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ABSTRACT The efficient development of system software and design applications in parallel architecture

is a notable challenge considering various aspects, such as load balancing, memory spaces, communication,

and synchronization. This paper presents a block parallel Cholesky factorization algorithm for a multicore

system, which is developed based on activity on edge network. First, the basic block computing tasks and

their dependencies are taken as vertices and edges, respectively, and a directed acyclic graph corresponding

to the specific block parallel Cholesky factorization is generated. Next, each edge of the directed acyclic

graph is assigned to a weight equal to the processing time of the initial vertex of the edge, and the directed

acyclic graph becomes an activity on edge network with only one starting and one ending vertex. Finally,

a queuing algorithm is designed for the basic block computing tasks according to the edge activity on edge

network, and a dynamic scheduling strategy is developed for block parallel Cholesky factorization. The

results of the experiments concerning the parallel execution time of the algorithm in multicore systems with

different configurations demonstrate that the proposed algorithm has notable advantages compared with the

traditional static scheduling algorithm, and it exhibits satisfactory load balancing, parallelism, and scalability

capacities.

INDEX TERMS Cholesky factorization, dense linear algebra, dynamic schedule strategy, load balancing,

multicore computing.

I. INTRODUCTION

Parallelism appears to be the future of computing. In the past

twenty years, parallel hardware architecture has evolved dra-

matically. Chip designers have turned to multicore processors

and parallel programming to advance the quest for higher

performance [1]–[3]. Multicore processor technologies, from

supercomputers to embedded devices, have become ubiqui-

tous in our everyday lives and have exerted a far-reaching

impact on the high-performance computing world [4], [5].

The associated large market competence has prompted

the industry and academia to develop various advanced
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technologies and architectures. The parallel programming

technique must thus be extended to all areas of software

design and development [6]–[8]. Programming in multicore

or manycore systems is one of the most prominent challenges

considering various aspects such as load balancing, memory

spaces, communication, and synchronization [9], [10]. In the

past, many attempts have been made to develop parallelizing

compilers and parallel algorithms. Matrix factorization is a

classical parallel programming algorithm and the key to a

linear algebra system. Many problems, such as the solving of

linear systems of equations, least squares fitting, and finding

eigenvalues, can ultimately be reduced to matrix factoriza-

tion. Cholesky, LU, and QR factorizations are commonly

used to solve dense linear algebra systems and are widely
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employed in scientific and engineering models [11]–[14].

Nearly all popular linear algebra libraries, such as the Linear

Algebra Package (LAPACK) [15], Scalable Linear Algebra

Package (ScaLAPACK) [16], and Parallel Linear Algebra

for Scalable Multi-core Architectures (PLASMA) [17], [18],

include Cholesky, LU, and QR factorization routines.

Tomov et al. [19] presented an approach to solve the

dense linear algebra for multicore systems with GPU

accelerators. The authors used a high-level parallel pro-

gramming model and leveraged existing software infras-

tructure to accelerate the matrix factorization. A parallel

Cholesky block factorization algorithmwas presented in [10],

in which a one-dimensional row block cyclic distribution

strategy was employed to reduce the communication cost.

Cojean et al. [20] proposed an approach that exploited the

internal parallelism within tasks and improved the load bal-

ancing between CPUs and accelerators by combining a global

and a local runtime system. In [21], a task-parallel algo-

rithm was presented for sparse incomplete Cholesky fac-

torization in which a task graph was used to deal with

the data dependencies. Buttari et al. [22] presented a fine

granularity parallel algorithm for the Cholesky, LU and QR

factorizations. A heterogeneous factorization algorithm for

multicores and multi-GPU systems was developed in [23],

and the static data distribution was used to realize load bal-

ancing. Lastovetsky and Reddy [24] presented a static data

distribution algorithm for dense linear algebra to fit the

processors’ heterogeneity and memory locality. A parallel

LU factorization for heterogeneous systems was developed

in [25] by using the static uniform block allocation policy to

improve the performance of the algorithm. Endo et al. [26]

developed a static load balancing algorithm in which all

processors participated in updating the trail matrix. In [27],

a parallel Cholesky block factorization that used a static

block cycle data distribution policy for a multiple proces-

sor system was introduced. Generally, the static scheduling

algorithm for Cholesky factorization is relatively easier to

implement because the number of loops is definite. How-

ever, it is difficult to attain complete load balancing by

using the static scheduling strategy for existing dependencies

among basic block computing tasks from different itera-

tions [22], [28], [29]. Abdelfattah et al. [30] discussed the

static and dynamic scheduling strategies for Cholesky factor-

ization to develop algorithm parallelism. Agullo et al. [31]

performed an extensive analysis and comparison of static and

dynamic Cholesky factorization algorithms for systems hav-

ing multiple CPUs and GPUs. Deisher et al. [32] described

a dynamic load balancing algorithm for matrix factorization

in a multicore platform; however, they did not consider the

parallelism on the first step of each iteration of the Cholesky

factorization. In the current study, we develop a dynamic

scheduling strategy for block parallel Cholesky factorization,

which is based on an activity on edge (AOE) network.

The remainder of this paper is organized as follows:

Section II discusses the block parallel Cholesky factorization

algorithm. Section III presents the dynamic load balancing

strategy based on an AOE network for multicore architecture.

Section IV presents the experimental results, and a brief

conclusion is presented in Section V.

II. BLOCK PARALLEL CHOLESKY FACTORIZATION

Assuming that A is an N×N symmetric and positive-definite

matrix, it can be factorized into a product of a lower triangular

matrix L and its transpose LT , that is, A = LLT . Since

the Cholesky factorization must be applied to a symmetric

positive definite matrix, only the lower triangular portion of

A is required to be stored. Hence, it can be assumed that the

matrix A is stored in the lower triangle of a two-dimensional

array, and the computed elements of L overwrite the given

elements of A. Generally, if N × N matrices A and L are

partitioned into n× n blocks of the same size and denoted as

A =





A00
· · · · · ·

A(n−1)0 · · · A(n−1)(n−1)



 (1)

and

L =





L00
· · · · · ·

L(n−1)0 · · · L(n−1)(n−1)



 (2)

the block parallel Cholesky factorization can be implemented

in n loops.

Algorithm 1 Traditional Block Parallel Cholesky

Factorization
for (k =0; k < n; k++){

DPOTF2(Akk ,Lkk ):

for (i = k+1; i < n; i++)

DTRSM(Lkk ,Aik ,Lik ):

for (i = k+1; i < n; i++){

for (j = k+1; j < i; j++)

DGEMM(Lik , Ljk , Aij);

DSYRK(Lik , Ljk , Aij);

}

}

Traditionally, block parallel Cholesky factorization can

be easily implemented by calling four BLAS and LAPACK

subroutines, as shown in algorithm 1, which contains three

nested loops. The four subroutines for double precision data

are DPOTF2, DTRSM, DGEMM, and DSYRK. The sub-

routine DPOTF2(Akk , Lkk ) is used to compute the Cholesky

factorization of the matrix blocks on the basis of the equation

Akk = LkkL
T
kk . Given an input matrix block Akk , the output

would be the lower triangular matrix block Lkk . The subrou-

tine DTRSM(Lkk , Aik , Lik ) is used to compute Lik (i > k)

according to the equation Lik = AikL
−T
kk . The subroutines

DGEMM(Lik , Ljk , Aij) and DSYRK(Lik , Ljk , Aij) are used

to update the blocks Aij in line with the equation Aij =

Aij − LikL
T
jk when i > j and i = j, respectively.

All processors will be allocated with specific blocks stati-

cally. The k-th loop consists of three sequential steps and two
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synchronization operations. In step 1, the current processor

runs DPOTF2 to factorize the block Akk and get Lkk , and

then broadcasts Lkk if need be. In step 2, all processors con-

currently run DTRSM to compute the corresponding block

below Akk and get corresponding Lik (i > k), and then broad-

cast corresponding Lik if need be. In step 3, all processors

concurrently run DGEMM or DSYRK in parallel to update

the corresponding lower right blocks of Akk . Synchronization

operation is required at the start of the both step 2 and step 3,

which will lead to processor idle to some extent.

III. DYNAMIC LOAD BALANCING STRATEGY

BASED ON AOE NETWORK

A. AOE NETWORK RELATED TO BLOCK PARALLEL

CHOLESKY FACTORIZATION

For convenience, we denote the initial values of A and Aij as

A(0) and A
(0)
ij , respectively, i.e.,

A = A(0) =







A
(0)
00

· · · · · ·

A
(0)
(n−1)0 · · · A

(0)
(n−1)(n−1)






(3)

After the (k − 1)-th loop, assuming that A is factorized into

A =













L00
· · · · · ·

Lk0 · · · A
(k)
kk

· · · · · · · · · · · ·

L(n−1)0 · · · A
(k)
(n−1)k · · · A

(k)
(n−1)(n−1)













(4)

and A(k) is denoted as

A(k) =







A
(k)
kk

· · · · · ·

A
(k)
(n−1)k · · · A

(k)
(n−1)(n−1)






(5)

thek-th (0 ≤ k < n−1) loop includes three computing steps,

which can be defined as follows:

Step 1: Perform Cholesky factorization A
(k)
kk , i.e.,

DPOTF2(A
(k)
kk , Lkk ).

Step 2: Compute the lower left blocks of A(k), i.e.,

DTRSM(Lkk , A
(k)
ik , Lik ), (i > k).

Step 3: Update the lower right blocks of A(k) and obtain

A(k+1), i.e., DGEMM(Lik , Ljk , A
(k)
ij ), (k < j < i) and

DSYRK(Lik , Ljk , A
(k)
ij ), (i = j > k).

The (n − 1)-th loop only includes the first step, i.e.,

DPOTF2(A
(n−1)
(n−1)(n−1), L(n−1)(n−1)).

In fact, allA
(k)
ij (k = 0, · · · , j) are stored in the same storage

location, i.e., the location of block Aij of matrix A. We use

superscript (k) to distinguish the updating results of different

loops. The symbol Lij in matrix A at any loop indicates that

the corresponding storage location Aij of matrix A is the final

result Lij, and it does not need to be updated in the subsequent

loops.

Since dependencies of the three steps exist, it is difficult for

the static task distribution strategy to process the parallelism

of any two steps. For this reason, we present a dynamic

scheduling strategy based on the AOE network. In any k-th

(0 ≤ k < n − 1) loop, step 1 contains one basic computing

task, i.e., DPOTF2(A
(k)
kk , Lkk ); step 2 contains (n − 1 − k)

basic computing tasks, i.e., DTRSM(Lkk , A
(k)
ik , Lik ) for i =

k + 1, · · · , n − 1; and step 3 contains (n − 1 − k) × (n −

k)/2 basic computing tasks, i.e., DGEMM(Lik ,Ljk ,A
(k)
ij ) for

j = k + 1, · · · , n − 1 and i = j + 1, · · · , n − 1 and

DSYRK(Lik ,Ljk ,A
(k)
ij ) for i = j = k + 1, · · · , n − 1. These

basic computing tasks can be expressed uniquely using the

corresponding (i, j, k). For simplicity, we useA
(k)
ij to represent

the corresponding basic computing tasks, where 0 ≤ k ≤

j ≤ i ≤ n − 1. The number of basic computing tasks for all

n loops is

n−2
∑

k=0

[1 + (n− 1 − k) +
1

2
(n− 1 − k)(n− k)]

+ 1 =
1

6
(n3 + 3n2 + 2n) (6)

The computational dependencies among these basic tasks

can be summarized as follows:

1) Task A
(k)
kk (k > 0) depends on the computational results

of task A
(k−1)
kk ; task A

(0)
00 is the first computational task and

does not depend on any other task.

2) Task A
(k)
ik (k > 0 and i > k) depends on the compu-

tational results of tasks A
(k1)
ik and A

(k)
kk , and task A

(0)
i0 (i > k)

depends only on the computational results of task A
(0)
00 .

3) Task A
(k)
ii (k > 0 and i > k) depends on the compu-

tational results of tasks A
(k1)
ii and A

(k)
ik , and task A

(0)
ii (i > k)

depends on the computational results of task A
(k)
ik .

4) Task A
(k)
ij (k > 0 and k < j < i) depends on the

computational results of tasks A
(k1)
ij , A

(k)
ik , and A

(k)
jk ; and task

A
(0)
ij (k < j < i) depends on the computational results of tasks

A
(0)
i0 and A

(0)
j0 .

When the basic tasks are considered vertices and the depen-

dencies of the tasks are considered as edges, a directed acyclic

graph (DAG)GA can be generated corresponding to the block

parallel Cholesky factorization. Further, each edge eij =<

vi, vj > is assigned a weight equal to the processing time of

the initial vertex vi. As a result,GA is a weighted DAG and has

only one starting vertex and one ending vertex (In this paper,

the terms ‘‘task’’ and ‘‘vertex’’ are used interchangeably).

In this case, the weighted DAG is also referred to as an AOE

network. Figure 1 shows the AOE network corresponding to

the block parallel Cholesky factorization for an N×N matrix

A divided into 4×4 blocks. The block Cholesky factorization

consists of four loops, and the total number of tasks (or ver-

tices) is (n3+3n2+2n)/6 = 20. The four weightsw1,w2,w3,

and w4 represent the corresponding processing times of four

subroutines DPOTF2, DTRSM, DGEMM, and DSYRK for

the basic matrix blocks.

The indegree and outdegree of each vertex A
(k)
ij (0 ≤ k ≤

j ≤ i ≤ n − 1) of the AOE network can be computed easily

according to the dependencies of the tasks.
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FIGURE 1. Example of an AOE network corresponding to the block
parallel Cholesky factorization of a matrix with 4 × 4 blocks.

1) Indegree of vertex:

indegree(A
(k)
kk ) =

{

0 k = 0

1 k > 0
(7)

indegree(A
(k)
ik ) =

{

1 i > k = 0

2 i > k > 0
(8)

indegree(A
(k)
ii ) =

{

1 i > k = 0

2 i > k > 0
(9)

indegree(A
(k)
ij ) =

{

2 i > j > k = 0

3 i > j > k > 0
(10)

2) Outdegree of vertex:

outdegree(A
(k)
kk ) = n− 1 − k (11)

outdegree(A
(k)
ik ) = n− 1 − k, i > k (12)

outdegree(A
(k)
ij ) = 1, j > k (13)

It is thus evident that the successors of A
(k)
kk are A

(k)
xk (x =

k + 1, · · · , n − 1), the successors of A
(k)
ik (i > k) are A

(k)
iy

(y = k + 1, · · · , n− 1) and A
(k)
zi (z = i+ 1, · · · , n− 1), and

the successor of A
(k)
ij (j > k) is A

(k+1)
ij .

Similar to the earliest occurrence time and the latest occur-

rence time of the events (or vertices) of the AOE network,

we define the earliest execution start time and the latest

execution start time of tasks (vertices) A
(k)
ij (0 ≤ k ≤ j ≤

i ≤ n− 1) as follows:

1) The earliest execution start time of task A
(k)
ij is

et (A
(k)
ij ) =







0 i = j = k = 0

max
Ap

{et (Ap) + w
<Ap,A

(k)
ij >

} others

(14)

where Ap is the predecessor of A
k
ij, andw<Ap,A

k
ij>

is the weight

of the edge < Ap,A
k
ij >.

2) The latest execution start time of task A
(k)
ij is

lt (A
(k)
ij )=







et (A
(n−1)
(n−1)(n−1)) i = j = k = n− 1

min
As

{lt (As) − w
<A

(k)
ij ,As>

} others

(15)

where As is the successor of A
k
ij, and w<Akij,As>

is the weight

of edge < Akij,As >.

B. QUEUING ALGORITHM

The tasks are divided into ready tasks (tasks of which all

predecessors have been computed) and nonready tasks (tasks

of which at least one predecessor has not been computed).

According to the earliest execution start time et and latest

execution start time lt of tasks A
(k)
ij (0 ≤ k ≤ j ≤ i ≤

n−1), the ready queue including all current ready tasks can be

created. The rules of queuing the ready tasks are as follows:

Rule 1: The task with a smaller lt is queued ahead of the

task with a larger lt .

Rule 2: If two tasks have the same lt , the task with smaller

et is queued ahead of the task with larger et .

Rule 3: If two tasks have the same lt and et , the task with

smaller i is queued ahead of the task with larger i. Similarly,

in the case of tasks with the same lt , et and i, the task with

a smaller j is queued ahead, and in the case of tasks with the

same lt , et , i, and j, the task with smaller k is queued ahead.

Rules 1 and 2 ensure that the tasks in the critical path of

the AOE network start as early as possible. Rule 3 ensures

faster queuing because the number of tasks with the same i is

more than the number of tasks with the same j for same lt and

et and the number of tasks with the same j is more than the

number of tasks with the same k for the same lt , et , and i.

The primary operations pertaining to the ready queue are

initialization, enqueuing, and dequeuing. Every node in the

ready queue contains the parameters lt , et , i, j, and k , etc.

1) Ready queue initialization is intended to create a ready

queue with only one node corresponding to the computing

task A
(0)
00 for the nonempty matrix A.

2) Enqueuing involves inserting the node corresponding to

a ready task into the ready queue according to the values of

lt , et , i, j, and k . The task becomes a ready task when all its

predecessors have been computed, that is, the indegree of the

task’s corresponding vertex is 0.

3) Dequeuing involves removing the head node of the ready

queue. When a task has been removed from the ready queue
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and has been computed, the indegree of all its successors is

subtracted by 1.

The dynamic scheduling strategy for parallel block

Cholesky factorization can be described as follows:

Step 1: Initiate the ready queue to create a ready queue with

only one node corresponding to A
(0)
00 .

Step 2:Run the dequeue operation to remove the head node

A
(k)
ij from the ready queue.

Step 3: Compute task A
(k)
ij .

Step 4: Subtract the indegree of all successors of node A
(k)
ij

by 1.

Step 5: Run the enqueue operation. If the indegree of any

successor of the node A
(k)
ij is equal to 0, the successor is

inserted into the ready queue according to the values of lt ,

et , i, j, and k .

Repeat steps 2 to 5 until the ready queue is empty or all

(n3 + 3n2 + 2n)/6 tasks are computed.

Obviously, the parallelism of the algorithm is a task level

parallelism, and the algorithm is well suited to multiple

instruction stream, multiple data stream (MIMD) model

architecture with shared memory, typically, like multicore

system, but not the single instruction stream, multiple data

stream (SIMD) model architecture such as GPU processor or

very long instruction word (VLIW) processor.

IV. EXPERIMENTAL RESULTS

The experiment is performed on the AMAX XG-48201GK

system that consists of two Intel Xeon E5-2620 v4 CPUs and

eight 16 GB memories. Every CPU contains eight cores, and

the frequency is 2.1 GHz.

In our experiment, the routines DPOTF2 in LAPACK and

DTRSM, DGEMMandDSYRK in BLAS are used to process

the block computing basic tasks for double precision data.

Algorithm 2 is the block parallel Cholesky factorization algo-

rithm for a multiple core system with shared memory archi-

tecture, implemented by using the dynamic load balancing

strategy based on an AOE network.

In algorithm 2, the main thread run is InitializeQueue(),

which creates a ready queue with only one node correspond-

ing to the computing task A
(0)
00 for any nonempty matrix A.

Both DeQueue(i, j, k) and EnQueue(i, j, k) act as critical

regions. The former removes the head node of the ready queue

and returns the corresponding (i, j, k), and the latter inserts

the ready successors of A
(k)
ij into the ready queue based on

rules 1, 2, and 3.

A. PARALLEL EXECUTION TIME

The parallel execution time of the parallel block Cholesky

factorization algorithm based on an AOE network for a given

N × N double precision matrix is related to the number of

CPU cores available and the number of matrix blocks, n.

Figure 2 shows the performance of the algorithm for a double

precisionmatrix withN = 10000 andN = 20000. The x-axis

represents the number of CPU cores from 2 to 16; the y-axis

shows the number of matrix blocks, n, from 20 to 200; and

Algorithm 2 Block Parallel Cholesky Factorization Algo-

rithm Implemented by Using the Dynamic Load Balancing

Strategy Based on AOE Network

InitializeQueue( ); //Initialize the ready queue

pragma omp parallel

While (Queue != empty) {

#pragma omp critical

DeQueue (i, j, k); // Dequeuing operation (critical

region)

if (i == k)

DPOTF2 (A
(k)
kk , Lkk );

else if (j == k)

DTRSM (Lkk , A
(k)
ik , Lik );

else if (i == j && j > k)

DSYRK(Ljk ,Ljk ,A
(k)
jj );

else

DGEMM (Lik , Ljk , A
(k)
ij );

Decreasing the indegree of all successors of A
(k)
ij .

#pragma omp critical

EnQueue (i, j, k); // Enqueuing operation (critical

region)

}

the z-axis indicates the parallel execution time in seconds.

A larger number of cores available in the system pertains

to lower parallel execution time for a given matrix and

fixed n. However, when the block number n is increased,

the parallel execution time first decreases and later increases

gradually. The optimum number of blocks n for a two CPU

core system for a double precision matrix with sizes of both

10000×10000 and 20000×20000 is 25. However, the opti-

mum number of blocks, n, is approximately 50 or 80 for

N = 10000 and approximately 50 for N = 20000 in the

system having more than four cores.

To compare the performance of the presented algo-

rithm with the conventional parallel algorithm described as

algorithm 1, the experiment is performed on a multicore sys-

tem for a double precision matrix with sizes N = 10000 and

N = 20000. Figure 3 shows the performance results of the

two algorithms for systems with different configurations and

different numbers of blocks, n. The parallel execution times

of both the presented algorithm and traditional algorithm

decrease gradually when the number of cores is increased

from 2 to 16, and the best performance is obtained when

n is approximately 25 for the system with two cores and

approximately 50 and 80 for systems with more than two

cores. The best performance of our algorithm is thus better

than that of the traditional algorithm.

B. OVERHEAD

The overhead must be considered in the parallel block

Cholesky algorithm based on an AOE network because

the queue is introduced to implement the dynamic

VOLUME 7, 2019 66321
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FIGURE 2. Performance of the dynamic scheduling Cholesky factorization
algorithm based on AOE network for double precision N × N matrix.
(a) N = 10000. (b) N = 20000.

scheduling strategy. This section discusses the queuing time

of the algorithm for a multicore system. The total queuing

time consists primarily of the enqueue and the dequeue

operations; therefore, the queuing time depends mostly on

the number of blocks, n and the performance of the cores,

and not on the matrix size N . The number of matrix blocks,

n must be increased with increase in the available cores to

obtain a better performance of the general parallel block

Cholesky factorization algorithm in amulticore system.How-

ever, a larger n means that a larger number of smaller tasks

are scheduled, which results in performance degradation.

Therefore, n cannot be excessively large or small.

Figure 4 shows the queuing time of the algorithm for

different numbers of blocks, n. The queuing time increases

rapidly with increase in n. In the experiment, the queuing

time is approximately 0.15 s when n = 100 and 81 s when

n = 500; however, its value is less than 3 s when n is

less than 200. In the performance evaluation experiment, the

optimum number of blocks, n, is approximately 50 or 80, and

the queuing time is less than 1 s, which is representative of

less than 1 percent for each core. Generally, the queuing time

is small and can be ignored for each core when n is not large.

C. SCALABILITY

The scalability is used to evaluate the acceleration of an

algorithm to solve a specific problem when more computing

FIGURE 3. Performance comparison of the dynamic scheduling Cholesky
factorization algorithm based on AOE network and the traditional block
parallel Cholesky factorization algorithm for different multicore
configurations and different numbers of blocks, n, (a) N = 10000,
(b) N = 20000.

FIGURE 4. Queuing time of the dynamic scheduling Cholesky factorization
algorithm based on AOE network for different numbers of blocks, n.

resources are available; it is also used to evaluate the capabil-

ity of an algorithm to solve potentially larger problems. First,

we tested how the parallel execution time changes when the

number of CPU cores is increased gradually for a fixed-size

matrix. Next, we measured the parallel execution time while

increasing the matrix size to test the scalability.

Figure 5 shows the parallel execution times of the

presented algorithm and the traditional algorithm for a

20000×20000 double precision matrix, when the algorithms

are run on different systems configured with different num-

bers of cores. When the number of cores is increased
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FIGURE 5. Parallel execution times of the dynamic scheduling Cholesky
factorization algorithm based on AOE network and the traditional block
parallel Cholesky factorization algorithm for double precision
20000 × 20000 matrix on systems with different configurations.

FIGURE 6. Parallel execution times of the dynamic scheduling Cholesky
factorization algorithm based on AOE network and the traditional block
parallel Cholesky factorization algorithm for different sized matrices on
systems having 8 and 16 cores. (a) 8 cores, (b) 16 cores.

from 2 to 16, the parallel execution times of both the

algorithms decrease gradually. The two algorithms exhibit

nearly the same scalability. However, the presented algorithm

has a smaller parallel execution time in different system

configurations.

Figure 6 shows the parallel execution times for the

presented algorithm and traditional algorithm for different

sized matrices. The x-axis presents the matrix size from

4000 to 26000. The y-axis indicates the parallel execution

of the algorithm. Each subfigure consists of two curves that

correspond to the presented algorithm and the traditional

algorithm. Every curve approximately represents the graph

of a function similar to y = a · x3, which is consistent with

the theoretical results. Furthermore, the presented algorithm

demonstrates better time performance for different sized

matrices.

V. CONCLUSION

Multicore technologies, from supercomputers to laptops and

embedded devices, have become ubiquitous in our every-

day lives. The parallel programming technique must thus

be extended to all areas of software development. In this

paper, we present a block parallel Cholesky factorization

algorithm for a multicore system. Traditionally, the block par-

allel Cholesky factorization algorithm consists of n−1 loops

and (n3 + 3n2 + 2n)/6 basic block computing tasks. When

the basic block computing tasks are taken as vertices and the

dependencies of the tasks are considered edges, a directed

acyclic graph can be generated in accordance with the block

parallel Cholesky factorization.We assign each edge a weight

that is equal to the processing time of the graph’s initial

vertex; the DAG thus becomes an AOE network with only

one starting vertex and one ending vertex. On the basis of

this AOE network, we present a queuing algorithm for basic

block computing tasks and develop a dynamic load balancing

algorithm for block parallel Cholesky factorization. Experi-

ments to determine the parallel execution time in multicore

systems with different configurations demonstrate that the

proposed algorithm has notable advantages compared with

the traditional static scheduling algorithm. The experimental

results also indicate that the queuing time is small and can

be ignored for each core when n is not large, and that the

proposed algorithm exhibits satisfactory scalability.
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