled input, respectively. The plant state is mea-
sured and sampled by the control task τi. The controlled
input ui is updated at time-varying sampling intervals
according to the control law

ui = Kixi (2)

and is held constant between executions of the control
task. The control gain Ki is given and is computed
by control design for continuous-time controllers. The
design of Ki typically addresses some costs related to
the plant state xi and controlled input ui. The plant
model in Equation 1 can include additive and bounded
state disturbances, which can be taken into account by a
self-triggered control task when computing deadlines for
its future execution [18]. The worst-case execution time
of task τi is denoted ci and is computed at design time
with tools for worst-case execution time analysis.

III. Self-Triggered Control

A self-triggered control task [14], [15], [16], [19], [17] uses
the sampled plant states not only to compute control
signals, but also to compute a temporal bound for the
next task execution, which, if met, guarantees stability
of the control system. The self-triggered control task
comprises two sequential execution segments. The first
execution segment consists of three sequential parts:
(1) sampling the plant state x (possibly followed by
some data processing), (2) computation of the control
signal u, and (3) writing it to actuators. This first
execution segment is similar to what is performed by
the traditional periodic control task.

The second execution segment is characteristic to self-
triggered control tasks in which temporal deadlines on
task executions are computed dynamically. As shown by
Anta and Tabuada [16], [19], the computation of the
deadlines are based on the sampled state, the control
law, and the plant dynamics in Equation 1. The com-
puted deadlines are valid if there is no preemption be-
tween sampling and actuation (a constant delay between
sampling and actuation can be taken into consideration).
The deadline of a task execution is taken into account
by the scheduler and must be met to guarantee stability
of the control system. Thus, in addition to the first
execution segment, which comprises sampling and actua-
tion, a self-triggered control task computes in the second
execution segment a completion deadline D on the next
task execution, relative to the completion time of the
task execution. The exact time instant of the next task
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Figure 2. Execution of a self-triggered control task. Each job of
the task computes a completion deadline for the next job. The
deadline is time-varying and state-dependent.
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Figure 3. Scheduling example. Tasks τ1 and τ3 have completed
their execution before φ2 and their next execution instants are t1
and t3, respectively. Task τ2 completes execution at time φ2 and
its next execution instant t2 has to be decided by the scheduler.
The imposed deadlines must be met to guarantee stability.

execution, however, is decided by the scheduler based on
optimizations of control performance and CPU usage.

Figure 2 shows the execution of several jobs τ(q) of
a control task τ . After the first execution of τ (i.e.,
after the completion of job τ(0)), we have a relative
deadline D1 for the completion of the second execution of
τ (D1 is the deadline for τ(1), relative to the completion
time of job τ(0)). Observe that the deadline between
two consecutive job executions is varying, thus reflect-
ing that the control-task execution is regulated by the
dynamically changing plant state, rather than by a fixed
period. Note that the fourth execution of τ (job τ(3))
starts and completes before the imposed deadline D3.
The reason why this execution is placed earlier than its
deadline can be due to control-quality optimizations or
conflicts with other control tasks. The deadline D4 of the
successive execution is relative to the completion time
and not relative to the previous deadline.

For a control task τi ∈ T, it is possible to compute a
lower and upper bound Dmin

i and Dmax
i , respectively,

for the deadline of a task execution relative to the
completion of its previous execution. The minimum rel-
ative deadline Dmin

i bounds the CPU requirement of the
control task and is computed at design time based on the
plant dynamics and control law [16], [10]. The maximum
relative deadline is decided by the designer to ensure that
the control task executes with a minimum rate (e.g., to
achieve some level of robustness or a minimum amount
of control quality).

IV. Motivational Example

Figure 3 shows the execution of three self-triggered
control tasks τ1, τ2, and τ3. The time axes show the
scheduled executions of the three tasks, respectively. A
dashed rectangle indicate a completed task execution
of execution time given by the length of the rectangle.
The white rectangles show executions that are scheduled
after time moment φ2. The scenario is that task τ2
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Figure 4. Control and CPU
costs. The two costs depend on
the next execution instant of
the control task and are in gen-
eral conflicting objectives.
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Figure 5. Combined control
and CPU costs. Two different
combinations are shown with
different weights between con-
trol and CPU costs.

has finished its execution at time φ2 and computed its
next deadline d2. The scheduler is activated at time φ2

to schedule the next execution of τ2, considering the
existing scheduled executions of τ1 and τ3 (the white
rectangles) and the deadlines d1, d2, and d3. Prior to
time φ2, task τ3 finished its execution at φ3 and its next
execution was placed at time t3 by the scheduler. In a
similar way, the start time t1 of τ1 was decided at its
most recent completion time φ1. Other application tasks
may execute in the time intervals in which no control
task is scheduled for execution.

The objective of the scheduler at time φ2 in Figure 3
is to schedule the next execution of τ2 (i.e., to decide the
start time t2) before the deadline d2. Figure 4 shows an
example of the control and CPU costs (as functions of
t2) of task τ2 with solid and dashed lines, respectively.
Note that a small control cost in the figure indicates
high control quality, and vice versa. For this example, we
have φ2 = 10 and d2 − c2 = 13, which bound the start
time t2 of the next execution of τ2. By only considering
the control cost, we observe that the optimal start time
is 11.4. The intuition is that it is not good to schedule a
task immediately after its previous execution (early start
times), since the plant state has not changed much by
that time. It is also not good to execute the task very
late, because this leads to a longer time in which the
plant is in open loop between actuations.

By only considering the CPU cost, the optimal start
time is 13, which means that the execution will complete
exactly at the imposed deadline, if the task experiences
its worst-case execution time. As we have discussed,
the objective is to consider both the control cost and
CPU cost during scheduling. The two costs can be
combined together with weights that are based on the
required level of trade-off between control performance
and resource usage, as well as the characteristics and
temporal requirements of other noncontrol applications
that execute on the uniprocessor platform. The solid line
in Figure 5 shows the sum of the control and CPU cost,
indicating equal importance of achieving high control
quality and low CPU usage. The dashed line indicates
the sum of the two costs in which the CPU cost is



included twice in the summation. By considering the cost
shown by the dashed line during scheduling, the start
time is chosen more in favor of low CPU usage than high
control performance. For the solid line, we can see that
the optimal start time is 11.8, whereas it is 12.1 for the
dashed line. The best start time in each case might be in
conflict with an already scheduled execution (e.g., with
task τ3 in Figure 3). In such cases, the scheduler can
decide to move an already scheduled execution, if this
degradation of control performance and resource usage
for that execution is affordable.

V. Problem Formulation

We shall in this section present the specification and
objective of the runtime-scheduler component in Fig-
ure 1. The two following subsections shall discuss the
scheduling constraints that are present at runtime, as
well as the optimization objectives of the scheduler.

A. Scheduling constraints
Let us first define nonpreemptive scheduling of a task
set T with index set IT. We shall consider that each
task τi ∈ T (i ∈ IT) has a worst-case execution time
ci and an absolute deadline di = φi + Di, where Di is
computed by the second execution segment of the control
task and is the deadline relative to the completion time
of the task (Section III). A schedule of the task set
under consideration is an assignment of the start time
ti of the execution of each task τi ∈ T such that there
exists a bijection (also called one-to-one correspondence)
σ : {1, . . . , |T|} −→ IT that satisfies the following
properties:

tσ(k) + cσ(k) � dσ(k) for k ∈ {1, . . . , |T|} (3)
tσ(k) + cσ(k) � tσ(k+1) for k ∈ {1, . . . , |T| − 1} (4)

The bijection σ gives the order of execution of the
task set T (i.e., the tasks are executed in the order
τσ(1), . . . , τσ(|T|)). Thus, task τi starts its execution at
time ti and is preceded by executions of σ−1(i)−1 tasks
(σ−1 is the inverse of σ). Equation 3 models that the
start times are chosen such that each task execution
meets its imposed deadline, whereas Equation 4 models
that the scheduled task executions do not overlap in time
(i.e., the CPU can execute at most one task at any time
instant).

Having introduced the scheduling constraints, let us
proceed with the problem definition. The initial schedule
(the schedule at time zero) of the set of control tasks
T is given and determined offline. At runtime, when a
task completes its execution, the scheduler is activated to
schedule the next execution of that task by considering
its deadline and the trade-off between control quality and
resource usage. Thus, when a task τi ∈ T completes at
time φi, we have at that time a schedule for the task set

T′ = T \ {τi} with index set IT′ = IT \ {i}. This means
that we have a bijection σ′ : {1, . . . , |T′|} −→ IT′ and an
assignment of the start times {tj}j∈IT′ such that φi �
tσ′(1) and that Equations 3 and 4 hold, with T replaced
by T′. At time φi, task τi has a new deadline di and the
runtime scheduler must decide the start time ti of the
next execution of τi to obtain a schedule for the entire set
of control tasks T. The scheduler is allowed to change the
current order and start times of the already scheduled
tasks T′. Thus, after scheduling, each task τj ∈ T has
a start time tj � φi such that all start times constitute
a schedule for T according to Equations 3 and 4. The
next subsection presents the optimization objectives that
are taken into consideration when determining the start
time of a task.

B. Optimization objectives

Our optimization objective at runtime is twofold: to
minimize the control cost (a small cost indicates high
control quality) and to minimize the CPU cost (the
CPU cost indicates the CPU usage of the control tasks).
We remind that φi is the completion time of task τi

and di is the deadline of its next execution. Since the
task must complete before its deadline and we consider
nonpreemptive scheduling, the start time ti is allowed
to be at most di − ci. Let us therefore define the control
and CPU cost for task τi in the time interval [φi, di−ci],
which is the scheduling time window of τi. The overall
cost to be minimized follows thereafter.

1) Control cost: The (quadratic) state cost in the
considered time interval [φi, di − ci] is defined as

Jx
i (ti) =

∫ di

φi

xT
i (t)Qixi(t)dt, (5)

where ti ∈ [φi, di − ci] is the start time of the next
execution of τi. The weight matrix Qi (usually a diagonal
or sparse matrix) is used by the designer to assign
weights to the individual state components in xi. It can
also be used to transform the cost to a common baseline
or to specify importance relative to other control loops.
Quadratic state costs are common in the literature of
control systems [1] as a metric for control performance.
Note that a small cost indicates high control perfor-
mance, and vice versa. The dependence of the state
cost on the start time ti is implicit in Equation 5. The
start time decides the time when the control signal is
updated and thus affects the dynamics of the plant state
xi according to Equation 1. In some control problems
(e.g., when computing the actual state-feedback law in
Equation 2), the cost in Equation 5 also includes a term
penalizing the controlled input ui. We do not include
this term since the input is determined uniquely by
the state through the given control law ui = Kixi.



The design of the actual control law, however, typically
addresses both the state and the control-input costs.

Let us denote the minimum and maximum value of
the state cost Jx

i in the time interval [φi, di − ci] with
Jx,min

i and Jx,max
i , respectively. We define the control

cost Jc
i : [φi, di − ci] −→ [0, 1] as

Jc
i (ti) =

Jx
i (ti) − Jx,min

i

Jx,max
i − Jx,min

i

. (6)

Note that this is a function from [φi, di − ci] to [0, 1],
where 0 and 1, respectively, indicate the best and worst
possible control performance.

2) CPU cost: The CPU cost J r
i : [φi, di−ci] −→ [0, 1]

for task τi is defined in the same time interval as the
linear cost

J r
i (ti) =

di − ci − ti
di − ci − φi

, (7)

which models a linear decrease between a CPU cost of 1
at ti = φi and a cost of 0 at the latest possible start time
ti = di − ci (postponing the next execution gives a small
CPU cost since it leads to lower CPU load). An example
of the control and CPU costs, is shown in Figure 4, which
we discussed in the example in Section IV.

3) Overall trade-off: There are many different possi-
bilities for the trade-off between control performance and
CPU usage of the control tasks. The approach taken
in this paper is that the specification of the trade-
off is made offline in a static manner by the designer.
Specifically, we define the cost Ji(ti) of the task τi under
scheduling as a linear combination of the control and
CPU costs according to

Ji(t) = Jc
i (ti) + ρJ r

i (ti), (8)

where ρ � 0 is a design constant that is chosen offline
to specify the required trade-off between achieving a
low control cost versus reducing the CPU usage.1 For
example, by studying Figure 5 again, we note that the
solid line shows the sum of the control and CPU costs
in Figure 4 with ρ = 1. The dashed line shows the case
for ρ = 2.

At each scheduling point, the optimization goal is to
minimize the overall cost of all control tasks. The cost
to be minimized is defined as

J =
∑

j∈IT

Jj(tj), (9)

which models the cumulative control and CPU cost of
the task set T at a given scheduling point.

1The problem statement and our heuristic are also relevant for
systems in which the background computations have time-varying
CPU requirements. In such systems, the parameter ρ is changed
dynamically to reflect the current workload of other noncontrol
tasks and is read by the scheduler at each scheduling instant.

VI. Scheduling Heuristic

Our approach is divided into both offline and online
activities. The offline activity, which is described in
Section VI-A, comprises two parts: (1) to approximate
the control cost Jc

i (ti) for each task τi ∈ T, and (2)
to verify that the platform has sufficient computation
capacity to achieve stability in all possible execution
scenarios. The online activity, which is implemented in
the scheduler component in Figure 1, comprises a search
that finds several scheduling alternatives and chooses
one of them according to the desired trade-off between
control performance and CPU usage. We shall discuss
this online heuristic in Section VI-B in which we also
elaborate on how the scheduling is made to guarantee
stability.

A. Design-time activities

To support the runtime scheduling, two main activities
are to be performed at design time. The first aims to
reduce the complexity of computing the state cost in
Equation 5 at runtime. This is addressed by constructing
approximate cost functions, which are affordable to eval-
uate at runtime optimization. The second activity aims
to provide stability guarantees in all possible execution
scenarios. This is achieved by a verification at design
time and by construction of the runtime scheduling
heuristic.

1) Cost-function approximation: We consider that a
task τi has completed its execution at time φi at which
its next execution is to be scheduled and completed
before its imposed deadline di. Thus, the start time ti
must be chosen in the time interval [φi, di − ci]. The
most recent known state is xi,0 = xi(t′i), where t′i
is the start time of the just completed execution of
τi. The control signal has been updated by the task
according to the control law ui = Kixi (Section II).
By solving the differential equation in Equation 1 with
the theory presented by Åström and Wittenmark [1], we
can describe the cost in Equation 5 as

Jx
i (φi, ti) = xT

i,0Mi(φi, ti)xi,0.

The matrix Mi includes matrix exponentials and inte-
grals and is decided by the plant, controller, and cost
parameters. It further depends on the difference di −φi,
which is bounded by Dmin

i and Dmax
i (Section III).

Each element in the matrix Mi(φi, ti) is a function
of the completion time φi of task τi and the start
time ti ∈ [φi, di − ci] of the next execution of τi. An
important characteristic of Mi is that it depends only
on the difference ti − φi. Due to time complexity, the
computation of the matrix Mi(φi, ti) is not practical
to perform at runtime. To cope with this complexity,
our approach is to use an approximation M̂i(φi, ti) of



Mi(φi, ti). The scheduler presented in Section VI-B shall
thus consider the approximate state cost

Ĵx
i (ti) = xT

i,0M̂i(φi, ti)xi,0 (10)

in the optimization process. The approximation of
Mi(φi, ti) is done at design time by computing Mi for a
number of values of the difference di − φi. The matrix
Mi(φi, ti), which depends only on the difference ti − φi,
is computed for equidistant values of ti − φi between 0
and di − ci (the granularity is a design parameter). The
precalculated points are all stored in memory and are
used at runtime to compute M̂i(φi, ti).

2) Offline stability guarantee: Before the control sys-
tem is deployed, it must be made certain that stability
of all control loops is guaranteed. This certification
is twofold: (1) to make sure that there is sufficient
computation capacity to achieve stability, and (2) to
make sure that the scheduler, in any execution scenario,
finds a schedule that guarantees stability by meeting the
imposed deadlines. The first step is to verify at design
time that the condition∑

j∈IT

cj � min{Dmin
j }j∈IT

(11)

holds. The second step, which is guaranteed by con-
struction of the scheduler, is described in Section VI-B3.
To understand Equation 11, let us consider that a task
τi ∈ T has finished its execution at time φi and its next
execution is to be scheduled. The other tasks T\{τi} are
already scheduled before their respective deadlines. The
worst-case execution scenario from the point of view of
scheduling is that the next execution of τi is due within
its minimum deadline Dmin

i , relative to time φi (i.e., its
deadline is di = φi + Dmin

i ) and that each scheduled
task τj ∈ T \ {τi} has its deadline within the minimum
deadline Dmin

i of τi (i.e., dj � di = φi + Dmin
i ). In this

execution scenario, every task must execute exactly once
within a time period of Dmin

i (i.e., in the time interval
[φi, φi +Dmin

i ]). Equation 11 follows by considering that
τi is the control task with the smallest possible relative
deadline. In Section VI-B3, we describe how the schedule
is constructed, provided that Equation 11 holds.

The time overhead of the runtime scheduler described
in the next section can be bounded by computing its
worst-case execution overhead at design time (this is
performed with tools for worst-case execution time anal-
ysis). For simplicity of presentation in Equation 11, we
consider this overhead to be included in the worst-case
execution time cj of task τj . Independently of the run-
time scheduling heuristic, the test guarantees not only
that all stability-related deadlines can be met at runtime
but also that a minimum level of control performance
is achieved. The runtime scheduling heuristic presented
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Figure 6. Flowchart of the scheduling heuristic. The first step
finds candidate start times that, in the second step, are evaluated
with regard to scheduling. If needed, the third step is executed to
guarantee stability.

in the following subsection improves on these minimum
control-performance guarantees.

B. Runtime heuristic

We shall in this section consider that task τi ∈ T
has completed its execution at time φi and that its
next execution is to be scheduled before the computed
deadline di. The other tasks T \ {τi} have already been
scheduled and each task τj ∈ T \ {τi} has a start time
tj � φi. These start times constitute a schedule for the
task set T\{τi}, according to the definition of a schedule
in Section V-A and Equations 3 and 4. The scheduler
must decide the start time ti of the next execution of τi

such that φi � ti � di − ci, possibly changing the start
times of the other task T \ {τi}. The condition is that
the resulting start times {tj}j∈IT

constitute a schedule
for the task set T.

Figure 6 shows a flowchart of our proposed scheduler.
The first step is to optimize the start time ti of the
next execution of τi. In this step, we do not consider the
existing start times of the other tasks T\{τi} but merely
focus on the cost Ji in Equation 8. The optimization
is based on a search heuristic that results in a set of
candidate start times Ξi = {t(1)i , . . . , t

(n)
i } ⊂ [φi, di − ci].

After this step, the cost Ji(ti) has been computed for
each ti ∈ Ξi. In the second step, we check for each
ti ∈ Ξi, whether it is possible to schedule the execution
of task τi at time ti, considering the existing start times
tj for each task τj ∈ T \ {τi}. This check involves, if
necessary, a modification of the starting times of the
already scheduled tasks to accommodate the execution
of τi at the candidate start time ti. If the start times
cannot be modified such that all imposed deadlines are
met, then the candidate start time ti is not feasible.
The result of the second step (schedule realization) is
thus a subset Ξ′

i ⊆ Ξi of the candidate start times.
This means that, for each ti ∈ Ξ′

i, the execution of
τi can be accommodated at that time, possibly with a
modification of the start times {tj}j∈IT\{i} such that the
scheduling constraints in Equations 3 and 4 are satisfied
for the whole task set T. For each ti ∈ Ξ′

i, the scheduler
computes the total control and CPU cost, considering
all control tasks (Equation 9). The scheduler chooses
the start time ti ∈ Ξ′

i that leads to the best overall
cost. If Ξ′

i = ∅, meaning that none of the candidate



start times in Ξi can be scheduled, the scheduler resorts
to the third step (stable scheduling), which guarantees
to find a solution that meets all imposed stability-
related completion deadlines. Let us in the following
three subsections discuss the three steps in Figure 6 in
more detail.

1) Optimization of start time: As we have mentioned,
in this step, we consider the minimization of the cost
Ji(ti) in Equation 8, which is the combined control and
CPU cost of task τi. Let us first, however, consider the
approximation Ĵx

i (ti) (Equation 10) of the state cost
Jx

i (ti) in Equation 5. We shall perform a minimization
of this cost by a golden-section search [20]. The search is
iterative and maintains, in each iteration, three points
ω1, ω2, ω3 ∈ [φi, di − ci] for which the cost Ĵx

i has
been evaluated. The initial values of the end points
are ω1 = φi and ω3 = di − ci. The middle point
ω2 is initially chosen according to the golden ratio as
(ω3 − ω2)/(ω2 − ω1) = (1 +

√
5)/2. The next step is to

evaluate the function value for a point ω4 in the largest
of the two intervals [ω1, ω2] and [ω2, ω3]. This point ω4 is
chosen such that ω4 −ω1 = ω3 −ω2. If Ĵx

i (ω4) < Ĵx
i (ω2),

we update the three points ω1, ω2, and ω3 according to

(ω1, ω2, ω3) ←− (ω2, ω4, ω3)

and then repeat the golden-section search. If Ĵx
i (ω4) >

Ĵx
i (ω2), we perform the update

(ω1, ω2, ω3) ←− (ω1, ω2, ω4)

and proceed with the next iteration. The cost Ĵx
i is

computed efficiently for each point based on the latest
sampled state and the precalculated values of Mi, which
are stored in memory before system deployment and
runtime (Section VI-A1). The search ends after a number
of iterations given by the designer. We shall consider this
number in the experimental evaluation.

The result of the search is a set of visited points
Ωi = {t(1)i , . . . , t

(n)
i } (n − 3 is the number of iterations)

for which we have {φi, di − ci} ⊂ Ωi ⊂ [φi, di − ci].
The search has evaluated Ĵx

i (ti) for each ti ∈ Ωi. Let
us introduce the minimum and maximum approximate
state costs Ĵx,min

i and Ĵx,max
i , respectively, as

Ĵx,min
i = min

ti∈Ωi

Ĵx
i (ti) and Ĵx,max

i = max
ti∈Ωi

Ĵx
i (ti).

We define the approximate control cost Ĵc
i (ti) (compare

to Equation 6) for each ti ∈ Ωi as

Ĵc
i (ti) =

Ĵx
i (ti) − Ĵx,min

i

Ĵx,max
i − Ĵx,min

i

. (12)

Let us now extend {Ĵc
i (t(1)i ), . . . , Ĵc

i (t(n)
i )} to define

Ĵc
i (ti) for an arbitrary ti ∈ [φi, di − ci]. Without loss

of generality, we assume that φi = t
(1)
i < t

(2)
i < · · · <

t
(n)
i = di − ci. For any q ∈ {1, . . . , n − 1}, we use linear

interpolation in the time interval (t(q)i , t
(q+1)
i ), resulting

in Ĵc
i (ti) =(
1 − ti − t

(q)
i

t
(q+1)
i − t

(q)
i

)
Ĵc

i (t(q)i ) +
ti − t

(q)
i

t
(q+1)
i − t

(q)
i

Ĵc
i (t(q+1)

i )

(13)
for t

(q)
i < ti < t

(q+1)
i . Equations 12 and 13 define, for the

complete time interval [φi, di − ci], the approximation
Ĵc

i of the control cost in Equation 6. As opposed to an
equidistant sampling of the time interval [φi, di − ci],
the golden-section search gives a better approximation
of Jx

i (ti) close to the minimum start time, as well as
better estimates Ĵx,min

i and Ĵx,max
i in Equation 12.

We can now define the approximation Ĵi of the overall
cost Ji in Equation 8 as

Ĵi(ti) = Ĵc
i (ti) + ρJ r

i (ti).

To consider the twofold objective of optimizing the
control quality and CPU usage, we perform the golden-
section search in the time interval [φi, di − ci] for the
function Ĵi(ti). The cost evaluations are in this step
merely based on Equations 12, 13, and 7, which do not
involve any computations based on the sampled state
or the precalculated values of Mi, hence giving time-
efficient cost evaluation. This last search results in a
finite set of candidate start times Ξi ⊂ [φi, di − ci] to
be considered in the next step.

2) Schedule realization: We shall consider the given
start time tj for each task τj ∈ T\{τi}. These start times
have been chosen under the consideration of the schedul-
ing constraints in Equations 3 and 4. We have thus a
bijection σ : {1, . . . , |T| − 1} −→ IT \ {i} that gives the
order of execution of the task set T\{τi} (Section V-A).
We shall now describe the scheduling procedure to be
performed for each candidate start time ti ∈ Ξi of
task τi obtained in the previous step. The scheduler
first checks whether the execution of τi at the candidate
start time ti overlaps with any existing scheduled task
execution. If there is an overlap, the second step is
to move the existing overlapping executions forward
in time. If this modification also satisfies the deadline
constraints (Equation 3), or if no overlapping execution
was found, we declare this start time as schedulable.

Let us now consider a candidate start time ti ∈ Ξi and
discuss how to identify and move overlapping executions
of T \ {τi}. The idea is to identify the first overlapping
execution, considering that τi starts its execution at ti.
If such an overlap exists, the overlapping execution and
its successive executions are pushed forward in time by
the minimum amount of time required to schedule τi at
time ti such that the scheduling constraint in Equation 4
is satisfied for the entire task set T. To find the first
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Figure 7. Schedule realization. The upper schedule shows a
candidate start time t1 for τ1 that is in conflict with the existing
schedule. The conflict is solved by pushing the current schedule
forward in time by an amount ∆, resulting in the schedule shown
in the lower part.

overlapping execution, the scheduler searches for the
smallest k ∈ {1, . . . , |T| − 1} for which[

tσ(k), tσ(k) + cσ(k)

] ∩ [ti, ti + ci] 	= ∅. (14)

If no such k exists, the candidate start time ti is declared
schedulable, because the execution of τi can be scheduled
at time ti without any modification of the schedule of
T \ {τi}. If on the other hand an overlap is found, we
modify the schedule as follows (note that the schedule of
the task set {τσ(1), . . . , τσk−1} remains unchanged). We
first compute the minimum amount of time

∆ = ti + ci − tσ(k) (15)

to shift the execution of τσ(k) forward. The new start
time of τσ(k) is thus

t′σ(k) = tσ(k) + ∆. (16)

This modification can introduce new overlapping exe-
cutions or change the order of the schedule. To avoid
this situation, we consider the successive executions
τσ(k+1), . . . , τσ(|T|−1) by iteratively computing a new
start time t′σ(q) for task τσ(q) according to

t′σ(q) = max
(
tσ(q), t

′
σ(q−1) + cσ(q−1)

)
, (17)

where q ranges from k + 1 to |T| − 1 in increasing
order. Note that the iteration can be stopped at the
first q for which tσ(q) = t′σ(q). The candidate start time
ti is declared to be schedulable if, after the updates
in Equations 16 and 17, t′σ(q) + cσ(q) � dσ(q) for each
q ∈ {k, . . . , |T| − 1}. We denote the set of schedulable
candidate start times with Ξ′

i.
Let us with Figure 7 discuss how Equations 16 and 17

are used to schedule a task τ1 for a given candidate
start time t1. The scheduling is performed at time φ1 at
which the execution of the tasks τ2, . . . , τ6 are already
scheduled. The upper chart in the figure shows that the
candidate start time t1 is in conflict with the scheduled
execution of τ4. In the lower chart, it is shown that the
scheduler has used Equation 16 to move τ4 forward by ∆
(indicated in the figure and computed with Equation 15
to ∆ = t4+c4−t1). Tasks τ3 and τ5 are moved iteratively
according to Equation 17 by an amount less than or
equal to ∆. Task τ2 is not affected because the change in

execution of τ4 does not introduce an execution overlap
with τ2.

If Ξ′
i 	= ∅, for each schedulable candidate start time

ti ∈ Ξ′
i, we shall associate a cost Ψi(ti), representing the

overall cost (Equation 9) of scheduling τi at time ti and
possibly moving other tasks according to Equations 16
and 17. This cost is defined as

Ψi(ti) =
k−1∑
q=1

Ĵσ(q)(tσ(q)) + Ĵi(ti) +
|T|−1∑
q=k

Ĵσ(q)(t′σ(q)),

where the notation and new start times t′σ(q) are the
same as our discussion around Equations 16 and 17. The
cost Ĵσ(q)(t′σ(q)) can be computed efficiently, because the
scheduler has, at a previous scheduling point, already
performed the optimizations in Section VI-B1 for each
task τσ(q) ∈ T \ {τi}. The final solution chosen by the
scheduler is the best schedulable candidate start time in
terms of the cost Ψi(ti). The scheduler thus assigns the
start time ti of task τi as

ti ←− arg min
t∈Ξ′

i

Ψi(t).

If an overlapping execution exists, its start time and
the start times of its subsequent executions are updated
according to Equations 16 and 17. In that case, the
update

tσ(q) ←− t′σ(q)

is made iteratively from q = k to q = |T| − 1, where
τσ(k) is the first overlapping execution according to
Equation 14 and t′σ(q) is given by Equations 16 and 17.
If Ξ′

i = ∅, none of the candidate start times in Ξi could
be scheduled such that all tasks meet their imposed
deadlines. In such cases, the scheduler guarantees to
find a schedulable solution according to the procedure
described in the following subsection.

3) Stable scheduling: The scheduling and optimiza-
tion step can fail to find a valid schedule for the task
set T. In such cases, in order to ensure stable control,
the scheduler must find a schedule that meets the im-
posed deadlines, without considering any optimization
of control performance and resource usage. Thus, the
scheduler is allowed in such critical situations to use the
full computation capacity in order to meet the stability
requirement. Let us describe how to construct such a
schedule at an arbitrary scheduling point.

We shall consider a schedule given for T \ {τi} as
described in Section VI-B. We thus have a bijection
σ : {1, . . . , |T| − 1} −→ IT \ {i}. Since the start time
of a task cannot be smaller than the completion time of
its preceding task in the schedule (Equation 4), we have

tσ(k) � φi +
k∑

q=1

cσ(q).
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Figure 8. Stable scheduling. The left schedule shows a scenario in
which, at time φ2, the scheduler must accommodate CPU time to
the next execution of τ2. In the right schedule, CPU time for this
execution is accommodated by moving the scheduled executions of
τ1 and τ3 to earlier start times.

This sum models the cumulative worst-case execution
time of the k − 1 executions that precede task τσ(k).
Note that the deadline constraints (Equation 3) for the
task set T\{τi} are satisfied, considering the given start
times. Important also to highlight is that the deadline
of a task τj ∈ T \ {τi} is not violated by scheduling
its execution earlier than the assigned start time tj . To
accommodate the execution of τi, we shall thus change
the existing start times for the task set T \ {τi} as

tσ(k) ←− φi +
k∑

q=1

cσ(q). (18)

The start time ti of task τi is assigned as

ti ←− φi +
|T|−1∑
q=1

cσ(q). (19)

This completes the schedule for T. With this assignment
of start times, the worst-case completion time of τi is

ti + ci = φi +
|T|−1∑
q=1

cσ(q) + ci = φi +
∑

j∈IT

cj ,

which, if Equation 11 holds, is smaller than or equal to
any possible deadline di for τi, since

ti + ci = φi +
∑

j∈IT

cj � φi + Dmin
i � di.

With Equations 18 and 19, and provided that Equa-
tion 11 holds (to be verified at design time), the sched-
uler can with the described procedure meet all task
deadlines in any execution scenario.

Let us consider Figure 8 to illustrate the scheduling
policy given by Equations 18 and 19. In the left schedule,
task τ2 completes its execution at time φ2 and the
scheduler must find a placement of the next execution
of τ2 such that it completes before its imposed deadline
d2. Tasks τ1 and τ3 are already scheduled to execute at
times t1 and t3, respectively, such that the deadlines d1

and d3 are met. In the right schedule, it is shown that the
executions of τ1 and τ3 are moved towards earlier start
times (Equation 18) to accommodate the execution of τ2.
Since the deadlines already have been met by the start
times in the left schedule, this change in start times t1
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Figure 9. Scaling of the control cost. Our approach is compared to
a periodic implementation for different CPU-usage levels. Periodic
control uses more CPU bandwidth to achieve the same level of
control performance as our approach with reduced CPU usage.

and t3 does not violate the imposed deadlines of τ1 and
τ3, since the order of the two tasks is preserved. Task
τ2 is then scheduled immediately after τ3 (Equation 19)
and its deadline is met, provided that Equation 11 holds.

VII. Experimental Results

We have evaluated our proposed runtime scheduling
heuristic with simulations of 50 benchmark systems com-
prising 2 to 5 control tasks that control unstable plants
with given initial conditions of the state equations in
Equation 1. We have run experiments for several values
of the design constant ρ in Equation 8 (the trade-off
between control quality and CPU usage) in order to
obtain simulations with different amounts of CPU usage.
For each simulation, we computed the total control cost
(compare to Equation 5) of the entire task set T as

Jc,sim =
∑

j∈IT

∫ tsim

0

xT
j (t)Qjxj(t)dt, (20)

where tsim is the amount of simulated time. This cost
indicates the control performance during the whole sim-
ulated time interval (i.e., smaller values of Jc,sim indicate
higher control performance). For each experiment, we
recorded the amount of CPU usage of all control tasks,
including the time overhead of the scheduling heuristic.
The baseline of comparison is a periodic implementation
in which the periods were chosen to achieve the mea-
sured CPU usage. For this periodic implementation, we
computed the corresponding total control cost Jc,sim

per in
Equation 20.

Figure 9 shows on the vertical axis the total control
costs Jc,sim and Jc,sim

per for our runtime scheduling ap-
proach and a periodic implementation, respectively. On
the horizontal axis, we show the corresponding CPU
usage. The main message conveyed by the results in
Figure 9 is that the self-triggered implementation with
our proposed scheduling approach can achieve a smaller
total control cost (i.e., better control performance) com-
pared to a periodic implementation that uses the same
amount of CPU. The designer can tune the CPU usage
of the control tasks within a wide range (30 to 60 percent



of CPU usage) and achieve better control performance
with the proposed scheduling approach, compared to
its periodic counterpart. For example, when the CPU
usage is 44 percent, the total control costs of our ap-
proach and a periodic implementation are 8.7 and 15.3,
respectively (in this case, our approach improves on
the control performance by 43 percent relative to the
periodic implementation). The average cost reduction of
our approach, relative to the periodic implementation, is
(Jc,sim

per −Jc,sim)/Jc,sim
per = 41 percent for the experiments

with 30 to 60 percent of CPU usage. Note that for very
large CPU-usage levels in Figure 9, a periodic implemen-
tation samples and actuates the controlled plants very
often, which in turns leads to similar control performance
as a self-triggered implementation.

The time overhead has been included in the simu-
lations by scaling the measured execution time of the
scheduling heuristic relative to the execution times of
the control tasks. The main parameter that decides the
time overhead of the scheduler is the number of iterations
to be implemented by the golden-section search in Sec-
tion VI-B1. We have found empirically that a relatively
small number of iterations are sufficient to achieve good
results in terms of our two optimization objectives (our
experiments have been conducted with four iterations
in the golden-section search). The number of iterations
further decides the number of candidate solutions to
consider in the scheduling step (Section VI-B2). The
results presented in this section show that the proposed
solution, including its runtime overhead, outperforms a
periodic solution in terms of control performance and
CPU usage.

VIII. Conclusions

We presented a framework for dynamic scheduling of
multiple control tasks on uniprocessor platforms. The
self-triggered control tasks compute their CPU needs at
runtime and are scheduled to maximize control perfor-
mance and minimize resource usage. Our results show
that high control performance can be achieved with
reduced CPU usage.
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