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Abstract—In the deregulated environment of power systems, 
the transmission networks are often operated close to their 
maximum capacity to achieve transfer of power.  Besides, the 
operators must operate the system to satisfy its dynamic stability 
constraints under credible contingencies.  This paper provides a 
method using trajectory sensitivity to reschedule power 
generation to ensure system stability for a set of credible 
contingencies while satisfying its economic goal.  System 
modeling issue is not a limiting concern in this method, and hence 
the technique can be used as a preventive control scheme for 
system operators in real time. 
 

Index Terms—Optimal power flow, trajectory sensitivity, 
generation rescheduling, preventive control, dynamic security. 
 

I.  INTRODUCTION 
 

Preventive rescheduling of power systems subject to stability 
constraints for contingencies has been investigated for a 
number of years. The earliest work [1] investigated the 
maximum loadability problem followed by an investigation 
into interface flow across tie lines [2]. Both used the transient 
energy margin concept and its sensitivity to change in 
generation schedules. Since then a number of papers have 
appeared along these lines by extending the criteria to include 
optimal power flow (OPF) which is logical [3]-[5].  The other 
approach is to include the stability constraints as part of the 
OPF problem by converting the differential equations into 
algebraic constraints [6], [7]. In this case, the system dynamics 
are represented as classical swing models.  The transient 
energy function (TEF) approach is limited to cases where a 
closed form expression for the energy is available and is 
difficult in the case of hybrid systems such as systems with tap 
changers or systems containing flexible ac transmission 
systems (FACTS) devices. 

In this paper we propose a new approach based on trajectory 
sensitivities and has no limitation in terms of model 
complexity.  The trajectory sensitivities for each contingency 
are computed along with the state of the system dynamics.  
For each contingency the machine which is vulnerable is 
identified and generation is shifted to the least vulnerable 
generator. There is a choice as to where to shift the generation 
whether to a single one or a group of them.  The overall idea is 
to make the system secure. The technique is illustrated for a 3-
machine as well as the 10-machine case.  The technique could 
also be useful in congestion management of systems. 
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II.  MATHEMATICAL MODEL 
 
A.  System and Sensitivity Models 
 

In simulating disturbances, switching actions take place at 
certain time instants.  At these time instants, the algebraic 
equations change, resulting in discontinuities of the algebraic 
variables.  In general the power system can be cast in the form 
of a differential-algebraic discrete (DAD) model incorporating 
discrete events as in [8].  A special case is the model described 
by differential-algebraic equations of the form 
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A switching occurs when the switching function 

0),,( =λyxs .  For example, if a device is switched into 
service at time t = tsw, then the switching function in this case 
can simply be defined as ),,( λyxs = t – tsw. 

In the above model, x  are the dynamic state variables such 
as machine angles, velocities, etc.; are the algebraic 
variables such as load bus voltage magnitudes and angles; and 

y

λ  are the system parameters such as line reactances, 
generator mechanical input power, or fault clearing time.  
Note that the state variables x  are continuous while the 
algebraic variables can undergo step changes at switching 
instants. 

The initial conditions for (1)-(2) are given by 
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where  satisfies the equation 0y
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For compactness of notation, the following definitions are 
used 
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With these definitions, (1)-(2) can be written in a compact 

form as 
 

),( yxfx =&  (5) 
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Note that the parameters are absorbed in the differential 

equations as state variables with the derivatives equal to zero. 
The initial conditions for (5)-(6) are 

 
0000 )(,)( ytyxtx ==  (7)  

 
Trajectory sensitivity analysis studies the variations of the 

system variables with respect to the small variations in initial 
conditions and parameters λ (or equivalently 0x 0x ). 

Away from discontinuities, the differential-algebraic system 
can be written in the form 

 
),( yxfx =&  (8) 
),(0 yxg=  (9) 

 
Differentiating (8) and (9) with respect to the initial conditions 

0x  yields 
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where ,,, xyx

gff  and are time varying matrices and are 

calculated along the system trajectories.

yg

)(
0

tx x  and )(
0

ty x are 

the trajectory sensitivities. 
Initial conditions for 

0xx are obtained by differentiating (7) 

with respect to 0x  as 
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where I is the identity matrix. 
Using (12) and assuming that  is nonsingular along the 
trajectories, initial conditions for 

( )0tg y

0xy can be calculated from 
(11) as 
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Therefore, the trajectory sensitivities can be obtained by 

solving (10) and (11) simultaneously with (8) and (9) using 
(7), (12), and (13) as the initial conditions.  At the 
discontinuity where ( ) 0, =yxs , the trajectory sensitivities 

00
, xx yx typically undergo a jump.  Computation of these jump 

conditions is discussed in [8]. 
 
B.  Stability Constrained Optimal Power Flow Formulation 
 

An OPF problem can be formulated as [6] 
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In the above formulas,  is a cost function; (15) and (16) 

are the active and reactive power balance equations 
respectively;  are the vectors of generator active and 

reactive power output respectively;  are the vectors of 
real and reactive load respectively; V  and 

(.)C

gg QP ,

LL QP ,
θ  are the vectors 

of bus voltage magnitudes and angles respectively; 
are the vectors of lower and 

upper limits of generator real, reactive power outputs, and bus 
voltage magnitudes respectively; 

MmM
g

m
g

M
g

m
g VVQQPP ,,,,,

),( θVS  is the vector of 

apparent power flowing across the transmission lines and  
is the vector of thermal limits of those lines.  Note that the 
variables in this problem are  and 

MS

,,, VQP gg θ . 
We use the relative rotor angles to detect the system 

stability/instability.   To check the stability of the system for a 
credible contingency, relative rotor angles are monitored at 
each time step during dynamic simulation.  The sensitivities 
are also computed at the same time.  Although sensitivity 
computation requires extensively computational effort, 
efficient method to compute sensitivities is available by 
making effective use of the Jacobian which is common to both 
the system and sensitivity equations [9].  We propose that 
when the relative rotor angle  for a given 
contingency, the system is considered as unstable.  This is an 
extreme case as pointed out in [6], and one can choose an 
angle difference less than 

πδδδ >−= jiij

π  depending on the system.  Here i 
and j refer to the most and the least advanced generators 
respectively.  The sensitivities of the rotor angles at this 
instant are used to compute the amount of power needed to be 
shifted from the most advanced generator (generator i) to the 
least advanced one (generator j) according to the formulas 
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where , and  are the base loading of generators i 
and  j, and the relative rotor angle of the two at the solution of 

the OPF problem stated in (14)-(20); 

00 , ji PP 0
ijδ

i

ij

P∂
∂δ

 is the sensitivity of 

relative rotor angle with respect to the output of the ith-
generator.   is the parameter iP λ   discussed in part A of this 
section. 
 

After shifting the power from generator i to generator j 
according to (22), the system is secure for that contingency but 
it is not an optimal schedule.  We propose to improve the 
optimality by introducing new power constraints as discussed 
in the next section.  The OPF problem with new constraints is 
then re-solved to obtain the new operating point for the 
system. 
 

III.  SOLUTION METHODOLOGY 
 

The steps to solve the dynamic security constrained OPF are 
shown in the flow chart of Fig. 1.  The steps are as follows 
1) Perform the OPF to obtain the optimal operating point 
according to (14)-(20).  Set k = 1. 
2) Apply contingency k from the specified list of credible 
contingencies. 
3) Perform a dynamic simulation and compute the trajectory 
sensitivities using models specified by (8)-(11), and monitor 
the maximum of relative rotor angles at each time step.  
4) If max( ) < ijδ π  for entire simulation interval tf

If not at the end of the contingency list, set k = k+1, and 
go to step 2. 

         Else, stop. 
     Else, go to step 5. 
5) Calculate the power needed to be shifted from the ith-
generator to the jth-generator, , and  according to 
(21) and (22). 

new
iP new
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7) Go back to step 1. 
 
Note that in step 6 if one generator hits its output limit and the 
other does not as a result of the shift, there will be a mismatch 
between generations and loads after the shift.  This mismatch 
will be taken care of by the result of the OPF in the 
rescheduling.  Also, in step 6 if the least advanced generator j 
is at its maximum limit, the shift will be carried out from 
generator i to the next-to-least advanced generator instead.  
Keep in mind that (21) is still computed at max .  If a 
solution obtained by applying the proposed algorithm exists, 
this solution is the globally secure and sub-optimal dispatch 
over the specified set of contingencies.  Of course, there is no 
guarantee about the existence of the globally secure solution.  
There may be situations where this solution does not exist.  If 
this is the case, the system loads need to be studied further so 

that the system operators will have appropriate actions when 
contingencies were to occur. 
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 The 3-machine, 9-bus system [10], and the 10-machine, 39-
bus system [11] are used as numerical examples to illustrate 
the algorithm stated in section 3.  The two-axis model is used 
for synchronous machines with the IEEE type-1 exciter and 
constant mechanical input.  Loads are modeled as constant-
impedance type.  Results of the OPF are obtained by using the 
MATPOWER package [12]. 
 
A.  The 3-Machine, 9-Bus System 
 
 A single line diagram of this system is shown in Fig. 11 of 
the appendix.  The OPF is performed for the base case and the 
optimal schedule is shown in Table I along with the cost 
functions for generators and their ratings. 
 
 

TABLE I 
GENERATOR DATA AND THE OPTIMAL SCHEDULE FOR THE BASE 

CASE 
 

 
Generators 

Rating 
(MW) 

Cost 
Function 

($/h) 

Optimal 
Loading 
(MVA) 

Total 
Cost 
($/h) 

1 200 0.0060P2+2.0P+140 106.19+j24.26 
2 150 0.0075P2+1.5P+120 112.96+j0.37 
3 100 0.0070P2+1.8P+80 99.20-j11.62 

 
1132.59 

 
1)  Fault at bus 7: 
 

The fault is simulated at bus 7 and cleared by tripping line 7-
5 at tcl = 0.35 s, which is greater than the critical clearing time.  
The critical generators are G2 and G3, but 21δ  reaches the 
threshold π  earlier than 31δ  does. 
 

Case A: Shifting output power from generator 2 to generator 
1.  Using (21) the amount of power needed to be shifted is 
found to be MW.  Applying the algorithm of 
section III, the new schedule for the generators is G1: 170.20 
+ j27.31 MVA, G2: 48.94 – j0.08 MVA, and G3: 98.74 – 
j9.86 MVA.  The total cost for this case is $1191.56.  The 
system is dynamically stable in this loading condition for the 
same fault.  The OPF solution is sub-optimal but survives the 
contingency dynamically if it were to occur.  The relative rotor 
angles after the shift are shown in Fig. 2. 
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                  Fig. 2. Relative rotor angles for case A. 

2)  Fault at bus 9: 
 

The fault is simulated at bus 9 and cleared by tripping line 9-
6 at tcl = 0.30 s, which is greater than the critical clearing time.  
The critical generator is G3 and the least advanced one is G1. 
 

Case B: Shifting output power from generator 3 to generator 
1.  The amount to shift is 1,3P∆ = 58.19 MW obtained by using 
(21).  The new loading in this case is G1: 164.38 + j25.96, G2: 
112.44 + j0.95, and G3: 41.00 – j10.64, and the system is 
dynamically stable.  The total cost is $1179.95.  With this 
loading condition, the relative rotor angles are shown in Fig. 3. 

 
Case AB: Now the set of contingencies, which comprises 

contingencies as in cases A and B, is considered.  The globally 
secure and sub-optimal schedule obtained by applying the 
algorithm of section 3 is G1: 200 +j30.70 MVA, G2: 74.73 + 
j0.77 MVA, and G3: 43.39 – j9.04 MVA.  The cost in this 
case is $1225.26.  With this loading condition, the system will 
be dynamically stable for either contingency specified in cases 
A and B as shown in Figs. 4 and 5. 
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                      Fig. 3. Relative rotor angles for case B. 
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               Fig. 4. Relative rotor angles for case AB, fault at bus 9. 
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               Fig. 5. Relative rotor angles for case AB, fault at bus 7. 
 
 The optimal loadings for the base case, the constrained cases 
A, B, and AB, and the total cost in each case are summarized 
in Table II.  Note that the cost for the dynamically constrained 
cases A, B, and AB is always higher than for the base case as 
expected.  The highest cost is in case AB where the globally 
secure sub-optimal schedule is obtained.  
 

TABLE II 
OPTIMAL SCHEDULES FOR THE BASE CASE AND THE 3 CASES A, 

B, AND AB 
 

Optimal schedule Case 
G1 (MVA) G2 (MVA) G3 (MVA) 

Cost 
($/h) 

Base 106.19+j24.26 112.96+j0.37 99.20-j11.62 1132.59 
A 170.20+j27.31 48.94-j0.08 98.74-j9.86 1191.56 
B 164.38+j25.96 112.44+j0.95 41.00-j10.64 1179.95 

AB 200.00+j30.70 74.73+j0.77 43.39-j9.04 1225.26 
 
 
B.  The 10-Machine, 39 Bus System 
 

A single line diagram of this system is shown in Fig. 12 of 
the appendix.  The cost functions and the rating of generators 
are given in Table III.  The OPF is performed to obtain the 
optimal schedule for the base case which is also shown in 
Table III. 
 

TABLE III 
GENERATOR DATA AND THE OPTIMAL SCHEDULE FOR THE BASE 

CASE 
 

Generators Rating 
(MW) 

Cost Function 
($/h) 

Base case 
Optimal Loading 

(MVA) 
1 350 0.0193P2+6.9P 243.63+j167.39 
2 650 0.0111P2+3.7P 567.90+j151.88 
3 800 0.0104P2+2.8P 642.49+j147.64 
4 750 0.0088P2+4.7P 628.97+j43.16 
5 650 0.0128P2+2.8P 507.69+j136.47 
6 750 0.0094P2+3.7P 650.80+j231.72 
7 750 0.0099P2+4.8P 558.44+j197.46 
8 700 0.0113P2+3.6P 534.84+j15.58 
9 900 0.0071P2+3.7P 827.24+j46.70 

10 1200 0.0064P2+3.9P 981.84+j218.29 
Total Cost ($/h) 60,992.88 

 
 

1)  Fault at bus 17: 
 

With this optimal operating point, a fault is simulated at bus 
17 and cleared by tripping line 17-18 at tcl = 0.20 s, which is 
greater than the critical clearing time.  The advanced 
generators are 2-9.  However, the relative rotor angle 10,5δ  is 
detected to cross the threshold π  first. 
 

Case D: Power is shifted from generator 5 to generator 10.  
Applying (21), power needed to be shifted from generator 5 to 
generator 10 is 10,5P∆ = 264.11 MW.  The algorithm proposed 
in section III is used to obtain the new loading of generators 
after the shift.  With this new loading, the system is found to 
be dynamically stable as shown in Fig. 6.  The cost in this case 
is 62,261.28 $/h.  The new schedule and the total cost for this 
case are shown in Table IV.  As expected, the cost for the 
dynamically constrained case D is higher than for the base 
case. 
 
2)  Fault at bus 4: 
 

A fault is simulated at bus 4 for the base case and is cleared 
by tripping line 4-5 at tcl = 0.25 s, which is greater than the 
critical clearing time.  The most advanced generators are 2 and 
3, and they cross the threshold π  at the same time.  The least 
advanced generator in this case is 10. 
 

Case E: Power is shifted from generator 2 to generator 10.  
Applying the algorithm in section III, the amount to be shifted 
is 10,2P∆ = 215.48 MW.  After the shift, the system is stable as 
shown in Fig. 7, and the cost is 61,826.53 $/h. 
 

Case F: Power is shifted from generator 3 to generator 10.  
Using (21), power needed to be shifted is 10,3P∆ = 273.87 
MW.  The system is stable after the shift, and the cost is 
62,113.36 $/h.  Relative rotor angles for this case are shown in 
Fig. 8. 
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                       Fig. 6. Relative rotor angles for case D. 
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                       Fig. 7. Relative rotor angles for case E. 
 

Case DE: The set of contingencies, which comprises 
contingencies specified in case D and E is considered in this 
case.  By applying the proposed algorithm, the globally secure 
and sub-optimal schedule is found.  With this optimal dispatch 
the system is dynamically stable for either contingency in the 
set.  This is verified by simulation as shown in Figs. 9 and 10.   
The cost in this case is $62,559.60. 
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                    Fig. 8.  Relative rotor angles for case F. 
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              Fig. 9. Relative rotor angles for case DE, fault at bus 4. 
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           Fig. 10. Relative rotor angles for case DE, fault at bus 17.    
 

The new schedules and the total cost for cases E and F are 
shown in Table IV.  For the fault at bus 4, the system is stable 
after the power shift of the computed amount from either 
generator 2 or generator 3 as shown in cases E and F. 
However, the cost for case F is higher than for case E.  In this 
case, the choice of generator to shift from is based on the 
operator’s knowledge of the system. Table V shows the 
globally secure and sub-optimal schedule and the total cost for 
case DE.   As expected, the cost for this globally secure case is 
highest among the dynamic constrained cases.  The cost for 
dynamic constrained cases E and F is also higher than the cost 
for the base case. 
 

TABLE IV 
THE NEW SCHEDULES FOR THE CASES D, E, AND F 

 
 

Generators 
Case D 

Optimal Loading 
(MVA) 

Case E 
Optimal Loading 

(MVA) 

Case F 
Optimal Loading 

(MVA) 
1 243.61+j160.90 242.40+j164.45 246.51+j165.69 
2 568.34+j147.42 352.42+j118.06 567.78+j142.19 
3 643.81+j143.68 643.93+j142.01 368.62+j104.56 
4 644.57+j40.10 628.93+j42.51 637.04+j43.90 
5 243.58+j126.82 507.66+j136.17 513.21+j137.06 
6 658.27+j228.45 650.76+j231.06 658.67+j233.55 
7 565.44+j196.21 558.41+j197.09 565.80+j199.09 
8 538.17+j19.41 534.40+j17.28 540.42+j17.47 
9 833.19+j48.99 826.84+j47.23 835.77+j49.81 

10 1200.00+j199.18 1197.32+j201.61 1200.00+j200.55 
Cost ($/h) 62,261.28 61,826.53 62,113.36 

 
TABLE V 

                         THE NEW SCHEDULES FOR THE CASE DE 
 

 
Generators 

Case DE 
Optimal Loading 

(MVA) 
1 342.02+j165.72 
2 469.93+j130.71 
3 645.06+j141.27 
4 644.54+j40.16 
5 243.58+j126.85 
6 658.24+j228.51 
7 565.41+j196.24 
8 537.72+j19.22.33 
9 832.78+j50.14 

10 1200.00+j200.15 
Cost ($/h) 62,559.60 
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V.  CONCLUSION 

 
A technique using trajectory sensitivities to provide a 

preventive rescheduling scheme in dynamic security 
constrained power systems taking into account the economic 
aspect is proposed.  It is a model-independent technique, so it 
can be applied to systems with any detailed modeling level.  
The numerical results for the test systems have shown that the 
technique indeed corrects the dynamically unstable or 
marginally stable systems to the stable systems for a set of 
contingencies.  The good candidates for rescheduling are the 
most and the least advanced generators.  When the generation 
is shifted, the OPF is performed with the new limits on the 
generation resulting in a sub-optimal solution.  For a 
marginally stable system, the algorithm will make it stable but 
at a higher operating cost.  However, more research is needed 
to make the algorithm robust.  Note that if market 
considerations are taken into account, the choice of less 
advanced generator may be different.  This is a matter for 
future research [13]. 

 
VI.  APPENDIX 

 
The single line diagrams for the 3-machine, 9-bus system and 
the 10-machine, 39-bus system are shown in Fig. 11 and Fig. 
12 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                 Fig. 11.  The 3-machine, 9-bus system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Fig. 12.  The 10-machine, 39-bus system. 
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