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This paper describes a family of discrete-review policies for scheduling open multiclass

queueing networks. Each of the policies in the family is derived from what we call a

dynamic reward function: such a function associates with each queue length vector q and

each job class k a positive value rk(q), which is treated as a reward rate for time devoted

to processing class k jobs. Assuming that each station has traffic intensity parameter less

than one, all policies in the family considered are shown to be stable. In such a policy,

system status is reviewed at discrete points in time, and at each such point the controller

formulates a processing plan for the next review period, based on the queue length vector

observed. Stability is proved by combining elementary large deviations theory with an

analysis of an associated fluid control problem. These results are extended to systems with

class dependent setup times as well as systems with alternate routing and admission control

capabilities.
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1. Introduction

This paper is concerned with dynamic scheduling for open multiclass queueing net-

works: each customer class has its own general service time distribution, and there is

Markovian routing among classes. In these networks there are many job classes that may

differ in their arrival processes, service requirements, and routes through the network,

and there is a many-to-one relation between job classes and servers. Decisions are to

be made as to the sequence in which jobs of various classes are served at each station,

and a scheduling policy is a rule according to which these sequencing decisions are made.
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These models arise in many application areas such as manufacturing networks, service

operations, packet switched communication networks, and multiprocessor computer sys-

tems. The main purpose of this paper is to propose a family of policies that are simple

to implement and analyze, and to establish that each policy in this family guarantees

stability for the controlled stochastic system. This family of stable policies provides a

rich framework within which one can then pursue more interesting questions like per-

formance optimization, guaranteed bounds on performance, and system level design and

optimization.

Our focus on stability is justified by the fact that this is the most basic and funda-

mental property of a scheduling policy for network control. Examples developed lately

by Lu and Kumar [27], Rybko and Stolyar [32], Bramson [4] and others show that net-

works can exhibit unanticipated instability phenomena even though the traffic intensity

parameter is less than one at each station. Thus, guaranteeing stability for a network

operating under a specified policy is not a simple issue. This observation has stimulated

a lot of work on the stability of multiclass networks, most of which has been focused in

the complete characterization of the stability region of these networks; this is the region

in which the network will be stable under any non-idling scheduling policy. For example,

see Dai [7], Bertsimas et al. [2], and Kumar and Meyn [23]. In a few other cases, specific

policies or classes of policies have been proved stable, mainly for the class of networks

referred to as re-entrant lines; examples can be found in the work of Kumar [22], Kumar

and Kumar [25] and Dai [7].

This paper exploits the recent idea of a discrete-review structure introduced by

Harrison in his BIGSTEP approach to dynamic flow management in multiclass networks

[18], in order to define a broad family of policies that has the desired stability property.

Discrete-review policies, and specifically, policies that step through time in large intervals

within which a deterministic planning logic is employed, have been proposed by other

researchers in the areas of applied probability and network control. Some examples that

are closer to our work can be found in the work by Bertsimas and Van Ryzin [3], Bambos

and Walrand [1], Tassiulas and Papavassiliou [37], and Gans and Van Ryzin [16], but

other related papers can be found as well.

Each discrete-review policy in the family to be investigated is derived from what we

call a dynamic reward function: such a function associates with each queue length vector

q and each job class k a positive value rk(q), which is treated as a reward rate for time

devoted to processing class k jobs. A constant reward function, where rk(q) does not

actually depend on q, induces a discrete-review static priority scheme, whereas a general

reward function induces a discrete-review dynamic priority scheme. In such a policy,
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system status is reviewed at discrete points in time, and at each such point the controller

formulates a processing plan for the next review period based on the queue length vector

observed. Formulation of the plan requires solution of a linear program whose objective

function involves the dynamic reward function with which one starts. Implementation of

the processing plan involves enforcement of certain safety stock requirements in order to

avoid unplanned server idleness. In our variation of the Harrison’s BIGSTEPmethod [18],

both the durations of review periods and the magnitudes of safety stocks are dynamically

adjusted: review periods get longer and safety stocks increase as queues lengthen, but

both grow less-than-linearly as functions of queue length and hence are negligible under

fluid scaling. During each review period the system is only allowed to process jobs that

were present in the beginning of that period, which makes the implementation of the

associated processing plans very simple.

The aim of this paper is to provide a detailed description of this family of network

control policies, to analyze their behavior, and establish their stability. The method of

analysis relies on the use of fluid models. Fluid models are deterministic continuous

dynamical systems that nominally describe the large scale (or averaged) behavior of

the associated queueing networks. Dai established in [7] that stability of the associated

fluid model guarantees positive Harris recurrence for the controlled network; several

refinements of this statement can be found in the work of Dai [7], Chen [6], Stolyar [35],

and more recently in the work of Bramson [5]. This strong connection, together with the

fact that fluid models are much simpler to analyze than the original stochastic processing

networks, has been used extensively to study stability phenomena in multiclass networks.

For example, see Dai [7,9], Chen [6], Meyn [30], and Dai and Weiss [11]. Similalry,

fluid models will play a central role in our analysis. Moreover, it will become apparent

that fluid models (or fluid approximations) are also closely related to the definition and

behavior of the proposed family of control policies.

The main contributions of this paper are the following:

1. For any discrete-review policy in this family its limiting behavior under fluid scaling

is examined and its associated fluid limit model is derived. This result hinges on the

discrete-review structure of these policies and on some elementary large deviations

estimates. This will help highlight a close connection between this family of policies

and the use of fluid approximations in network control.

2. The stability of each policy in this family is established by analyzing their associated

fluid models. Roughly speaking, any non-idling dynamic priority rule implemented

within a discrete-review framework is shown to be stable.
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3. Finally, the network models under investigation are generalized in order to allow

for class dependent setup (or switchover) delays as well as routing and admission

control capabilities. These extensions illustrate how within the framework of discrete-

review policies and fluid approximations, one can address seemingly different control

problems with only minor modifications in the conceptual and implementation levels.

The remaining of the paper is structured as follows. Section 2 describes the basic

open multiclass network models, Section 3 introduces the family of discrete-review poli-

cies under study and states the main result of this paper. In section 4 the fluid model

associated with a policy under investigation is derived. In section 5 a non-idling condi-

tion for the associated fluid models is established and then stability is proved for the case

of a constant reward vector. Subsequently these results are extended to general reward

functions. Finally, section 6 outlines the extension of these results in order to allow for

routing and admission control capability and setup delays at each server, and section 7

contains some concluding remarks.

2. Open multiclass network models

In the description of a multiclass queueing network we adopt the setup introduced

by Harrison [17]. Consider a queueing network of single server stations indexed by

i = 1, . . . , S. (The terms station and server will be used interchangeably.) The network

is populated by job classes indexed by k = 1, . . . ,K and infinite capacity buffers are

associated with each class of jobs. Class k jobs are served by a unique station s(k) and

their service times are {ηk(n), n ≥ 1}. That is, the nth class k job requires ηk(n) time

units of service from station s(k). Jobs within a class are served on First-In-First-Out

(FIFO) basis. Upon completion of service at station s(k), a class k job becomes a job

of class m with probability Pkm and exits the network with probability 1 −
∑

m Pkm,

independent of all previous history. Assume that the general routing matrix P = [Pkm]

is transient (that is, I + P + P 2 + . . . is convergent). Let {φk(n)} denote the sequence

of K-dimensional IID Bernoulli random vectors such that φk
j (n) = 1 if upon service

completion the nth class k job becomes a class j job and is zero otherwise, and let

Φk(n) =
∑n

j=1 φ
k(j). Every job class k can have its own exogenous arrival process

with interarrival times {ξk(n), n ≥ 1}. The set of classes that have a non-null exogenous

arrival process will be denoted by E and the notation E(t) will denote the K-dimensional

vector of exogenous arrivals in the time interval [0, t]. It is assumed that E 6= ∅.

We make the following assumptions on the distributional characteristics of the

arrival and service time processes:
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(A1) ξ1, . . . , ξK and η1, . . . , ηK are mutually independent, positive, IID sequences;

(A2) E[ηk(1)] 6= 0 for k = 1, . . . ,K. For some θ > 0, E[eθηk(1)] < ∞ for k =

1, . . . ,K and E[eθξk(1)] < ∞ for k ∈ E ;

(A3) For any x > 0, k ∈ E , P{ξk(1) ≥ x} > 0. Also, for some positive function p(x)

on R+ with
∫∞

0
p(x)dx > 0, and some integer j0, P

{

∑j0
i=1 ξk(i) ∈ dx

}

≥ p(x)dx.

Condition (A1) can be relaxed; see the remark after Proposition 2.1 of Dai [7]. (A2) is

stronger than the finite first moment condition usually imposed (see, for example, Dai

[7]), and it is needed in the derivation of large deviation bounds required in our analysis.

This condition is satisfied for {φk(n)}. The technical regularity conditions in (A3) are

imposed so that we can make use of the general stability theory of Dai [7] (see also

Dai and Meyn [10]); these conditions are never invoked in propositions that are actually

proved in this work.

For future reference, let λk = 1/E[ξk(1)] and µk = 1/E[ηk(1)] = 1/mk be the

arrival and service rates respectively for class k jobs, let λ = (λ1, . . . , λK)′, and let

M = diag{m1, . . . ,mK}. The set {k : s(k) = i}, denoted Ci, is called the constituency

of the server i, while the S × K constituency matrix C will be the following incidence

matrix:

Cik =

{

1, if s(k) = i

0, otherwise.

Given the Markovian routing structure of these networks and the transience of P ,

one can compute the vector of effective arrival rates, α = (I − P ′)−1λ, and the vector

of traffic intensities ρ = CR−1λ, where ρi denotes the nominal load (or utilization level)

for server i. Hereafter, it will be assumed that α > 0; this restriction is imposed in order

to simplify the policy description of section 3, and can easily be relaxed (some necessary

modifications will be outlined later). Moreover, we assume that the traffic intensity at

every station is less than one, or equivalently that there is enough processing capacity to

cope with the incoming traffic; that is,

(A4) ρ = CR−1λ < 1,

where 1 denotes the vector of ones of appropriate dimension and inequalities are to be

interpreted componentwise.

Denote by Qk(t) the total number of class k jobs in the system at time t, and byQ(t)

the corresponding K-vector of “queue lengths.” A generic value of Q(t) will be denoted

by q, and the size of this vector is defined as |q| =
∑

k qk. (To avoid confusion the reader

should note that |A| will also denote the cardinality of a set A, but the intended use of the

notation will always be clear.) A scheduling policy is a rule according to which resource
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allocation decisions are made over time starting from an initial condition y (apart from

the initial queue length configuration, y may include additional information regarding

the initial state of the system It takes the form of a K-dimensional cumulative allocation

process {T y(t), t ≥ 0; T y(0) = 0}, where T y
k (t) denotes the time allocated by server s(k)

into serving class k jobs up to time t, and the superscript “y” denotes the dependence

on the initial condition. Since the process T y is Lipschitz, one can define its derivative

Ṫ y(t) , dT y(t)/dt, where Ṫ y
k(t) will be the fraction of effort allocated into processing

class k jobs by server s(k) at time t. For an admissible policy, Ṫ y(t) is non-negative,

it satisfies the capacity constraints CṪ y(t) ≤ 1, and also Ṫ y
k (t) can only be positive if

Qk(t) > 0. In addition, an admissible policy needs to be non-anticipating (or causal),

which, roughly speaking, ensures that Ṫ y(t) only depends on information available up

to time t and does not require information regarding the future. For purposes of this

paper we will avoid a precise statement of this condition, since it will not be required

towards the development of our results and it would otherwise involve a fairly subtle and

technical exposition. Each server can only process one job at a time and thus, Ṫ y
k (t) is

equal to 1 if a class k job is being processed at time t, and 0 otherwise. For concreteness

we assume non-preemptive type of service. Let Iy(t) be the S-dimensional cumulative

idleness process defined by Iy(t) = 1t−CT y(t), where Iyi (t) is the total time that server

i has been idled up to time t. The process Iy(t) is non-decreasing.

Given any admissible scheduling policy, a Markovian state descriptor can be con-

structed and an underlying Markov chain can be identified for the controlled network.

The Markovian state is based on the queue length vector, as well as other auxiliary

quantities that depend on the distributional characteristics of the interarrival and ser-

vice processes and on the scheduling rule used. The Markovian state at time t will be

denoted by Y (t) and the corresponding normed state space will be (Y, ‖ · ‖); see the

comments by Dai and Meyn [10, section IIb] or Bramson [5, section 3] regarding the

choice of ‖ · ‖. Examples of such Markov chain constructions can be found in Dai [7].

Finally, a few brief comments on fluid scaling and fluid limit models. Consider a

sequence of initial conditions {yn} ⊂ Y such that ‖yn‖ → ∞ as n → ∞. For any real

valued process {fy(t), t ≥ 0} define its fluid scaled counterpart by

f̄n(t) =
1

‖yn‖
fyn

(‖yn‖t). (2.1)

Applying this type of scaling on the queue length and cumulative allocation processes

and using the functional strong law of large numbers, one can show that almost surely

the pair of queue length and cumulative allocation limit trajectories (q(·), T̄ (·)) satisfies
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the following set of equations

q(t) = q(0) + λ(t1− R̄a)
+ − (I − P ′)M−1(T̄ (t)− R̄s)

+, (2.2)

q(t) ≥ 0 for t ≥ 0, (2.3)

Ī(t) = 1t− CT̄ (t), T̄ (0) = 0, (2.4)

T̄ (t), Ī(t) are non-decreasing for t ≥ 0, (2.5)

together with some additional conditions on (q(·), T̄ (·)) that are specific to the scheduling

policy employed. In the sequel, the overbar notation will signify fluid scaled quantities

and appropriate superscripts will be used to signify the scaled processes corresponding

to some initial condition along the sequence {yn}. In order to avoid the use of double

superscripts the dependence to the initial condition yn will be denoted by a single su-

perscript n. The use of the overbar notation without any superscript n will denote the

fluid limit of the appropriate variable; for example T̄ (·) as the limit of T̄ n(n·).

The above set of equations are referred to as the delayed fluid model associated with

a multiclass queueing network under a specified scheduling policy. It is immediate from

(2.2)-(2.5) that the limit processes (q, T̄ ) are Lipschitz continuous. Hence, it follows that

that they have a time derivative almost everywhere; see Lemma 2.1 of Dai and Weiss [11].

A path q(·) is called regular at t if it is differentiable at t, and its derivative at time t will

be denoted by q̇(t). Let v(t) denote the instantaneous fluid allocation vector at time t.

Restricting attention to the case where R̄a = R̄s = 0 and using the a.e. differentiability

of the limit processes, for almost all times t ≥ 0 the fluid limit model can be expressed

as a linear dynamical system with polytopic constraints in v(t) of the following form:

q̇(t) = λ−Rv(t), q(0) = z, (2.6)

q(t) ≥ 0, Cv(t) ≤ 1, v(t) ≥ 0 for t ≥ 0, (2.7)

together with some policy specific conditions. The fluid limit model in (2.6)-(2.7) is called

undelayed. We will say that that (q, v) ∈ FM -or equivalently that it is a fluid solution- if

this pair of state and input trajectories satisfies equations (2.6)-(2.7). Undelayed limits

can be obtained if one restricts attention to exponential interarrival and service time

processes, or in the case of general distributions, if one lets ‖yn‖ → ∞ while keeping

Rn
a (0) and Rn

s (0) bounded.

An excellent exposition of fluid models, their derivation, and their properties can

be found in Dai [7,8] and Bramson [5, section 4].
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3. Discrete-Review Policies

The family of policies we propose and analyze is based on the recent idea of a

discrete-review structure introduced by Harrison in his BIGSTEP approach to dynamic

flow management in multiclass networks [18]. The main idea behind discrete-review poli-

cies, is that one steps through time in large intervals within which a deterministic plan-

ning logic is employed, and that the scheduling and execution steps in the corresponding

systems becomes more efficient as the planning horizons become longer or equivalently,

as the amount of work to be processed within each period increases.

3.1. Definition of a discrete-review control policy

A discrete-review policy is defined by or is derived from a function l : R+ → R+,

the function r : RK
+ → RK , plus a K-dimensional vector β that satisfy the following

restrictions. First, l(·) is real valued, strictly positive, concave, and further satisfies

l(x)

log(x)
> c0 and

l(x)

log(x)
→ ∞ as x → ∞, (3.1)

and

l(x)

x
→ 0 as x → ∞. (3.2)

The significance of the growth condition (3.1) will become apparent in section 4. Second,

r(·) defined on RK
+ , is real valued, strictly positive, and continuous function, where each

component of which satisfies the growth condition

c1 ≤ rk(q) ≤ c2 + |q|c3 for some c1 > 0, c2 > 0, c3 > 0 and k = 1, . . . ,K. (3.3)

And third, β is a vector in RK
+ that satisfies

β > µ, (3.4)

where µ is the K-vector of service rates. Under any of the policies to be considered,

system status will be observed at a sequence of times 0 = t0 < t1 < t2 < . . .; we call tj

the jth review point and the time interval between tj and tj−1 the jth planning period.

Define l0 = al(|Q(0)|), where a is a small (≪ 1) positive constant, independent of |Q(0)|;

the value of this constant is not crucial to the operation of the proposed discrete-review

policy and for that reason it is not included as one of the defining quantities of these

policies. Given that the queue length vector q = Q(tj) is observed at tj , server activities

over the next planning period are determined by solving a linear program, the data for
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which involve l(·), r(·), and β. To be specific, having observed q the controller sets

q̃ = q/|Q(0)|,

l = l0 ∨ l(|q|), r = r(q̃), and θ = lβ, (3.5)

and then solves the following linear program: choose a K-vector x of time allocations to

maximize r′x (3.6)

subject to q + lλ−Rx ≥ θ, x ≥ 0, Cx ≤ l1. (3.7)

First, an interpretation of this planning logic will be provided assuming that this

linear program is feasible; the case where (3.6)-(3.7) is infeasible will be dealt with shortly.

Intuitively, the controller first computes the nominal length of the planning period l(|q|),

and a target safety stock θ to be maintained upon completion of this planning period,

as a function of the observed queue length vector. In general, l0 ≪ l(|q|), unless |q|

is very small in which case l0 provides a lower bound on the planning horizon which

is in the appropriate time scale. Then, the nominal time allocations for the ensuing

planning period are computed using the linear program (3.6)-(3.7): the decision variable

xk represents the nominal amount of time that will be devoted to serving class k jobs over

this planning period. The constraint q+ lλ−Rx ≥ θ implies that the target ending queue

length vector will be above a specified threshold requirement, while Cx ≤ l1 states that

the total time allocation for each of the servers cannot exceed its capacity. It is implicit in

this formulation that the planning problem involves a deterministic “continuous variable”

approximation.

The objective of the linear program (3.6) is defined using the function r(·). Here-

after, r(·) will be referred to as a dynamic reward function: it associates with each

(appropriately normalized) queue length vector q̃ a corresponding K-vector r(q̃), where

the kth component rk(q̃) is treated as a reward rate for time devoted to processing class k

jobs. In the planning problem (3.6)-(3.7) one seeks to determine a vector x of time allo-

cations over the planning period that maximizes total reward subject to the constraints

explained above. This is essentially a transient optimization procedure. If one interprets

r(·) as a reward function according to which this transient optimization process should

be performed, then the transformation of q to q̃ simply reduces the planning phase for

each review period to a normalized optimization problem.

Given the vector of nominal time allocations x, a plan expressed in units of jobs of

each class to be processed over the ensuing period, and a nominal idleness plan expressed

in units of time for each server to remain idle over the same period are formed as follows:

p(k) =

⌊

xk

mk

⌋

∧ qk for k = 1, . . . ,K, and ui = l − (Cx)i for i = 1, . . . , S. (3.8)
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The execution of these decisions is as follows. First, the plan p is implemented in open-

loop fashion; that is, each server i processes sequentially p(k) jobs for each class k ∈ Ci.

The construction of the processing plan p using equation (3.8) ensures that it will be

implementable from jobs present at the beginning of this review period. Let di denote

the time taken to complete processing of these jobs at server i and let δi = (l − di)
+ be

the nominal time remaining until the end of the ensuing period. In the second phase of

execution, each server i will idle for ui∧ δi time units. The completion of both execution

phases signals the beginning of the (j+1)st review period. The total duration of execution

of the jth review period will be denoted T exe.

When the planning linear program (3.6)-(3.7) is infeasible, a alternative logic is

employed to steer the state above the desired threshold levels. The first step of this

infeasible planning algorithm is summarized in the following linear program: find a scalar

l̂ and a K-vector x̂ to

minimize l̂ (3.9)

subject to l̂λ−Rx̂ > β + 1, x̂ ≥ 0, l̂ ≥ 0, Cx̂ ≤ l̂1. (3.10)

Given the solution of the linear program (3.9)-(3.10), which is always feasible, a process-

ing plan p̂(k) = ⌊x̂k/mk⌋ and an idleness plan û = l̂1 − Cx̂ are formed. Let N = ⌈l⌉,

where l was defined in (3.5). The controller then, “attempts” to sequentially execute

the plan (p̂, û) N times. The wording used is indicative of the fact that this processing

plan cannot be implemented from jobs that are all present at the review point, and as

a result a more careful execution methodology should be employed. As N gets large,

intuition suggests that the ending state after this execution cycle will be close to the

state predicted using the fluid approximation, which is above the required threshold re-

quirements. The details of this infeasible planning logic are provided in section 4.1 and

in the Appendix.

Hereafter, the notation DR(r, l, β) will denote the discrete-review policy derived

from the functions r(·), l(·), and the vector β that satisfy (3.1)-(3.2), (3.3), and (3.4). In

the sequel, we will use a subscript to differentiate between different review periods. An

algorithmic description of a discrete-review policy is shown in Figure 1. (For clarity, the

infeasible logic has been suppressed.)

Figure 1: Algorithmic description of DR(r, l, β)

For a multiclass network under any policy in the proposed family the underlying

continuous time Markov chain is defined as follows. Assume that tj ≤ t < tj+1 and

define the parameter N(t) to be equal to 1 if the linear program (3.6)-(3.7) is feasible
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or otherwise set it equal to the number of remaining executions of the processing plan

p̂ derived from (3.9)-(3.10). Let p(t) be a K-vector, where pk(t) is the number of class

k jobs that remain to be processed at time t according to the processing plan pj or

p̂j , depending on whether the planning LP was feasible. Let u(t) be the S-vector of

remaining idling times for each of the servers for the ensuing planning period. Finally,

let Ra(t) be the |E|-vector and Rs(t) be the K-vector associated with the residual arrival

and service time information. The Markovian state descriptor will then be

Y (t) = [Q(t); N(t); p(t); u(t); Ra(t); Rs(t); |Q(0)|], (3.11)

and Y will represent the underlying state space. Imitating Dai’s argument [7] and using

the strong Markov property for piecewise deterministic processes of Davis [13], it is easy

to show that the process {Y (t), t ≥ 0} is a strong Markov process with state space Y.

The associated norm will be

‖Y (t)‖ = |Q(t)|+N(t) + |p(t)|+ |u(t)|+ |Rs(t)|+ |Ra(t)|.

Before we proceed with a statement of the main results of this paper, we list a few

remarks regarding the family of discrete-review policies under investigation. First, the

actual execution time of the plan (p, u), denoted T exe, is in general different than the

nominal duration of l time units, and therefore, a distinction needs to be made between

the nominal and actual cumulative allocation processes.

Second, the scheduling complexity for the proposed policies during each period is

low. This is due to the fact that the execution of a discrete-review policy is insensitive

to the precise processing sequence followed and thus, the overall complexity is that of

a linear program of size equal to K, the number of classes in the network; this scales

very gracefully with the size of the network. That is, the computational effort required

in each planning phase is constant as a function of the review period length, the load in

the network, and the amount of work to be scheduled. This is an important feature, for

if the scheduling complexity had a superlinear growth rate as a function of |q|, then the

associated computational delay would become significant relative to the time allocated

to processing jobs, which would degrade performance and could affect the stability of

the controlled network; this issue was addressed for a related class of policies by Bambos

and Walrand [1]. Within a discrete-review setting, scheduling complexity could become

significant in the more aggressive scenario where there is no implicit requirement that

processing plans should be fulfilled from work present at the beginning of each review

period. In this case, the sequencing of jobs within each period would be crucial in the

execution of the policy and this issue will significantly increase the complexity of the

planning phase. Such an example is discussed in [29, Appendix 2]. There, a variant of
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the discrete-review policies discussed here is considered, where safety stock levels are no

longer enforced at the expense of a more complicated execution methodology and the

requirement for longer planning horizons; these should be at least of order log2(|Q(t)|),

which is a more stringent condition than (3.1). That is, by increasing the length of

the planning horizons the controller has enough flexibility to implement any processing

plan by cleverly shifting work around the various stations, without incurring significant

amounts of unplanned idleness. Nevertheless, the implementation methodology suggested

for this “leaner” discrete-review policy is significantly more complex and is likely to

perform poorly (in a non-asymptotic sense) unless some thresholds -of very moderate

size- are still enforced.

The choice of the function l(·) to be an increasing function of the size of the state

with sublinear growth is intuitive: as the size of the state increases and review periods

lengthen, the approximation to system dynamics embodied in (3.7) becomes more ac-

curate, while relative to the overall system evolution it appears as if we are reviewing

system status at an ever increasing rate. That is, there are three relevant time scales:

the first, is the natural time scale of the system that is proportional to the total backlog

at any point in time, which is equal to |q|; the second, is the time scale within which the

discrete-review structure is being executed that is proportional to l(|q|); and the third,

is the time scale in which individual events occur in the network, which is of the order of

magnitude of mean service or interarrival times. Condition (3.1) ensures that the time

scale of the discrete-review structure is increasing as a function of |q| and together with

(3.2) ensures the separation of the three time scales when |q| is large. The constant

l0 is a lower bound on the planning horizon of the appropriate magnitude, which only

becomes relevant if |q| becomes very small. Some further comments on (3.1)-(3.2) can

be found in Harrison [18], Tassiulas and Papavassiliou [37], and Gans and Van Ryzin

[16]. The conditions in [18] are almost identical to ours, whereas the authors in [37] state

only the sublinearity condition (3.2). In [16] the corresponding condition is of the form

l ∼ (1− ρ)−a, where a ∈ (0, 1). Note that (1− ρ)−1 is of the same order of magnitude as

the average backlog in the system and thus their condition is more restrictive than (3.1).

In the case where some of the job classes have zero effective arrival rates, the

planning and infeasible LPs need to be appropriately modified. This was first recognized

by Sethuraman and Berstimas [33]. Specifically, the safety stock requirement for any

class k such that αk = 0, is set to be θk = min(l(|Q(t)|)βk, Qk(t)), which implies that

when Qk(t) becomes sufficiently small, it effectively drops out from the planning and

execution phases associated with both LPs.

Finally, an example of an alternative implementation logic would be to allocate
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to each job class k the corresponding planned server usage xk over the ensuing period,

without translating it to number of class k jobs. Provided that preemptive-resume type

of service is allowed, the main properties established in this paper would still be valid

subject to minor changes in their derivation.

3.2. The stability theorem

The main result of this paper is establishing the stability for the family of discrete-

review policies described above. Stability for a multiclass network is defined as follows:

Definition 3.1. A multiclass network under a specific scheduling policy is stable if the

underlying Markov chain is positive Harris recurrent.

The main theorem to be proved is the following:

Theorem 3.1. Let l : R+ → R+ be a strictly positive, concave function that satisfies

(3.1)-(3.2), and r : RK
+ → RK

+ be a continuous function that satisfies (3.3), and β ∈ RK
+

be a vector that satisfies (3.4). Then a multiclass network is stable under the discrete-

review policy DR(r, l, β).

The proof of Theorem 3.1, is divided in two major steps: (1) the derivation of

the fluid model associated with DR(r, l, β) (this is Theorem 4.1); and (2) the stability

analysis of the fluid model which will be used in order to establish the stability of the

underlying stochastic network.

From Theorem 3.1 it follows that any multiclass network under a policy in the

family considered here will be stable provided that there is enough processing capacity

at each station. This is one of the first families of policies to be proved stable for

this general class of networks and its stability verifies the conjecture that for multiclass

networks with Markovian routing there always exists a stabilizing policy. This remark

generalizes similar results for acyclic, feedforward, or re-entrant line networks which can

be found in the work of Perkins et al. [31], and Kumar [22]. This observation although

anticipated it is not entirely obvious. For example, although the Last-Buffer-First-Serve

(LBFS ) policy is known to be stable for re-entrant lines for ρ < 1, it leads to instability

in the network considered by Rybko and Stolyar [32], which is a minor modification of a

re-entrant line.
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4. The fluid model associated with DR(r, l, β)

As it will be shown in section 5, it is sufficient for stability analysis to restrict

attention to sequences {yn} in Y such that ‖yn‖ → ∞ as n → ∞, where every converging

subsequence will yield undelayed limits, that is, R̄a(0) = R̄s(0) = 0. The main theorem

proved in this section is the following:

Theorem 4.1. Consider a multiclass open queueing network under the discrete-review

policy DR(r, l, β). For almost all sample paths ω and any sequence of initial condi-

tions {yn} ⊂ Y such that ‖yn‖ → ∞ as n → ∞, there is subsequence {ynj (ω)} with

‖ynj(ω)‖ → ∞ such that

Q̄nj (0, ω) → q(0, ω) (4.1)

(Q̄nj (·, ω), T̄ nj (·, ω)) → (q(·, ω), T̄ (·, ω)) u.o.c., (4.2)

(N̄nj (·, ω), p̄nj (·, ω), ūnj(·, ω)) → (0, 0, 0) u.o.c., (4.3)

and the cumulative allocation process can be expressed in the form

T̄ (t, ω) =

∫ t

0

v(τ, ω)dτ for t ≥ 0. (4.4)

The pair (q, v) satisfies equations (2.6)-(2.7) and the policy specific equation

v(t) ∈ argmax
v∈V(q(t))

r(q(t))′v, (4.5)

where V(q(t)) = {v : v ≥ 0, Cv ≤ 1, (Rv)k ≤ λk for all k such that qk(t) = 0}.

Equations (2.6)-(2.7) and (4.5) are the conditions that describe the desired behavior

we are (a) trying to mimic through the discrete-review structure, and (b) trying to

achieve asymptotically under fluid scaling. The proof of the theorem relies on a series

of propositions that establish condition (4.5). First, several large deviations bounds

are derived that essentially describe the asymptotic behavior of these policies under

the proposed discrete-review structure. In specific, we prove that asymptotically the

conditions of Lemma 4.1 are satisfied for every review period with probability one, which

implies that asymptotically the LP in (3.6)-(3.7) is feasible w.p. 1. Second, the difference

between the nominal and actual allocation processes is bounded using the FSLLN, and

finally, the fluid equations for the nominal allocation process are derived. Without loss of

generality, in the sequel we work directly with the converging subsequence, thus avoiding

the use of double subscripts, and we assume that ‖yn‖ = n for all n ≥ 1.
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4.1. Preliminaries: Large deviations bounds

The following basic result from large deviations theory, often referred to as Chernoff

bound, is a direct application of Markov’s inequality, and it be used repeatedly in our

analysis. It can be found, along with an illustrative exposure of the subject of large

deviations, in several books such as Shwartz and Weiss [34, Theorem 1.5], Dembo and

Zeitouni [14], or in the introductory paper by Weiss [39].

Fact 4.1. For a sequence {xi} of IID random variables such that E(eθx1) < ∞ for some

θ > 0, for every a > E(x1) and any positive integer n,

P (x1 + · · ·+ xn ≥ na) ≤ e−nf(a),

where f(a) = supθ(θa− log(E(eθx1))) is a convex function and f(a) > 0.

An elementary analysis of the behavior under the proposed discrete-review structure

is required in order to derive the fluid models associated with these policies. Figure 2

depicts a possible trajectory of one of the queue length variables over a single review

period, where various quantities of interest are defined. Hereafter, the planned ending

state upon completion of the jth review period will be denoted by zj+1 = qj + ljλ−Rxj ,

where qj is the queue length vector observed at time tj .

Figure 2: Discrete-review policy: a schematic representation

Lemma 4.1 proves that if qj is above the level (1 − ∆)θj , where 0 < ∆ < 1 is a

specified constant, then the linear program (3.6)-(3.7) is feasible and also the nominal

processing plan for the jth planning period can be implemented from jobs present in the

system upon the review point. In Figure 2, this requirement is shown to be satisfied.

The difference between the predicted ending state, zj+1, and the actual state observed

at the next review point, qj+1, is denoted b1. The difference between qj+1 and the

lower threshold requirement mentioned above is b2, and the time difference between the

expected and actual duration of the review period is b3. Large deviations bounds for the

quantities b1, b2, b3 will be obtained in Lemma 4.3. Similar bounds for the case where the

linear program (3.6)-(3.7) is not feasible and the infeasible planning logic of equations

(3.9)-(3.10) is used, are derived in Lemma 4.2. The focus of this large deviations analysis

is on the behavior of the proposed policies when the state is large, or, equivalently, when

the planning horizons get long.

The first lemma we prove states an algebraic result regarding the feasibility of the

linear program (3.6)-(3.7).
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Lemma 4.1. Let

δ1 = min
k

(R−1λ)k
(R−1β)k

, δ2 = min
k

(βk − µk), and ∆ = min(1, δ1, δ2).

If at a review point qj > (1 − ∆)θj , then the linear program (3.6)-(3.7) is feasible and

also pj(k) < qj(k).

Proof. Let v = R−1λ− δR−1β, for some δ > 0. We now choose δ such that v ≥ 0 and

Cv ≤ 1. The first constraint is equivalent to

R−1λ− δR−1β ≥ 0 ⇒ δ ≤ min
k

(R−1λ)k
(R−1β)k

.

The second constraint states that ρ − δCR−1β ≤ 1 which is true for all δ > 0. Let

xj = ljv. From the definition of v we have that xj ≥ 0, Cxj ≤ lj1, and also zj+1 =

qj + lj(λ − Rv) ≥ qj + lj(λ − Rv) ≥ qj + δljβ. Hence, the linear program (3.6)-(3.7)

is feasible. Moreover, if qj > (1 − δ2)θj then, qj > ljµ and pj(k) < qj(k). Setting

∆ = min(1, δ, δ2) completes the proof. 2

The following two lemmas summarize the large deviation bounds required for the

derivation of the fluid limit model associated with a discrete-review policy. Their proofs

are given in the Appendix.

Lemma 4.2. Consider any review point where (3.6)-(3.7) is infeasible. Under the pro-

cessing plan derived from the infeasible planning algorithm (3.9)-(3.10), for any ǫ > 0

there exists a constant N1, such that if |qj | > N1 and for some h(ǫ) > 0,

P (qj+1 � (1− ǫ)θj+1) ≤ e−h(ǫ)lj . (4.6)

Furthermore, for some constant Lǫ > 0 independent of the state qj and for some d(Lǫ) > 0

we have that

P (tj+1 − tj > Lǫlj) ≤ e−d(Lǫ)lj . (4.7)

The second lemma concerns the system behavior when the planning LP is feasible.

Lemma 4.3. If the planning linear program (3.6)-(3.7) is feasible, then for any ǫ > 0

there exists a positive constant N2, such that if |qj | > N2 and for some f(ǫ) > 0,

P (qj+1 � (1− ǫ)θj+1) ≤ e−f(ǫ)lj . (4.8)

Setting ǫ = ∆ in Lemmas 4.2 and 4.3, one obtains bounds on the probability that

the condition of Lemma 4.1 is satisfied upon the next review period. The exponential
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form of these bounds explains the specific choice of the functions l(·) and θ(·), since for

n sufficiently large we have that l ' κ log(n), which in turn implies that the derived

bounds will decay as 1/nκ; this is sufficient in order to establish asymptotic properties

in an almost sure sense.

The derived bounds could be computed explicitly if the distributional character-

istics of the arrival and service processes were specified. Moreover, using the derived

expressions one could calculate other quantities of interest such as, for example, the min-

imum review period length that would ensure a certain bound on the probability that

during any planning period the controlled network would exhibit “significantly” different

behavior than nominally planned.

4.2. Derivation of the associated fluid models

Given the sequence of review points t0, t1, . . . and any time t ≥ 0, let jmax = min{j :

tj ≥ nt}.

Proposition 4.1. Define the sequence of events {An}, where An = {ω : ∃j ≤

jmax, such that qnj < (1− ǫ)θnj }. Then for any ǫ > 0, P (lim supn An) = 0.

Proof. Recall that ‖yn‖ = n. Given the definition of l0 and the growth condition (3.1),

for any ǫ > 0 and any constant κ > 0, there exists an N(ǫ, κ) > 0 such that for any

n ≥ N(ǫ, κ) we have that

(h(ǫ) ∨ f(ǫ))ln0 > κ log(n).

Set N(ǫ, κ) = max(N(ǫ, κ), N1, N2). Using the bounds derived in Lemmas 4.2 and 4.3

one gets that

P(An) =P (qn1 � (1− ǫ)θn1 ) +

+

jmax
∑

j=1

P
(

qnj+1 � (1− ǫ)θnj+1, qni ≥ (1 − ǫ)θni , i ≤ j
)

≤ e−κ log(n) +

+

jmax
∑

j=1

P
(

qnj+1 � (1− ǫ)θnj+1 | qni ≥ (1 − ǫ)θni , i ≤ j
)

×

P (qni ≥ (1− ǫ)θni , i ≤ j)

≤
1

nκ
+

jmax
∑

j=1

P
(

qnj+1 � (1− ǫ)θnj+1 | qni ≥ (1− ǫ)θni , i ≤ j
)

≤
jmax

nκ
.
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For κ ≥ 3,

∑

n

P(An) =≤
∑

n≤N(ǫ,κ)

P(An) +
∑

n>N(ǫ,κ)

jmax

nκ

≤N(ǫ, κ) + c
∑

n>N(ǫ,κ)

1

nκ−1

<∞.

The desired result follows from the Borel-Cantelli Lemma. 2

Remark 4.1. Set ǫ = ∆ and evaluate this probability bound for qnj ≥ (1−∆)θnj for all

j ≤ jmax. From Proposition 4.1 it follows that asymptotically under fluid scaling the

condition that qnj ≥ (1 − ∆)θnj of Lemma 4.1 is almost always satisfied and thus, the

infeasible planning logic is almost never used.

For any sample path ω, let X̄n(t, ω) be the (scaled) nominal allocation process,

which is equal to the sum of all planned allocation times over all review periods up to

time t, along this specific sample path ω. Similarly, let T̄ n(t, ω) be the (scaled) actual

allocation process, which is equal to the sum of all actual time allocations observed during

execution of the processing plans for all review periods up to time t.

Proposition 4.2. |T̄ n(t)− X̄n(t)| → 0 a.s., as n → ∞.

Proof. For any fixed time t ≥ 0, let tj ≤ nt < tj+1. Given the planned allocation

over the jth review period xn
j , and the corresponding processing plan pnj , let δnj (k) =

xn
j (k) − pnj (k)mk. That is, δnj (k) is the remaining time allocated in processing class k

jobs not included in the corresponding processing plan pnj . From Proposition 4.1, we

have that for large enough n and for a.e. ω, the condition of Lemma 4.1 is satisfied at

every review period. Then,

|T̄ n(t, ω)− X̄n(t, ω)|=
1

n
|T n(nt, ω)−Xn(nt, ω)|

≤
1

n
Ll(|qn0 |) +

1

n

jmax
∑

j=1

K
∑

k=1





pn
j (k)
∑

i=1

(ηk(i)−mk) + δnj (k)





≤
1

n
Ll(|qn0 |) +

K
∑

k=1





1

n

pn(k)
∑

i=1

(ηk(i)−mk) +
1

n

jmax
∑

j=1

δnj (k)



,
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where pn(k) =
∑

j p
n
j (k) ≤ nt/mk. The asymptotic behavior of the first term is clear.

The second term of the equation satisfies the strong law

K
∑

k=1





1

n

pn(k)
∑

i=1

(ηk(i)−mk)



 → 0 a.s.. (4.9)

This is a consequence of the functional strong law of large numbers for the service time

processes. It remains to show that
∑

j δ
n
j (k)/n → 0. From assumption (3.1) and the fact

that lnj ≥ al(|Qn(0)|), it follows that lnj → ∞ as n → ∞ for all j ≤ jmax.

Since δnj (k) ≤ mk for all j ≥ 1 it follows that

1

n

jmax
∑

j=1

δnj (k) ≤
1

n

nt ·mk

minj lnj
→ 0, a.s.. (4.10)

Combining (4.9) and (4.10) it follows that |T̄ n(t)− X̄n(t)| → 0 a.s.. 2

Once again, fix again time at some t ≥ 0. Choose j such that tj ≤ nt < tj+1 and let

xn
j denote the nominal allocation over the jth planning period, which is of length ln(|qnj |).

From Theorem 4.1 in Dai [7] we have that for a.e. ω, Q̄n(t, ω) → q(t, ω). Furthermore,

from the absolute continuity of q(·, ω) and condition (3.2) it follows that l̄nj = lnj /n → 0

as n → ∞. Let x̄n(t, ω) = xn
j /l

n
j and observe that

X̄n(t, ω) =
∑

j

x̄n(t, ω)l̄nj →

∫ t

0

v(τ, ω)dτ,

for some v(·, ω) not yet specified. That is, the Riemann sum converges to the appropriate

integral as n → ∞. On the same time, from the previous proposition and Theorem 4.1

in Dai [7] we know that the nominal allocation process X̄n(t, ω) converges to a limit,

denoted X̄(t, ω), which is absolutely continuous. It follows that

v(t, ω) =
dX̄(t, ω)

dt

almost everywhere on the real line and thus, it is sufficient to study the limit of x̄n(t, ω)

along the sequence {yn} in order to establish the fluid limit of the nominal allocation

process.

Proposition 4.3. For a.e. ω, x̄n(t, ω) → v(t, ω) ∈ argmax{r(q(t, ω))′v : v ∈ V(q(t, ω))}.

Proof. From Theorem 4.1 in [7] it follows that for a.e. ω and any sequence of initial

conditions {yn} ⊂ Y such that ‖yn‖ → ∞ as n → ∞, there exists a converging sub-

sequence {ynj (ω)} with ‖ynj(ω)‖ → ∞ along which the fluid limits of the scaled queue
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length and allocation processes exist. Furthermore, from Proposition 4.1 it follows that

as n → ∞ for a.e. ω the planning LP of (3.6)-(3.7) is feasible.

Pick one such ω satisfying Theorem 4.1 from Dai [7] and Proposition 4.1, fix time at

t and choose j such that tj(ω) ≤ nt < tj+1(ω). (Recall that to simplify notation we are

working directly with the converging subsequence.) We have that qnj (ω) = Qn(tj(ω)) =

Qn(n(t − ǫn), ω), for some ǫn such that where 0 ≤ ǫn ≤ l̄nj (ω). Note that ǫn → 0 as

n → ∞. Also, let q̃nj (ω) = qnj (ω)/|Q
n(0)|. In the sequel, the variables xn, v are dummy

variables for the planning linear programs corresponding to x̄n(t, ω) and v(t, ω). The

planning linear program of equations (3.6)-(3.7) states that

x̄n(t, ω) ∈ argmax r(q̃nj (ω))
′xn (4.11)

subject to xn ≥ 0, Cxn ≤ 1, (4.12)

qnj (ω) + (λ−Rxn)lnj (ω) ≥ θnj (ω). (4.13)

Using strong duality of linear programming the optimality condition of equations (4.11)-

(4.13) can be rewritten in the following form

r(q̃nj (ω))
′xn = 1′νn + (bn(ω))′ζn, (4.14)

xn ≥ 0, Cxn ≤ 1, (4.15)

Rxnlnj (ω) ≤ bn(ω), (4.16)

νn, ζn ≥ 0, (4.17)

C′νn +R′lnj (ω)ζ
n ≥ r(q̃nj (ω))

′, (4.18)

(1− Cxn)′νn = 0, (bn(ω)−Rxnlnj (ω))
′ζn = 0, (4.19)

where bn(ω) = qnj (ω) + λlnj (ω)− θnj (ω) and νn, ζn are the dual optimization variables.

The next step is to derive the limiting behavior of the above set of conditions as

n → ∞. Conditions (4.15) and (4.17) are clear. Equation (4.16) constrains the feasible

allocation vectors in the primal planning problem of equations (3.6)-(3.7). Rewrite the

constraint of (4.13) in the form

λ−Rxn ≥ β −
Qn(nt, ω)

ln(|Qn(n(t− ǫn, ω)|)
. (4.20)

If limn Q̄
n
k (t, ω) > 0, the limit in the right hand side of (4.20) is minus infinity, and thus

the corresponding constraint for class k jobs is inactive. From Proposition 4.1, for any

ǫ > 0 and a.e. ω

lim
n

Qn
k (nt, ω)

βkln(|Qn(n(t− ǫn), ω)|)
≥ 1− ǫ, for all k = 1, . . . ,K.
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This implies that the limit of the right hand side of (4.20) is bounded above by zero.

Moreover, when limn Q̄
n
k (t, ω) = 0, by Proposition 4.1 it follows that q(t, ω) ≥ 0 for all

t ≥ 0, and thus it must be that (λ − Rxn)k ≥ 0. Hence, (λ − Rxn)k ≥ max(0, β −

limn Q
n(nt, ω)ln(|Qn(n(t− ǫn), ω)|)) = 0, and thus condition (4.16) becomes

(Rv)k ≤ λk, for k ∈ {1, . . . ,K} such that qk(t, ω) = 0.

This condition can be expressed as a polytopic constraint of the form Rq(t,ω)v ≤ bq(t,ω),

for the appropriate state dependent matrix Rq(t,ω) and vector bq(t,ω).

Next, the limit of q̃nj (ω) is derived. Conditions (3.1)-(3.2) imply that lnj (ω) =

ln(|qnj (ω)|) → ∞ and l̄nj (ω) → 0 as n → ∞. Also, by the construction of Y (t), the

state descriptor of the underlying Markov chain, that for any review period there exist

positive constants a1, a2 such that N(t) < a1l(|Q(t)|) and p(t) < a2l(|Q(t)|)1, and also

u(t) < l(|Q(t)|)1. Hence,

N̄n(t, ω) → 0, p̄n(t, ω) → 0, and ūn(t, ω) → 0 u.o.c.. (4.21)

Furthermore, for R̄a(0) = R̄s(0) = 0, it follows that ‖yn‖/|Qn(0)| → 1 and thus, q̃nj (ω) =

Q̃n(t− ǫn) → q(t, ω). Using this result, it is now simple to derive the fluid limits of the

other conditions using the continuity property of r(·), the continuous mapping theorem,

and the methodology in Dai [7]. That is, these conditions can be expressed as integral

constraints, that is pathwise complementarity conditions, which can be treated using

Lemma 2.4 of Dai and Williams [12], in conjunction with the pointwise limit derived

above for equation (4.16). First, one would derive the limits for (4.19) and then use the

derived results for (4.14) and (4.18). The resulting set of conditions will be

r(q(t, ω))′v = 1′ν + b′q(t,ω)ζ,

v ≥ 0, Cv ≤ 1,

Rq(t,ω)v ≤ bq(t,ω),

ν, ζ ≥ 0,

C′ν +R′
q(t,ω)ζ ≥ r(q(t, ω))′,

(1− Cv)′ν = 0, (bq(t,ω) −Rq(t,ω)v)
′ζ = 0.

One can immediately observe that these are the optimality conditions of the following

linear program

v(t, ω) ∈ argmax{r(q(t, ω))′v : v ∈ V(q(t, ω))}. (4.22)

By Theorem 4.1 in [7] and Proposition 4.1, this limiting argument is true for almost all

sample paths and thus the desired result is established. 2
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Remark 4.2. The limit v(t, ω) need not be unique; the above result simply describes

the policy specific equation that the limit of the fluid scaled nominal allocation process

should satisfy.

Remark 4.3. The definition of DR(r, l, β) uses information about the magnitude of

the initial condition. This is required in order to get the appropriate limits for equations

(4.11) and (4.14), and such a dependence is not necessary in the cases of static, linear or

piecewise linear reward rate functions.

We can now complete proof of main theorem of this section.

Proof of Theorem 4.1. Existence of a converging subsequence and the convergence of

the queue length and allocation processes follow from Theorem 4.1 in Dai [7]. Together

with the fluid limits of p(t), N(t) and u(t) given in equation (4.21) this completes the

proof of (4.3) and (4.3).

The representation of equation (4.4) follows again from the Lipschitz continuity of

T̄ (t, ω) and equations (2.6) and (2.7) are restatements of the basic fluid equations derived

in Theorem 4.1 in Dai [7], with respect to the instantaneous allocation process v(·, ω).

Using Propositions 4.3 and 4.2 we have that for a.e. ω for any time t ≥ 0

|X̄n(t, ω)− T̄ (t, ω)| → 0 and |T̄ n(t, ω)− X̄n(t, ω)| → 0, (4.23)

where T̄ (t, ω) =
∫ t

0
v(τ, ω)dτ and v(t, ω) satisfies condition (4.5). Pick any sample path

ω such that (4.23), is satisfied. Then for any time t ≥ 0

|T̄ n(t, ω)− T̄ (t, ω)| ≤ |T̄ n(t, ω)− X̄n(t, ω)|+ |X̄n(t, ω)− T̄ (t, ω)| → 0.

Since (4.23) is true for almost all sample paths, it follows that

|T̄ n(t)− T̄ (t)| → 0 a.s.. (4.24)

By the Lipschitz continuity of the allocation processes it follows that all of the above

conditions are true for any s such that 0 ≤ s ≤ t, which implies that the convergence is

uniform on compact sets for all t ≥ 0. This completes the proof. 2

5. Proof of stability

Stability of discrete-review policies will be established by analyzing their associated

fluid models. This connection between the fluid models and the underlying stochastic

networks was first established by Dai [7].
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Definition 5.1. The fluid model associated with a scheduling policy is stable if there

exists a time T > 0 such that for any solution q(·) of the fluid model equations with

|q(0)| = 1, q(t) = 0, for t ≥ T .

The following theorem is Dai’s stability result [7] that relates the stability properties of

the fluid model to that of the underlying queueing network.

Theorem 5.1. A multiclass open queueing network is stable under a scheduling policy

if the associated fluid model is stable.

Thus, the verification of stability of a multiclass network under a specified policy is

reduced to the much simpler task of checking stability of a fluid model with piecewise

linear dynamics. For the case of non-idling or work-conserving fluid limits, these are

fluid solutions (q, v) that satisfy the condition

(1− Cv(t))′Cq(t) = 0, for all t ≥ 0, (5.1)

Chen further refined this Theorem in [6, Theorem 5.2] by establishing the following

condition: the fluid model equations (2.2)-(2.5) and (5.1) are stable if and only if (2.6)-

(2.7) and (5.1) are also stable. Although this condition reduces the task of checking

stability to an analysis of the simpler undelayed fluid model equations, in general one

needs to establish stability under a whole family of policies that satisfy the non-idling

constraint in (5.1), which is very conservative. The following modification of Chen’s

condition is sufficient in order to establish stability by analyzing a single policy of interest.

Proposition 5.1. Consider any scheduling policy such that its associated fluid limit

model satisfies condition (5.1). Suppose that for any B > 0 there exists a time TB such

that for any solution q(·) of the undelayed fluid equations with |q(0)| ≤ B, q(t) = 0, for

all t ≥ TB. Then, the delayed fluid model is also stable.

Proof. Consider any fluid solution of the (delayed) fluid model equations. By the non-

idling property, it follows that there exists a time t0 such that T̄ (t0) ≥ R̄s and t01 ≥ R̄a.

At time t0 we have that

q(t0) = z̃ + λt0 −RT̄ (t0),

where z̃ = z−diag{λ}R̄a+RR̄s. Let B = |q(t0)|. By assumption it follows that q(t) = 0

for any t ≥ t0 + TB, which completes the proof. 2

The apparently stronger condition of establishing stability starting for any compact

set of initial conditions is required in order to avoid potential pathological cases of dy-
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namic control policies whose behavior changes drastically when the state is large. (For

example, consider the Rybko-Stolyar network [32] which is known to be unstable under

LBFS for some “bad parameter” choice. In this “bad parameter” regime, if the control

policy used was LBFS if |q(t)| > 1 and any other strict priority rule if |q(t)| ≤ 1, the

undelayed fluid model will be stable if |q(0)| ≤ 1 and unstable otherwise.) The condition

of Proposition 5.1 is automatically satisfied in cases where a certain similarity property

of the fluid limits applies (see Stolyar [35, section 6] or Chen [6, section 2]), and it is also

true in all cases where this proposition will be invoked in the sequel.

We start by establishing that the positivity restriction on the reward rate functions

implies the following non-idling property for the fluid models associated with DR(r, l, β):

Proposition 5.2. The fluid solutions of the set of equations (2.6), (2.7) and (4.5) asso-

ciated with a strictly positive reward function r(·) are non-idling in the sense of (5.1).

Proof. For any q(t) 6= 0, the instantaneous allocation process in the fluid model v(t),

will satisfy equation (4.5). Suppose that there exists a server i such that (Cq(t))i > 0

and (Cv(t))i < 1. Let k ∈ Ci be any job class for which qk(t) > 0. Define the following

instantaneous control v̂ = v(t)+ek(1−(Cv(t))i), where ek is the kth unit vector. Clearly,

v̂ > 0 and Cv̂ = Cv(t) + Cek(1 − (Cv(t))i) ≤ 1. Furthermore, for any job class j 6= k,

λj−(Rv̂)j ≥ λj−(Rv(t))j ≥ 0, which implies that v̂ is a feasible instantaneous allocation.

Moreover,

r(q(t))′v̂ = r(q(t))′v(t) + rk(q(t))(1 − (Cv(t))i) > r(q(t))′v(t),

which contradicts the optimality of v(t). Hence, there does not exist any server i such

that (Cq(t))i > 0 and (Cv(t))i < 1, and thus the fluid solutions satisfying equation (4.5)

will be non-idling. 2

Therefore, reward rate functions that satisfy (3.3) can be interpreted as non-idling

dynamic priority rules; the latter is with respect to their fluid behavior. The specific form

of the growth restriction in (3.3) is required for the proof of stability of these models; it

could be relaxed at the expense of a more complicated proof.

Static reward rate vectors: in the case of a constant reward vector, (4.5) sim-

plifies to

v(t) ∈ argmax
v∈V(q(t))

r′v. (5.2)

The intuition is that a constant reward vector induces a static priority rule according to

the relative magnitudes of the various reward rates in the sense described above. That
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is, for any two classes k, j ∈ Ci for some server i, rk > rj implies that class k jobs are

given higher priority than class j jobs and so forth.

Stability is proved by identifying a Lyapunov function with the appropriate negative

drift. (This follows from Lyapunov’s direct method described, for example, in the book

by LaSalle and Lefschetz [26].)

Proposition 5.3. The fluid model described by equations (2.6)-(2.7) and (5.2) is stable.

Proof. Define the function V (q(t)) = r′R−1q(t). First, observe that by the definition

of the matrix R, it follows that R−1 is componentwise non-negative. Then, since r > 0 it

follows that r′R−1 > 0 and thus, first, V (q(t)) > 0 for all q(t) 6= 0 and second, V (q) = 0

only when q = 0. Using V (·) as a candidate Lyapunov function, it is sufficient to prove

that for all q(t) 6= 0 and for some ǫ > 0,

dV (q(t))

dt
= min

v∈V(q(t))
r′R−1(λ −Rv) < −ǫ. (5.3)

Let I(q(t)) = {k : qk(t) = 0}. The condition of equation (5.3) should be checked over all

possible feasibility sets of the form V(q(t)) = {v : v ≥ 0, Cv ≤ 1, (Rv)k ≤ λk for all k ∈

I(q(t))}. Observe that if I(q1) ⊆ I(q2), then V(q1) ⊇ V(q2). This implies the drift

condition need to be checked only for the extreme (most constrained) cases defined by

Ik = {1, . . . ,K}/{k}, for all job classes k. These sets correspond to the cases where all

but the kth job classes are empty, and the associated feasibility sets will be denoted by

Vk = {v : v ≥ 0, Cv ≤ 1, Rkv ≤ λk}, for the appropriate (K − 1) ×K matrix Rk and

(K − 1)-vector λk.

In order to check the drift condition for each Vk, consider the input v̂k = R−1λ +

δkek, where δk = 1 − ρs(k) > 0. Clearly, v̂k ≥ 0 and also Cv̂k = CR−1λ + δkCek ≤ 1.

Finally,

λ−Rv̂k = −δkRek = δk(Pek − ek) ⇒ Rkv̂k ≤ λk, (5.4)

which establishes the feasibility of the instantaneous allocation v̂k. Furthermore, a simple

calculation yields that r′R−1(λ−Rv̂k) = −δkrk < 0. It follows from (5.2) that

dV (q(t))

dt
< r′R−1(λ−Rv̂k). (5.5)

Hence, the linear Lyapunov function V (q(t)) = r′R−1q(t) satisfies the drift condition of

equation (5.3) with ǫ = mink δkrk. One can easily obtain a bound on the time required to

empty the fluid model starting from any bounded initial condition and hence, establish

stability by invoking Proposition 5.1. 2
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One last observation in the context of constant reward rate vectors is that (5.2) can

be rewritten in the form

v(t) ∈ argmin
v∈V(q(t))

dV (q(t))

dt
. (5.6)

Equation (5.6) provides a greedy interpretation of the associated fluid model, in the sense

that resource usage is allocated in order to instantaneously minimize a linear objective

defined by the linear Lyapunov function V (q(t)). The interpretation of the constant

vector r as a static priority rule together with equation (5.6) illustrate a relation between

linear Lyapunov functions, static priorities, and constant reward rate vectors.

As an example of a specific choice of a constant reward rate function consider an

optimal network control problem under linear holding cost criterion. In this case, a

sensible starting point in choosing a control policy for these networks, is to try to enforce

the priority ranking that at any point in time strives to maximize cost draining out of

the system; this is a generalization of the celebrated “cµ” rule (see [38] for a discussion

of related results). Assuming that the linear holding costs are denoted by hk for each

job class k, this greedy policy strives to minimize h′(λ − Rv) of the admissible controls

v ∈ V(q(t)). The corresponding static reward rate function is given by r = R′h and the

appropriate structure of this policy is precisely the greedy control of (5.2).

Dynamic reward rate functions: stability for the fluid model described by

(2.6)-(2.7) and (4.5) cannot be established by extending the method used for the case

of constant reward vectors. The reason is that the vector valued function r(·) need not

correspond to the gradient of some well defined potential function and as a result, no

obvious Lyapunov function can be associated with r(·) in order to establish the stability

of the fluid model. However, given the non-idling property of the dynamic reward rate

functions satisfying (3.3), the negative drift condition in (5.3) still carries through, and

it will be exploited in establishing the desired result.

Proposition 5.4. The fluid model described by equations (2.6)-(2.7) and (4.5) is stable.

Proof. Let g(q(t)) = R−T r(q(t)). Since, R−1 is componentwise non-negative it is clear

that g(q(t)) > 0, for all q(t) 6= 0. Furthermore, without loss of generality we can assume

that the following normalization condition is true: 1 ≤ g(q) ≤ b+ |q|γ for some constant

b > 0. Define the functional

V (q(t)) = −

∫ ∞

t

e−ζ(τ−t)g(q(τ))′ q̇(τ)dτ , (5.7)
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where ζ > 0 is a discount factor. The functional V (·) can be interpreted as an exponen-

tially weighted energy function for the fluid model. The drift of V (·) is given by

dV (q(t))

dt
= g(q(t))′q̇(t). (5.8)

Imitating the proof of Proposition 5.3, an upper bound on the drift of V (·) is first derived

as follows

min
v∈Vi

g(q(t))′(λ−Rv) ≤ g(q(t))′[λ−R(R−1λ+ δiei)] ≤ − δi. (5.9)

A lower bound of the drift of (5.8) can also be computed using G = −mink{(λ−Rv)k :

v ≥ 0, Cv ≤ 1} Then for any q(t) 6= 0 we have that

−GK(b+ |q(t)|γ) <
dV (q(t))

dt
< −ǫ = −(1−max

i
ρi). (5.10)

Hence, V (q(t)) > 0 for all q(t) 6= 0, and V (q(t)) = 0 implies that q(t) = 0. Given (5.10)

the following upper bound on V (q(t)) is obtained

V (q(t)) =−

∫ ∞

t

e−ζ(τ−t)g(q(τ))′ q̇(τ)dτ

≤GK

∫ ∞

0

e−ζτ (b+ |q(t+ τ)|γ)dτ

≤GK

∫ ∞

0

e−ζτ (|q(t)|+ κτ)γdτ +
GK

ζ
,

where the last inequality is derived using the Lipschitz continuity of the fluid limit of the

queue length process and κ > 0 is the appropriate Lipschitz constant. As a result, for

any initial condition such that |q(0)| = 1,

V (q(0)) ≤ GK

∫ ∞

0

e−ζτ (1 + κτ)γdτ +
GK

ζ
≤ Ĝ, (5.11)

where Ĝ is a constant that depends on the parameters γ, κ, ζ and G. Using the upper

bounds of equations (5.10) and (5.11), we get that the time required to empty the fluid

model is bounded above by T̂ = Ĝ/ǫ. Stability follows from Proposition 5.1. 2

Finally, stability of the corresponding discrete-review policy follows from Theorem

5.1 (due to Dai) and Proposition 5.1. This completes the proof of Theorem 3.1.

Roughly speaking, the results of this section state that greedily optimizing over

any reward rate function that satisfies a non-idling constraint (with respect to their

fluid model behavior in the sense explained in Proposition 5.2) within a discrete-review

structure will result in a stable scheduling policy; this is true even for priority rules

that are known to have unstable fluid limit models when they are directly implemented.

This property of the proposed discrete-review structure can be viewed as a regulator,
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or a stabilization method, for dynamic (non-idling) priority rules. This property follows

from the fact that the priority ranking is not strictly enforced, but the controller is

allowed extra flexibility in serving lower priority classes in order to maintain feasibility

of the nominal ending state after each planning period, and thus prevent future idleness.

Inherently, the last remark describes how the linear programming planning structure and

the safety stock requirements of discrete-review policies address the fundamental tradeoff

between myopic cost minimization and long-term resource utilization. In contrast, in a

multiclass network under a given priority rule, resources are allocated in order to minimize

some associated holding cost without any consideration for future resource utilization,

which can lead to instability.

The idea of a stabilization method is not novel; Kumar and Seidman [24] proposed

a threshold heuristic that essentially controls the large state behavior of any multiclass

network with deterministic routing and deterministic processing and setup times, and

Humes [20] proposed the use of regulators, a variant of the leaky buckets idea from the area

of communications systems and traffic shaping. In this setting, they proved that their

mechanisms stabilizes almost any scheduling policy. The differences between these two

techniques and the policies presented here are first, on the stochastic versus deterministic

nature of the controlled network and second, on the behavior (or performance) of the

underlying networks when they are many jobs in the system. That is, although the

essential mechanics of discrete-review policies reduce to a period by period deterministic

reasoning, the overall system dynamics are stochastic. It was the choice of the length

of each planning period and the corresponding magnitude of safety stocks that allow

for this separation of the relevant time scales and yield the deterministic nature of the

planning problem in (3.6)-(3.7). On the same time, a discrete-review policy explicitly

involves optimization with respect to a some desired specification, such as designated

class priorities, or some other performance criterion of interest, while the mechanisms

proposed in [24,20] do not incorporate such performance considerations.

The non-idling assumption has proved necessary in order to guarantee the global

drift condition of equation (5.9). In the case of idling-allowing priority rules, stability

cannot be established using the techniques used in the proof of Theorem 3.1, and addi-

tional requirements need to be imposed on the reward function in order to still guarantee

a negative drift for some other candidate Lyapunov function for the associated fluid

model.
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6. Extensions

In this section we describe several extensions to the network models under investi-

gation that can be readily incorporated within the proposed framework with only minor

modifications both in the conceptual and implementation levels. This is possible because

both fluid approximations and the proposed family of control policies are largely insensi-

tive to many subtle modeling details that lie below their level of resolution. In contrast,

within mainstream queueing network theory these extensions would normally venture

into radically different domains of application and research, and would not be able to be

treated in a unified framework.

6.1. Adding more control capability

Alternate routing capability arises either when a job completes service at a station

and has a choice as to which buffer to join next, or upon an exogenous arrival of a job

in the system that again has a choice between different buffers that it can join. We

will assume that these external arrival streams or input processes can be turned off, or

equivalently, that such jobs can be rejected upon arrival depending on whether such an

action would be advantageous for the overall system performance. An incentive structure

for accepting arriving jobs will be introduced shortly. In contrast, the models considered

so far assumed that routing decisions were made in a Markovian fashion according to the

transition matrix P ; this corresponds to a a randomized routing policy that is a priori

specified with no admission control capability.

In extending the model formulation of section 2, it is convenient to introduce the

designation of a “type” in order to identify each exogenous arrival stream that now could

be routed to (or be split into) different job classes; this follows the modeling approach

of Harrison in [18]. Types of arrivals will be indexed by j and with slight abuse of

notation, the set of exogenous arrival streams will still be denoted by E . Furthermore,

it is easiest to model these input streams as being “created” or “generated” by fictitious

“input servers” associated with each type of arrival. In this framework, a service time of

the jth input server corresponds to an interarrival time of the type j input stream drawn

from the IID sequence {ξj(n), n ≥ 1}, defined in section 2. We denote by Ra
j the set of

classes k where a type j job can be routed to upon its arrival, and by Rd
k the set of classes

l where a class k job can be routed to upon its service completion. The superscripts “a”

and “d” are mnemonic for arrivals and departures respectively. If λj = 0, that is, if there

are no arrivals of type j, we set Ra
j = {j}; this is consistent with our treatment so far.

To simplify notation it will be assumed that routing decisions are made upon the
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beginning of service of a job by a server or creation of a job by a fictitious input server.

(Note that this is not a restrictive assumption, at least in the context of our approach,

and could easily be relaxed.) In this case, a class k (type j) job beginning service

(creation) is already “tagged” with the destination class l ∈ Rd
k (l ∈ Ra

j ), where it will

be routed upon completion of service. Let Tk,l(t) be the cumulative time allocated up

to time t in processing class k jobs that are routed into class l jobs upon their service

completion (l ∈ Rd
k), Yj,l(t) be the cumulative time allocated up to time t in creating

type j jobs routed into class l jobs (l ∈ Ra
j ), and Ej,l(t) be the cumulative number of

type j jobs routed into class l jobs up to time t given the cumulative allocation processes

Yj,l(t). Extending our earlier formulation, a control policy now takes the form of a pair

of cumulative allocation processes {(Y (t), T (t)), t ≥ 0}. For all classes k and any t ≥ 0,

Tk(t) =
∑

l∈Rd
k

Tk,l(t) and Ek(t) =
∑

j:k∈Ra
j

Ej,k(t), (6.1)

and furthermore for each j ∈ E we have that
∑

l∈Ra
j
Yj,l(t) ≤ t, for all t ≥ 0; the last

inequality is a consequence of the input control actions up to time t.

The following notation will be useful. Let yj,l(t) denote the fractional effort of the

fictitious input server j allocated in creating type j jobs that are routed to the class l

buffer at time t, and νk,l(t) be the fractional effort of server s(k) allocated in processing

class k jobs that are routed to the class l buffer at time t. The notation vk(t) still denotes

the fraction of effort of server s(k) devoted to processing class k jobs at time t.

An incentive structure for accepting externally arriving jobs is introduced in the

form of a reward rate function ry : RK
+ → R

(
∑

j∈E
|Ra

j |), that assigns a reward rate ryj,l(q)

to the activity of creating (or accepting) type j jobs that are routed to the class l buffer

(l ∈ Ra
j ) when the state of the system is equal to q. The resulting instantaneous reward

will thus be ryj,lyj,l. Similarly, the reward rate function rν : RK
+ → R(

∑

k
|Rd

k|), assigns a

reward rate rνk,l(q) into processing class k jobs to be routed upon service completion to

the class l buffer (l ∈ Rd
k) when the state of the system is q.

For appropriate choices of control vectors y, ν and matrices Ã, F̃ , R̃, C̃, a discrete-

review policy can be defined by replacing (3.6)-(3.7) by the following planning LP at

each review period

(y, ν) ∈ argmax (ry)′y + (rν)′ν

subject to y ≥ 0, ν ≥ 0, C̃ν ≤ 1l, Ãy ≤ l1, q + F̃ y − R̃ν ≥ θ.

The execution of the processing plan derived by this LP is as follows:

• for each type j accept ⌈(Ãy)jλj⌉ jobs and the turn arrival stream off
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• route ⌊yj,lλj⌋ type j jobs to class l, for each j ∈ E and l ∈ Ra
j

• process
(

∑

l∈Rd
k

⌊νk,l/mk⌋
)

∧ qk class k jobs, for k = 1, . . . ,K

• route ⌊νk,l/mk⌋ class k jobs to class l, for k = 1, . . . ,K and l ∈ Rd
k

• implement remaining of idleness budget u = l1− C̃ν as in section 3

The alternative logic of (3.9)-(3.10) and Lemma 4.2, that is applied if the planning LP

above is infeasible can be extended in a similar way.

Using the standard procedure mentioned in section 2 and the derivations of section

4, the fluid limit model associated with this discrete-review policy will be

q̇(t) = F̃ y(t)− R̃ν(t), q(0) = z, (6.2)

y(t) ≥ 0, ν(t) ≥ 0, q(t) ≥ 0, (6.3)

Ãy(t) ≤ 1, C̃ν(t) ≤ 1, (6.4)

together with the policy specific equation

(y(t), ν(t)) ∈ argmax ry(q(t))′y + rν(q(t))′ν (6.5)

The issue of stability is slightly more delicate now. Assuming that there is no input

control (this is the natural case to consider), one needs to first define the appropriate

notion of nominal load (or traffic intensity) for networks with alternate routing capability.

(Without input control the constraint Ãy(t) ≤ 1 needs to be replaced by Ãy(t) = 1.)

As we have seen earlier, for a system to be stable it is necessary that the nominal load

at each station is smaller than its processing capacity. Though, calculating the nominal

utilization level at each station is no longer straight forward, since this depends on the

routing strategy employed. The following linear program, adapted from Harrison [19],

computes a worse case bound on the traffic intensity in the network:

minimize max
1≤i≤S

ρi

subject to Ãy = 1, R̃ν = F̃ y, C̃ν ≤ ρ, ν ≥ 0, y ≥ 0.

The pair (y, ν) describes the average rates at which jobs are processed, created, and

routed through the network, and ρi is an upper bound on the nominal utilization level

at station i. A necessary condition for fluid model stability (according to Definition 5.1)

is that ρ < 1. Provided that the solution of this LP satisfies this condition, all previous

results regarding the stability of fluid models associated with discrete-review policies can

be extended in a straight forward manner to the case of networks with routing control

capability. It remains to establish the stability of the underlying stochastic networks,

for which one first needs to extend the stability theory developed by Dai in [7] to this
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broader class of networks. In particular, a result equivalent to that of Theorem 4.1 in

[7] is needed. Although, given the original work of Dai [7], such an extension would

be mostly routine manipulation, it would be quite lengthy and is omitted. Assuming,

nevertheless, the validity of this result, the stability of the discrete-review policies under

investigation would easily be inferred.

6.2. Stations with setup delays

A practical feature of stochastic processing networks that is commonly omitted from

mathematical models of these systems is that of setup delays (or switchover delays) that

are incurred when a server switches between processing different classes of jobs. There

is an extensive literature for these problems mostly under the rubric of polling systems

that focuses on single server systems and often restricts attention to simple classes of

policies, most often some variant of round-robin or serve-to-exhaustion policies; see for

example [36,15,21].

In the context of discrete-review policies setup delays can be introduced at no extra

cost in complexity or performance. This follows by exploiting the fact that planning

horizons vary in a longer time-scale than that of setup delays incurred in switching

between classes, and thus, the cumulative time spent in setups will be small compared

to the cumulative time spent in the actual processing of jobs.

Specifically, let dk,l be the setup time required for server i to switch from processing

class k jobs to processing class l jobs, where k, l ∈ Ci, and set di = maxk,l∈Ci
dk,l. Then,

the maximum time spent by server i in setups within every review period is bounded

above by |Ci|di, since only one setup is needed per job class in executing the open-

loop processing plans from jobs present at the beginning of each review period. This is

constant as a function of |Q(t)|, and thus, as |Q(t)| increases, the cumulative time spent

in setups becomes negligible in comparison to the cumulative time spent in processing

jobs at each station, and asymptotically under fluid scaling it vanishes. Using this last

observation it should not be surprising that all the analysis and results provided so far

will extend to the case of multiclass networks with setups.

7. Concluding remarks

In this paper we have described a new family of discrete-review policies for dynamic

control of stochastic processing networks. These policies are characterized by the use of

a dynamic reward rate function, of planning horizons that grow as a function of the

magnitude of the queue length vector, and class level safety stocks. Under a continuity
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and a non-idleness assumption on the reward function and a growth condition on the

review period length, every discrete-review policy in this family is proved to be stable.

The loose assumptions imposed on the choice of the reward function provide significant

design flexibility, which can be exploited in order to address a variety of applications

with different performance metrics.

Several directions of research could be pursued. On the practical front, one would

need to carry through extensive simulation experiments to validate the usefulness and

applicability of these policies to practical situations. From a theoretical viewpoint, one

would like to relate these ideas with optimal control of fluid and Brownian models. The

first of the two has been addressed in part by the author in a companion paper [28],

whereas the second is still an open problem.

Acknowledgements

I would like to thank Michael Harrison for providing the initial motivation for this

work and for his continuing support along the various stages of this research. I am also

grateful to Sunil Kumar for his continuing involvement with this work and his many

insightful comments and suggestions. Finally, I am thankful to the anonymous referee

for pointing out numerous helpful suggestions and changes.

Appendix

In the following two lemmas several large deviation bounds will be derived and thus, many
auxiliary functions will have to be introduced (as exponents to these bounds). The convention
we follow is that subscripts will designate class specific quantities whereas superscripts will
designate different types of flows, such as arrivals or service completions.

Proof – Lemma 4.2. Suppose that at the jth review period, the observed queue length vector
is qj , the nominal planning horizon length is lj and (3.6)-(3.7) are infeasible. The controller
proceeds with the infeasible planning logic of (3.9)-(3.10).

Since l̂ is a slack parameter, the linear program (3.9)-(3.10) will always be feasible and
(x̂, l̂) will be its corresponding minimizer. Define p̂(k) = ⌊x̂(k)/mk⌋ and û = l̂1 − Cx̂, where
û is the vector of nominal idling times up to time l̂. From equation (3.10) it follows that
l̂λ − (I − P ′)p̂ > β. Using the methodology of Lemma 4.1 the following bound on the review
period length can be derived

l̂ ≤
1

δ1

(

1 +
1

mink βk

)

and p̂(k) ≤
l̂

mk
, (.1)

where δ1 is the constant defined in Lemma 4.1.
Let N = ⌈lj⌉ and define pj = N · p̂ and uj = N · û to be the nominal processing plan and

the nominal idling durations over the jth planning period under this infeasible planning logic.
To implement the proposed processing plan the following two step algorithm will be executed.
First, the system will be idled for a sufficient period so as to accumulate all jobs associated
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with classes that have an exogenous arrival process, that are required to be processed according
to the plan pj . Second, the plan (pj , uj) will be divided and implemented as a sequence of N
independent executions of (p̂, û).

Step 1: Let τI = max{pj(k)/λk : for all k ∈ E}. Using (.1) it is simple to see that

τI ≤ max
k∈E

l̂ ·N

λk ·mk
≤ LI · lj

for the appropriate constant LI . As mentioned above, the first step is to idle the system for
(τI + ǫlj/2) time units. The following bound is a direct application of Fact 4.1 on the sequence
of random variables {ξk(n), n ≥ 1} for each class k ∈ E

P (Ek(τI + ǫlj/2) < pj(k)) ≤ e−ha
k(ǫ)lj , (.2)

for some ha
k(ǫ) > 0. Let ha(ǫ) = min{ha

k(ǫ) : for all k ∈ E} to get the bound

P (Ek(τI + ǫlj/2) < pj(k)) ≤ e−ha(ǫ)lj for all k ∈ E . (.3)

Step 2: The plan (pj , uj) will be divided in N independent executions of (p̂, û). Each
inner execution iteration of (p̂, û) could be performed as follows:

1. idle the system for maxi ûi time units;

2. serve p̂(k) jobs for each class k ∈ E ;

3. sequentially serve jobs of each class k /∈ E in any order until either p̂ has been completed or
there are no more jobs to serve for any class j for which the processing plan p̂(j) has not
yet been fulfilled.

Let ŷ(k) = ⌊Ek(τI +ǫlj/2)/N⌋ for each class k ∈ E , and ŷ(k) = 0 otherwise. Let ŵi be a random
variable in RK

+ defined to be the ending state of the queueing network under study starting with
initial condition ŷ, upon completion of the ith inner execution step of (p̂, û) described above.
That is, under this implementation mechanism all N of these inner execution steps are initialized
at ŷ and the system tries execute (p̂, û) as if the there were only ŷ jobs in the queues at the
beginning of the ith step, independent of the ending state upon the completion of the previous
(i− 1) cycles. Hence, ŵ1, . . . , ŵN is a sequence of IID random variables. Since, each ŵi can be
expressed as a linear combination of service time and interarrival time random variables that

satisfy (A2), we have that E(Eθŵ1

) < ∞ for some θ > 0. Let Ti.e. be the execution time of
a single iteration of this step. Clearly, E(Ti.e.) ≥ l̂ and therefore E(ŵ1) ≥ l̂λ − (I − P ′)p̂ > β.
Applying repeatedly Fact 4.1 one eventually gets the following bound

P

(

N
∑

i=1

[ŵi −E(ŵ1)] >
ǫ

2
Nβ

)

≤ e−hi.e.(ǫ)N , (.4)

for some hi.e.(ǫ) > 0. For this execution plan, qj+1 = qj +
∑N

i=1 ŵ
i. Hence, by combining the

bounds in (.3) and (.4) and letting h(ǫ) = min{ha(ǫ), hi.e.(ǫ)}, the following bound is derived

P
(

qj+1 − θj �
ǫ

2
ljβ
)

≤ e−h(ǫ)lj . (.5)

Total Duration: The total duration of the proposed execution plan tj+1 − tj is given by
tj+1−tj = τI +ǫlj/2+

∑N
i=1 Ti.e.(i). The sequence Ti.e.(1), . . . , Ti.e.(N) of IID random variables

satisfies the following conditions:

E(Ti.e.(1)) ≥ l̂, and E(Ti.e.(1)) ≤ (1 + S)l̂. (.6)
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Once again, it is easy to verify that E(EθTi.e.(1)) < ∞ for some θ > 0, and thus the following
large deviations bound for tj+1−tj can be derived using Fact 4.1 on the sequence {Ti.e.(i), i ≤ N}
of IID random variables:

P (tj+1 − tj > Lǫlj) ≤ e−d(Lǫ)lj , (.7)

for some Lǫ > LI + ǫ/2 + 2(1 + S)l̂ and some d(Lǫ) > 0.
Feasibility: It remains to show that the state observed at the next review point qr+1

will satisfy the conditions of Lemma 4.1 with sufficiently high probability. Since, |qj+1| ≤
|qj |+ |

∑N
i=1 ŵ

i| it follows that

lj+1 ≤ lj + l

(

|

N
∑

i=1

ŵi|

)

. (.8)

Clearly, there exists a constant a > 0 such that β < E(ŵ1) < aβ, and using (.4) the following
bound is obtained

P

(

|
N
∑

i=1

ŵi| −Na|β| >
ǫ

2
N |β|

)

≤ e−hi.e.(ǫ)N .

Combining these two results with equation (.8) and for some constant G > 0 independent of qj

P (lj+1 − lj > l(Glj)) ≤ e−h(ǫ)lj . (.9)

Given (.5), in order to prove (4.6) it is sufficient to show that (1 − ǫ/2)lj > (1 − ǫ)lj+1. This
is equivalent to the condition l(Glj)/lj < ǫ/(2 − 2ǫ), which using (3.2) can be rewritten in the
form lj > N(ǫ), where N(ǫ) > 0 is some appropriate constant. The last condition is equivalent
to |qj | > N1 = eN(ǫ)/c and this completes the proof. 2

Proof – Lemma 4.3. Recall that {φi(n)} is the sequence of K-dimensional Bernoulli random
vectors such that φk

j (n) = 1 if upon service completion the nth class k job becomes a class j job
and is zero otherwise, and that Φk(n) =

∑n
j=1 φ

k(j). Using these definitions the state observed

at the end of the rth planning period will be

qj+1 = qj + E(tj+1 − tj)− pj +

K
∑

k=1

Φk(pj(k)). (.10)

The various terms in equation (.10) will be analyzed in order to obtain the desired bound for
qj+1.

External arrivals: The expected duration of the rth execution period satisfies the condition

E(tj+1 − tj) = ‖uj + CMpj‖∞ ≤ ‖uj + Cxj‖∞ ≤ lj . (.11)

Using Wald’s identity for random sums of random variables, one gets that the expected vector
of external arrivals until the next review period tj+1 is such that E(E(tj+1 − tj)) ≤ ljλ. Let
Sj(k) denote the number of class k services completed in the first j review periods. Apply Fact
4.1 to the sequence {ηk(n), n ≥ 1} for each job class k to get that

P





Sj(k)+pj(k)
∑

i=Sj(k)+1

(ηk(i)−mk) > ǫlj



 ≤ P





⌈lj·µk⌉
∑

i=1

(ηk(i)−mk) > ǫlj



 ≤ e−fs
k(ǫ)lj . (.12)

A similar argument will yield a lower bound on
∑pj(k)

i=1 (ηk(i)−mk). (For this an alternative
form of Fact 4.1 needs to be invoked that focuses on large exceedanses below the mean; such
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an extension is straight forward to obtain by considering the sequence of random variables
{−x1, . . . ,−xn} and any a < E(−x1).) Overloading notation, let fs

k (ǫ) be the exponent in the

large deviations bound for |
∑pj(k)

i=1 (ηk(i)−mk)|. Combining the above results over all classes
the following bound is obtained

P(|tj+1 − tj − lj | > ǫlj) ≤ e−fs(ǫ)lj , (.13)

where fs(ǫ) = min{fs
k (ǫ) : for all k such that pj(k) > 0} > 0. Also, for any class k ∈ E

P(|Ek(t)− λkt| > ǫtβk) ≤ e−fa
k (ǫk)t, (.14)

where ǫk = ǫβk and the last bound was obtained once again using Fact 4.1 in the se-
quence {ξi(n), n ≥ 1} of IID random variables for the events {

∑⌈(λk+ǫ)t⌉
j=1 ξk(j) < t} and

{
∑⌊(λk−ǫ)t⌋

j=1 ξk(j) > t}, and once again fa
k (ǫk) > 0. Let fa(ǫ) = min{fa

k (ǫk) : for all k ∈ E}.
Then by combining (.13) and (.14) the following bound is derived

P(|E(tj+1 − tj)− ljλ| > ǫljβ) ≤ e−fext(ǫ)lj , (.15)

where fext(ǫ) = min{fs(ǫ), fa(ǫ)} > 0.
Internal flows: Using Fact 4.1 on the appropriate sequence of Bernoulli random variables

the following bound is obtained

P(Φk
i (pj(k))− Pk,ipj(k) > ǫljβi) ≤ e−hint

ki (ǫ)lj .

Letting hint(ǫ) = min{hint
ki (ǫ) : 1 ≤ k, i ≤ K} > 0 the following bound is established

P

(

K
∑

k=1

Φk(pj(k))− P ′pj > ǫljβ

)

≤ e−hint(ǫ)lj . (.16)

Similarly, one could obtain a lower bound for this internal flow process and then by combining
(.15) and (.16) and letting f(ǫ) = min{fext(ǫ/6), hint(ǫ/6)} > 0 the following bound is derived

P(zj+1 − qj+1 > 1+
1

3
ǫljβ) ≤ e−f(ǫ)lj . (.17)

To prove the second result of this lemma observe that for lj large enough, which is equiv-
alent to the condition qj > N for some constant N > 0, equation (.17) becomes

P(qj+1 � (1− ǫ/2)θj) ≤ e−f(ǫ)lj (.18)

Letting δ̄ = argmax{|λ−Rv| : v ≥ 0, Cv ≤ 1}, the following is true

|qj+1| ≤ |qj |+ lj(|δ̄|+ ǫ/2)|β|). (.19)

As for Lemma 4.2, an appropriate constant N2 can be computed to complete the proof. 2
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given r(·), l(·), β;

j = 0; t0 = 0; l0 = al(|Q(0)|);

repeat {

1. Compute length of review period length and safety stock levels. Set:

q := Q(tj); q̃ := q/|Q(0)|; l := l0 ∨ l(|q|); r := r(q̃); θ := βl;

2. Compute K-vector of nominal allocations x

maximize r′x

subject to q + lλ−Rx ≥ θ, x ≥ 0, Cx ≤ l1

3. Form processing plan p and idleness budget u

p(k) :=

⌊

xk

mk

⌋

∧ qk for k = 1, . . . ,K, ui := l − (Cx)i for i = 1, . . . , S

4. Execute (p, u) until completion - execution time T exe.

5. Update: tj+1 := tj + T exe; j := j + 1;

}

Figure 1. Algorithmic description of DR(r, l, β)
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Figure 2. Discrete-review policy: a schematic representation


