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Dynamic screening and collective excitation of an electron gas under intense terahertz radiation
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By using time-dependent wave functions for electrons under an intense laser, we calculated the charge-
density fluctuation of an electronic system under a weak probing potential. The dielectric function of the
system as a function of the laser frequency and intensity is derived. The spectrum of the collective excitation
is calculated. The spectrum exhibits the contribution of various multiphoton processes.
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Recently there has been a great deal of interest in tera-
hertz phenomena in electronic materials. This is mainly due
to the rapid development of high-power, long-wavelength,
and tunable laser sources such as free electron lasers �FEL’s�.
Very recently, a new mechanism for population inversion in
semiconductors under an applied electric field was predicted1

and a widely tunable continuous-wave terahertz �THz� gen-
eration was achieved experimentally in strained Ge.2 These
radiation sources can provide linearly polarized laser radia-
tion in the terahertz regime.3–10 THz lasers have been applied
to the experimental investigation of nonlinear transport and
optical properties in electron gases such as low-dimensional
semiconductor systems. Many interesting terahertz phenom-
ena have been investigated, including resonant absorption,3

photon-enhanced hot-electron effect,6 THz photon-induced
impact ionization,7 LO-phonon bottleneck effect,8 THz
photon-assisted tunneling,9 and THz cyclotron resonance.10

In view of this rapid development of terahertz phenom-
ena, a theoretical formalism describing strongly coupled
electron-photon systems becomes urgently required. The
most useful quantity in understanding the transport and op-
tical properties of an electronic system is the dielectric func-
tion. In this paper, we present a theoretical investigation of
the electronic and dielectric properties of an electron gas
strongly coupled to a THz radiation field. We first calculate
the charge fluctuation of the system using the time-dependent
perturbation technique. The dielectric function can then be
derived. It is shown that the plasma frequency of the system
is strongly dependent on the intensity and frequency of the
THz laser field. Various multiphoton processes can be
identified.

Let us consider an electron gas under intense laser radia-
tion. We choose the laser field to be along the x direction,
E(t)�E cos(�t)ex , where E and � are the amplitude and
frequency of the laser field. For the notational convenience,
both � and the speed of light c have been set to unity. In the
absence of a laser field, the Schrödinger equation for a single
electron is given as

i
�

�t
��r,t ��

p2

2m*
��r,t �. �1�

The wave function of the system is simply a plane wave

��r,t ��exp��i�kt �exp� ik•r�, �2�

where �k�k2/2m*.
In the presence of an intense laser, the electrons are

strongly coupled to the photon field. Let us choose the vector
potential for the laser field to be in the form

A��E/��sin��t �ex . �3�

The time-dependent Schrödinger equation is given as

i
�

�t
��r,t ��H��r,t ��

�p�eA�2

2m*
��r,t �. �4�

It can be shown that Eqs. �1� and �4� are related by a
simple unitary transformation U�exp(i2	1�t)exp
i	0kx�1
�cos(�t)�exp�i	1 sin(2�t)�,

U� i
�

�t
�

p2

2m*
�U†�i

�

�t
�

�p�eA�2

2m*
, �5�

and the time-dependent wave function can be written as

�k�r,t ��U exp��i�kt �exp� ik•r�, �6�

where 	0�(eE)/m*�2 and 	1�(eE)2/(8m*�3).
We now employ this time-dependent wave function to

calculate the electronic state in a local potential �to be deter-
mined self-consistently� and to derive the dielectric proper-
ties of the system. The zeroth-order wave function is given
by Eq. �6�,

�k
(0)�r ,t ��eiF(t)ei	0kx(1�cos �t)eik•rei�kt, �7�

where F(t)�2	1�t�	1 sin(2�t). Equation �7� forms an or-
thonormal set,

��k
(0)�r ,t ���k

(0)�r ,t ����k ,k�.

There is no charge fluctuation even in the presence of the
laser field, i.e.,

�k
(0)��e��k

(0)�r ,t ��2��e , �8�

where e is the charge of an electron. The wave function of an
electron under a local potential can be expanded using the
above orthonormal set,

��r ,t ���
k

ak� t �eiF(t)ei	0kx(1�cos �t)eik•rei�kt. �9�
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,The coefficient ak(t) will be determined below using the
time-dependent perturbation method.

We now consider a local potential

��r ,t ��� dq�� d�eiq�•rei�t��q�,���c.c., �10�

and seek the change of the electron density and the induced
potential. In the above equation, ‘‘c.c.’’ denotes the complex
conjugate of the preceding term. We assume that the local
potential is weak and use the time-dependent perturbation to
calculate the change of electronic state. The time-dependent
Schrödinger equation is now given as

i
��

�t
��H�e��� , �11�

where H is given in Eq. �4�. Upon using Eq. �9�, we obtain
the first-order equation

i
�ak�� t �

�t
��eei	0(kx�kx�)[1�cos(�t)]e�i(�k���k)t

�� dre�ik�•r��r,t �eik•r �12�

and

ak�� t ��ie�
��

t

dtei	0(kx�kx�)[1�cos(�t)]e�i(�k���k)t

�� dre�ik�•r��r,t �eik•r. �13�

Substituting the Fourier expansion given in Eq. �10� and
making use of the generating function of the Bessel function,

ei� cos x��
m

imJm���eimx,

we obtain

ak�q� t ���� ie �e�i	0qx�
m ,�

imJm�qx	0���q,��

�
ei(�k�q��k���m�)t

�k�q��k���m��i�
��→0��.

�14�

Now the wave function up to first order is given as

�k�r,t ���k
(0)�r,t ���

q
ak�q� t ��k�q

(0) �r,t �

�eiF(t)ei	0kx(1�cos �t)ei�kt

�� eik•r�e�
q,�

e�i	0qxcos �t�
m

imJm�qx	0�

�
��q,��e�i(��m�)t

�k�q��k���m��i�
ei(k�q)•r� . �15�

The fluctuation of the charge distribution �induced charge
density� can now be calculated,

�k�r,t ���e��k*�r,t ��k�r,t ��1� . �16�

Neglecting high-order terms in � , we obtain

�k�r,t ���e2�
q,�

�
m

im��q,��Jm�qx	0�

�� e�i	0qxcos �te�i(��m�)t

�k�q��k���m��i�
eiq•r

�
��1 �mei	0qxcos �te i(��m�)t

�k�q��k���m��i�
e�iq•r� . �17�

The contribution to the induced charge density due the c.c.
part of the local potential can be calculated with the same
method. After some rearrangement we obtain

�k�r,t ���e2�
q,�

eiq•r��q,��e�i	0qxcos �te�i�t

��
m

imJm�qx	0�e�im�t

�� 1

�k�q��k���m��i�

�
1

�k�q��k���m��i� ��c.c. �18�

Now the total density fluctuation of the system is given as

��r,t ���
k

f k�k�r,t �, �19�

where f k�
exp�(�k���E	)/kBT��1�1 is the Fermi dis-
tribution function. Here E	�2	1� is the energy of the laser
field, � is the chemical potential, and kB is the Boltzmann
constant. Substituting Eq. �18� into Eq. �19�,

��r,t ��e2�
q,�

eiq•r��q,��e�i	0qxcos �te�i�t

��
m

imJm�qx	0�e�im�t��q ,��m��, �20�

where �(q ,�) is the electron polarizability,

��q ,����
k

f k�q� f k

�k�q��k���i�
. �21�

After decomposing the time-dependent factor e�i	0qxcos �t

into successive harmonics, the electron density fluctuation
can be written as
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��r,t ���e2�
q,�

eiq•r��q,��e�i�t �
m ,m�

im�m�

�Jm�qx	0�Jm��qx	0�e�i(m�m�)�t

���q ,��m��. �22�

From Poisson’s equation, the induced potential can be calcu-
lated from the density fluctuation,

�2� ind�r,t ���4���r,t �. �23�

Performing the Fourier expansion for the induced potential,
we obtain

�2� ind�r,t ����
q,�

q2eiq•rei�t� ind�q,���c.c. �24�

Combining Eqs. �20�, �23�, and �24�, we obtain the Fourier
component of the induced potential,

� ind�q,���
4�e2

q2
��q,���

m
Jm

2 �qx	0���q ,��m��.

�25�

We see immediately that terms with m�m� in the density
fluctuation do not contribute to the induced potential.

The local potential is the sum of the external potential and
the induced potential in terms of Fourier components, we
have

��q,����ext�q,���� ind�q,��, �26�

which leads to

��q,���
�ext�q,��

D�q,��
, �27�

where the dielectric function is given as

D�q,���1�
4�e2

q2 �
m

Jm
2 �qx	0���q ,��m��. �28�

The induced potential and the dielectric function derived
above are valid for any strength of the laser field at any
electron densities and temperatures, provided the probing po-
tential �ext(r,t) �and the resulting local potential� is weak.
The theory presented here is basically a linear response
theory for the probing potential but includes infinite orders of
electron-photon coupling. The above result can be applied to
both bulk systems and low-dimensional systems. For two-
dimensional systems, one should replace 4�e2/q2 by
2�e2/q in Eq. �28�.

The modes of the collective excitation of the system are
determined by the solution of

D�q,���0.

For the present system, the plasma frequency will be
strongly dependent on the frequency and intensity of the la-
ser field. Most recent experimental work in terahertz phe-
nomena are carried out in two-dimensional semiconductor
systems. Here we perform some numerical computations of

plasma frequencies for a two-dimensional GaAs semicon-
ductor system. The results are plotted in Figs. 1–3. In all
these calculations, we used the following parameters: m*
�0.067me , rs�m*e2/kF�0.8, and �F�12 meV. The pre-
sented plasmon energies are for the case where qx�qy . Sev-
eral interesting properties can be discussed.

Figure 1 is the dispersion of the plasmon frequency for
different laser intensities along the direction of qx�qy . The
frequency of the laser field is 1 meV. We use a dimensionless
quantity R�kFeE/m* (THz)2 to specify the field strength.
At small wave vectors, the coupling between the electron
and photon is weak �high-order Jm is negligible�. Therefore
the plasma energy is mainly determined by the electrons. As
q increases, the electron-photon coupling increases and high-
order photon processes start to contribute. The effect of
electron-photon coupling is to lower the plasmon frequency.

FIG. 1. Plasma dispersion along the direction of qx�qy at fixed
laser frequency (��1 meV) and for three different values of the
laser intensities. The solid line is for R�0, the dashed line is for
R�1.0, and the dotted line is for R�2.0. All parameters are given
in the text.

FIG. 2. Dependence of the plasma frequency on the intensity of
laser field. The solid line is for q�0.5kF and ��0.3 meV; the
dashed line is for q�0.5kF and ��1.0 meV.
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The long-wavelength plasmon frequency in the absence of
the radiation field is related to the high-frequency electrical
conductivity through �p

2�2��(�)�q . Therefore the reduc-
tion of plasmon frequency under THz laser radiation can also
be understood as the suppression of electrical conductivity
under THz radiation. In other words, when electrons are
strongly coupled to a photon field, they become less mobile.
This effect is consistent with the experimental observation of
suppressed conductivity in a two-dimensional electron gas
under an intense THz radiation.6 If the laser intensity is
strong, the multiphoton processes start to contribute at a
smaller value of q.

Figure 2 depicts the plasma frequency as a function of
laser intensity. For any value of q and � , the plasmon fre-
quency is always lower than the plasmon frequency in the
absence of a radiation field. The coupling of electrons to the

mth-order photon process is proportional to the square of
Jm(	0qx). For given qx and � , the Bessel functions oscillate
with the laser field intensity. If the laser frequency is lower
�solid line�, the electron-photon coupling is strong and the
plasmon frequency will reflect the oscillatory behavior of the
electron-photon coupling. The electron-photon coupling is
weaker at higher frequencies. In this case one can observe a
slow variation of the plasmon frequency as the laser intensity
increases.

Figure 3 shows the dependence of the plasma frequency
on the laser frequency. Here, again, when the electron-
photon coupling is strong at low frequencies, the plasmon
frequency exhibits rapid oscillations. At high laser frequen-
cies, the plasmon frequency gradually approaches the
zero-field value as the frequency increases.

It is well known that only the long-wavelength plasmon is
free of Laudau damping. For a uniform system in the ab-
sence of THz radiation, the critical wave vector qc beyond
which the plasmon is damped is given as qc��p /vF where
vF is the Fermi velocity. qc�0.75kF for the present system
in the absence of THz radiation. Under THz radiation, the
plasma frequency increases as the radiation intensity in-
creases. As a result, the plasmon is long lived up to qc�
(�qc). In Fig. 1 the qc� for three dispersion curves at three
different radiation intensities are 0.79kF , 0.98kF , and
1.15kF . In Figs. 2 and 3, the wave vectors are smaller than
qc� and therefore the plasmons presented here are free of
Landau damping.

In conclusion, we have studied the dielectric properties
and spectrum of collective excitations for an electron gas
under intense laser radiation. Successive multiphoton pro-
cesses can be identified from the spectrum of collective
excitations.

This work is supported by the Australian Research Coun-
cil. We thank W. Xu and X. L. Lei for interesting discus-
sions.
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