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We propose the parametric Dynamic Seemingly Unrelated Regression (DSUR) estimator for
simultaneous estimation of multiple cointegrating regressions. DSUR is efficient when the equilibrium
errors are correlated across equations and is applicable for panel cointegration estimation in environments
where the cross section is small relative to the available time series. We study the asymptotic and small
sample properties of the DSUR estimator for both heterogeneous and homogeneous cointegrating vectors.
We then apply the method to analyse two long-standing problems in international economics. Our first
application revisits the estimation of long-run correlations between national investment and national
saving. Our second application revisits the question of whether the forward exchange rate is an unbiased
predictor of the future spot rate.

INTRODUCTION

Multiple-equation cointegrating regressions are frequently encountered in applied research.
Many applications arise in the context of panel cointegration regression. For example, one
might combine multiple macroeconomic time series from a cross section of countries to
estimate long-run money demand elasticities, the relation between investment and saving shares,
relations among asset prices or relations among commaodity prices. In this paper, we propose
a parametric method for estimating multiple cointegrating regressions called the Dynamic
Seemingly Unrelated Regression (DSUR) estimator. The DSUR method is feasible for balanced
panels where the number of cointegrating regression equatiosssubstantially smaller than

the number of time-series observatiofisand is applicable both in environments where the
cointegrating vectors are homogeneous across equations and where they are not. DSUR achieves
significant efficiency gains over non-system methods such as dynamic ordinary least squares
(DOLS) when heterogeneous sets of regressors enter into the regressions and when equilibrium
errors are correlated across cointegrating regressions.

We llustrate the usefulness of DSUR by revisiting two long-standing problems in
international economics. Our first application revisits the estimation of long-run national saving
and investment correlations originally put forward Bgldstein and Horioké1980. They study
a cross-sectional regression of the time-series averages of national investment shares on national
saving shares and reason that the estimated slope coefficient is inversely related to the degree of
capital mobility. Finding the slope coefficient to be insignificantly different from 1, they conclude
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that the degree of international capital mobility is I@®oakley, Kulasi and Smitfl996 extend

this work by showing that under a time-series interpretation, the solvency constraint restricts
the current account balance (savings minus investment) to being stationary irrespective of the
degree of capital mobility. They suggest that Feldstein and Horioka’s cross-section regression
may be capturing this long-run relationship when long-run time-series averages are used in the
regression. By employing DSUR, we obtain efficient estimates of the cointegrating coefficients
in a system of cointegrating regressions of national investment variables on saving variables
for a small panel of OECD countries. This allows us to conduct a direct test of the long-run
relationship implied by the solvency conditions by testing the hypothesis that the slope coefficient
is 1. The weight of the evidence supports the hypothesis that the solvency condition is not
violated.

Our second application revisits tHevans and Lewig1995 analysis of cointegrating
regressions of the future spot exchange rate on the current forward exchange rate. Finding
the slope coefficient in this cointegrating regression to be significantly different from 1, they
report a new anomaly in international finance—that the expected excess return from forward
foreign exchange speculation is unit-root non-stationary. While Evans and Lewis employ an
SUR cointegration vector estimator, their control for endogeneity is incomplete. When we
update Evans and Lewis's sample and complete the endogeneity control with DSUR, we find
the evidence for a non-stationary expected excess return to be less compelling.

DSUR provides a parametric alternative to non-parametric estimators of seemingly
unrelated cointegrating regressions proposedPlayk and Ogaki(1991), who generalized
the Park (1992 Canonical Cointegrating Regression estimators andvimpn (1999 who
generalized théhillips and Hansetf1990 fully modified estimators. DSUR estimators are
asymptotically equivalent to these non-parametric estimators. In finite samples, DSUR has the
usual advantages and disadvantages compared to the non-parametric estimators: DSUR is more
efficient than the non-parametric estimators if the parametric assumptions are correct, while the
non-parametric methods are more robust.

We discuss the asymptotic properties of DSUR Tor — oo with N fixed. For the
estimation of heterogeneous cointegration vectors, we discuss the advantages of DSUR in
relation to the following parametric estimators: DOLS, proposeé@lips and Loretar§1991)
and Stock and Watsoii1993, a generalized DOLS estimator developedSaikkonen(1997)
which Park and Ogaki199]) call “system DOLS”, and a system estimator introduced by
Saikkonen(1993. System DOLS is distinguished from ordinary DOLS in that endogeneity
in equationi is corrected by introducing leads and lags of the first difference not only of
the regressors of equationbut also of the regressors from all other equations in the system.
Saikkonen(1991) developed system DOLS in a multivariate regression framework and showed
that the system DOLS estimator is asymptotically more efficient than DOLS Safilkonen
(1993 system estimator (SSE) is primarily intended for estimating “structural” coefficients
in a system of cointegrating relations where linear identifying restrictions are available. This
contrasts with DSUR which is primarily a strategy for estimating “reduced form” coefficients.
However, the two estimators are comparable when the structure is identical to the reduced form.
In this case, they are asymptotically equivalent but DSUR is efficient relative to SSE in finite
samples.

Cross-equation restrictions.g.homogeneity restrictions) can be conveniently tested using
Wald statistics which are asymptotically distributed as chi-square variates. If the null hypothesis
of cointegration vector homogeneity is not rejected, estimation can be performed using a pooled

1. After the first version of this paper was completed, we discoveredvbah and Perrorf2000 also studied
dynamic SUR.
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estimator of the cointegration vector that exploits the long-run dependence across individuals.
We call this pooled estimator restricted DSUR and show that it is asymptotically efficient relative
to panel DOLS

We conduct a series of Monte Carlo experiments to assess the small sample performance of
DSUR in relation to alternative parametric estimators and the accuracy of the asymptotic theory.
Because the equilibrium error may be correlated with an infinite number of leads and lags of
changes in the regressors, a practical question of interest concerns the performance of parametric
cointegration regression estimators that control for endogeneity by including a finite number
of leads and lags. We find that the asymptotic distribution theory developed for DSUR works
reasonably well and that there are important and sizable efficiency gains to be enjoyed by using
DSUR over the DOLS methods and Saikkonen’s SSE estimator.

The plan of the paper is as follow§ection1 presents the estimator and discusses
computational issues. We include in our discussion estimation of the required long-run
covariance matrices and selection of lead and lag lerf§gietion2 contains a discussion of
the asymptotic and small sample properties of the estimator and comparisons to alternative
parametric estimators. Readers who are primarily interested in computational aspects of DSUR
can skip this section without loss of continuity. The applications are presengettion3 and
Sectiond concludes the paper. Proofs of propositions are contained in the Appendix.

1. THE DSUR ESTIMATOR

We consider a fixed number dfi cointegrating regressions each with observations. For
example, the data may be balanced panels of individuals indexee=hy;, . . ., N tracked over

time periodst = 1, ..., T. Vectors are underlined and matrices appear in bold face but scalars
have no special notation. The data are generated according to:

Assumption 1 (Triangular Representation). Each equation i = 1,..., N has the
triangular representation,
Yit = X\ B, + uf. @
AXjp = &> @)
where x, and e, are k x 1-dimensional vectors. Lettingfu= (ul,....ul;), & =
(Elfs-- -+ EyT)» We have tha@;r = (gf,g{)’ is an N(k + 1)-dimensional vector with the

orthonormal Wold moving average representatigﬁ,: \IIT(L)gt, wherezfior|wiTm”

r
¥M"is the m n-th element of the matri| ande, is a martingale difference sequence with

E(e;) = 0, E(e€p) = lk, and finite fourth moments.

| < oo,

The endogeneity problem shows up as correlation betweertthequilibrium erroruiTt and
potentially an infinite number of leads and lags of the first-differenced regressors from all of the
equations in the systelix;; = ejy, (i,j =1,..., N). To control for endogeneity, we include
leads and lags of these variables in the regressions. However, any feasible parametric estimation

2. Kao and Chiang2000 andMark and Sul2003 studied the properties of panel DOLS under the assumption
of independence across cross-sectional uRitdlips and Moon(1999 andPedroni(2000 study a panel fully modified
OLS estimator also under cross-sectional independence. Moreover, the asymptotic theory employed in these papers
requires botil andN to go to infinity. While extant analyses of panel DOLS have been conducted under the assumption
of independence across cross-sectional units, we show that the asymptotic distribution of panel DOLS is straightforward
to obtain under cross-sectional dependence.
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strategy can include only a finite numbgpof leads and lags which induces a separate truncation
error. To keep track of the truncation error, let

/ / /
Zpit = (AXjg_p, - AXjgy ),
/o)
It = (Zplt""’Z/pNt)’
/ / / /
épl = (éll—p’ ~~-’§11’p9 .. ~’§1N,—pv . "—:I.N,p)’
!/ / / /
épN = (§N1’7p1 ... ’_Nl’pv .. 9§N N’_ps «--9 9N N,p)v

whereg;; |, is ak x 1 vector of coefficients. Under Assumptidnthe equilibrium errors can be
represented as
T Z58pi + vpit + Uit, 3)

where
are the truncation errors induced for giverarising from the dependence of the equilibrium
errors on(Ax);, ..., AX),) at distant leads and lags. Because the equilibrium e[rlfprand
the first-differenced regressofsc jt are stationary, the dependence between them at very distant
leads and lags becomes trivial. We proceed by ignoring the truncation errors in the estimation.
In Section2, we show that doing so is asymptotically justified under the regularity conditions of
Saikkonen(1991).3

There are three points worth noting here. First, including leads and lags of the first-
differenced regressog in the cointegrating regressions controls for endogeneity but generally
does not remove serial correlation. Therefore, in most applications it is likelyuthatill be
serially correlated. Second;rt will probably be correlated with both leads and lags of the first-
differenced regressors so it is necessary to include both leads and lags in the esfimiaticln.
in the system environment, it is important to include leads and lags of the regressors from
cross-equations in addition to own equation regressors. That is, the parametric adjustment for
endogeneity in equatidn= 1 will generally require including leads and lags not only\of;;, as
is the case in the single-equation environment (or in the panel environment under cross-sectional
independence), but also leads and lagar§; to AXy;.

1.1. DSUR

Substituting 8) into (1) and ignoring the truncation error yields the regressign= g{tgi +
Z/pt§p| + uit' Let Xt = (yltv M) yNt)/! gt = (ultv ce uNt)/l é = (é&v c ’éN)/’ ép =
(Q/pl, ....,Q/pN)/, Zpt = (In ®;pt), X_t = diag(Xy;, ..., Xnp) andWy = (X{,Z’pt)/. Then the
equations can be stacked together in a system as

Y, = (B 8p)Wi + u;. (5)

3. For ease of notation we assume an equal nunpbef leads and lags but the extension of the analysis to
asymmetric numbers of leads and lags is straightforwatdck and Watsorf1993, for example, assume that the
equilibrium errors are correlated only with a finite number of leads and lags of the first-differenced regressors.

4. In investigations of predictions of rational expectations models, one might think that lags are unnecessary
because the disturbance term has zero expectation conditional on the information available to the agents. Alternatively, it
might be reasoned that leads are unnecessary because lags will render the disturbance term serially uncorrelated. As can
be seen from our analysis, neither of these arguments is correct.
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Denote the long-run covariance matrix wf by 2,,. The DSUR estimator with know®

is
édsur _ T-p -1 T-p g1
|: éFJ dsur B Zt:P"‘l Wi, Wt Zt:p Wi uu Y |- (6)

We show inSection2. 1. 1thatﬁ o 'S @symptotically mixed normal. It follows that tests of

the linear restriction®g =, whereR Is aqg x Nk matrix of constants andis ag-dimensional
vector of constants, can be constructed by Iettuhgur = Zt p 11 X Xt and forming

the Wald statistioWgsyr = (Rﬁ ) [RVgsuR']™ Y Rﬁ wh|ch is asymptotically
distributed as a chi-square vanate wqh:iegrees of freeddom under the null hypothesis. This
Wald statistic provides a convenient test of homogeneity restrictions on the cointegrating vectors,
Ho:B1="--=BN.

In applications, we replac®,, with a consistent estimat(fzuu LY Qu. Estimation of the
long-run covariance matrix is discussed below. Such an estimator might be called a “feasible”
DSUR estimator. It is straightforward to see that the asymptotic distribution of the feasible
DSUR estimator is identical to that of the DSUR estimator wigg is known. Accordingly,
we will not make a distinction between estimators formed with a kn@®yg or one that is
estimated.

Because the parametric control for endogeneity takes up degrees of freedom, DSUR is
applicable whereN is substantially smaller tham. For T = 100, we show below in our
Monte Carlo experiments and in our applications that systems With= 8 are feasibly
estimated.

1.2. Two-step DSUR

Some computational economies can be achieved by conducting estimation in two steps. The first
step purges endogeneity by least squares and the second step egtimataaning SUR on the

least squares residuals obtained from the first-step regressions. When the numbers of included
leads and lagyp are identical across equations, this OLS-SUR two-step estimator is numerically
equivalent to a two-step procedure in which endogeneity is purged by generalized least squares
(GLS) in the first step and then running SUR on these GLS residuals. Under standard regularity
conditions, the two-step DSUR estimator is asymptotically equivalent to the DSUR estimator
B 4y discussed above.

To form the two-step estimator, Ie‘Ltf/y be the fitted least squares regressiory,pbnto
and let(lx ® Zpt)V be the vector of fitted least squares regressmnetojntoz Denote
the regression errors Qyt = Vit — Z ty and%;; = X —(k® Z t)y . Now represent the
equation system a; = 5”@ + Git, Where
Ot = Zyy Oy — 7 + [k @ Z) 7%, |8, + it
= Z/pt(épi - —pi,OIS) =+ Uit,

ands ; o1 = ﬁn - gi’fgi. Stacking the equations togetherfas= X{B + ; and running SUR
gives the two-step DSUR estimator,

-1
R B TP o 10 TP o 1.
éstsur_ |:Zt=p+1 Xtﬂuuxti| [Zt:p+1 Xtﬂuuztil : (7)
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1.3. Restricted DSUR

We now turn to estimation of the cointegration vector under the homogeneity restrictions
B, = =By =B As in two-step DSUR, endogeneity can first be purged by regressing
yit and each element of; on Zpt . Let §it and¥;; denote the resulting regression errors. The

problem now becomes one of estlmat@,gn the system of equationyg = x,té+ 0;t . Stacking
the equations together gives

9, =B+ 0, (8)
whereX; = (Xy;, - - -, Xny) IS ak x N matrix.
Let 2,, = LL’ be the lower triangular Choleski decomposition of the long-run error
covariance matrix. Premultiply8) by L~1 to get ¥ = XB + 0 wherey’ = L—lyt,

K¢ = &(L~1Y, andQ; = L~10,. The restricted DSUR estimator is obtained by running OLS on
these transformed observations:

’\* Ok A* oK
_rdsur |:Z| 1Zt p+1—'tl'ti| |:Z, 1Zt p+1—'tylti|
-1
_ T=p o o-lc T-P  ole
_[Zt:p+lxt9uUXt:| |:Zt=p+1XtSZUUXt . (9)

This estimator is also asymptotically mixed normal. Tests of the set dfnear
restrictionsRg = r can be conducted by comparing the Wald stati$gsur = (R,Brdsur
) [RV4suR']™ (Rﬁrdsur r) to the chi-square distribution witt) degrees of freedom where
R is aq x k matrix of constantsy is a g-dimensional vector of constants aMigsyr =
Zt p+1XtSZJulX{-

1.4. Estimating the long-run covariance matrix

While many estimators of the long-run covariance ma®iy, are available, accurate estimation
can become a challenge Bsincreases. A single factor structure is an efficient parameterization
that has been found to adequately model the long-run cross-sectional covari&eadopt the
approach oPhillips and Su{2003, which begins by assuming the parametric structure

+

ult = Z 8p| + U|t, (10)
Uit = pjUit—1 + Z 77|J AUit—j + wit, (11)
wit = A + &t (12)

Equation (0) is a restatement of3] that ignores the truncation error. I&1), potential serial
correlation inu;; is allowed for by Iettmg it follow an AR{) process. The cross-sectional

dependence is modelled bi2) whereet id (0, 1) is the single factor}; is the factor loading
for individual i and ¢t is an i.i.d. idiosyncratic error. Letting;, = (wit, ..., wnt)', & =

(Cats - END' A = (At - AND's Ve = E(¢,¢7), we haveVy,, = Eww)) = Ve + A4
Thus to estimat®,,, proceed as follows:

Step 1. Run OLS onyi; = & + X|t:3 + zptsp, + ujt and obtain the quasi-residualg =
ult + al - ylt |t/3

5. SeeBai and Ng(2002), Phillips and Su(2003 andMoon and Perroii2004).
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Step 2. Estimate the AR{) coefficients. To reduce bias, use recursive mean adjusted least
squares by running OLS (IIU'IT‘} pit—1) = pi (G _y — pit—1) + Z?_i mj AU _j + &its
wherepjt_1 = (t —1)~1 Zs 1 U, is the recursive mean of the quaS| -residuals. Using the

n—1-~

estimated AR{) coefficients, recover the residualg; = U —pi Uy _1—> j_1 ij AT ;.

Step 3. Form the sample error covariance matx = T~ Ly T .. Estimater; andV,
by the iterative method of momen(g, V;;) =argmin v, {trf(Mt — V“ - )(MT —
Vi — 11)'1}. Use the estimates to form the parametric estifvatg = V. + A4 -

Step 4. Obtain the estimate of the long-run covariance mamgﬁ,. = (- B) 1wa(l - B)_l'
wherep = (pat, - - -, PN

1.5. Lead and lag length selection

An important problem in practice concerns the choicgpobinfortunately, no standard method

has emerged even for time series. Often, dldehocrule used byStock and Watsor§1993

that setsp = 1 forT = 50,p = 2for T = 100, andp = 3 for T = 300 is adopted

in Monte Carlo and empirical studies. While it is desirable to have a data dependent method,
such as an information criterion or general-to-specific rules for chogsisgich rules quickly
become unwieldy as the size of the cross section grows. To balance concerns for employing a data
dependent method in applications, evaluation of estimator performance, and manageability of the
method, we apply the following modified BIC rule to chogsd_et p;j“(pﬁ) denote the number

of leads (lags) ofAx; in equationi. First run DOLS and determinﬂoﬁ{, p;;) by minimizing
BIC, then fori # j,set(pfjr, P = (it p).

2. SAMPLING PROPERTIES OF DSUR AND SOME ALTERNATIVE COINTEGRATION
VECTOR ESTIMATORS

Section2.1discusses the asymptotic properties of DSUR in comparison to alternative parametric
cointegration vector estimators. The Monte Carlo experiments are discusSedtion2.2

2.1. Asymptotic properties

Let W(r) be a vector standard Brownian motion foOr < 1, and let[T r] denote the largest
integer value off r for 0 < r < 1. We will not make the notational dependence @axplicit, so

integrals such a;ﬁol W(r)dr are written ag’ W and ones such a}%lw(r)dV_V(r)’ are written as
/' WdW'. Scaled vector Brownian motions are denotedoy: AW whereA is a scaling matrix.

It follows from Assumptionl that QI obeys the functional central limit theorem,
L wf 5 B = w'@OW) where BT = (B, By, ..., B, is an N(k + 1)-
dimensional scaled vector Brownian motion with covariance magix,= ¥ )w' (1) =

Tt t T, T ; ; :
Z‘j’i_oo E[E_jwo 1= I‘O+Zj-’°:l(l"j —|—l“j ). The long-run covariance matrix and its components
can be partitioned as

e e

ue uey
T T T
QT_[QEU e | | Ceu oo 0 Leey
lel el | P o
T t T
QeNu szeNel SZeNeN
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t t t
r_lL_Ju,j r:el,j FJFJG‘N,J'
T t . S .
o | Tuui Tuej | _ Teuwi Teerj Felenj
I U = . . ) .
eu,j eej
t t t
1weNu,j reNel,J’ reNeN,j
whereﬂ;u is the long-run covariance betwegp and(uL, e uLt), i=1...,N, FIu’j =
Euiu ), Tl = Eule, ), andI] | = (g€ )
We reintroduce the truncation errors by Iettig& = (vpit, ..., vpNy) and rewriting )

asy, = (é’ Q’p)Wt + v + Ui We ensure that the truncation errors vanish asymptotically by
following Saikkonen(1991) with:

Assumption 2 (Lead and Lag Dependence). Let p(T) be the number of leads and lags
of Ax;; (i =1,..., N), included in(3). We assume that

() p(T)/TY3 - 0as T— oo, and
S10j v G

(i) VT .1 |=0

11> p(T)
!/ /
SNt SNy

where| - | is the Euclidean norm.

The second condition in Assumpti@mplaces an upper bound on the allowable dependence
of uiTt on Ax;, at very distant leads and lags, while the first condition controls the rate at which
additional leads and lags must be included in order for the truncation induced specification error
to vanish.

2.1.1. DSUR asymptotic properties. We are now in a position to st&te

Proposition 1 (Asymptotic Distribution of DSUR). Let T, = T — 2p. Under the
conditions of Assumptiorisand 2,

(i) T (ﬁdsur— B) and /T, (8, gsur — ) are asymptotically independent.
(i) If Be = diagB,,. ..., Bg), Vasur = S P XeRp1X), andR is a q x Nk matrix of

t=p+1
constants such th®g =r ,thenas T — oo,
-1
N D _ _
T (édsur_é) - (/ BeﬁuulBé:> /Beﬂuuldgu’ (13)
and
(RB g~ 1) IRV35uRT A (RE g~ 1) 2 3 (14)
Fdsur = dsu Fdsur = Xq-

The intuition behind Propositiof is that asymptotically, as the effects of the truncation
error become trivial, one obtains a newly defined vector proggss (uy, ..., Unt, €. .-,
€y, With the moving average representation = diagW11(L), ¥22(L)1(y;, £5)’, Where

6. We follow Saikkonen(199]) in adopting a “degrees of freedom” adjustment, even though the asymptotic
results are obviously the same without this adjustment.
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Wq1(L) andWo(L) are (N x N) and (Nk x NKk) matrix polynomials in the lag operatdr,

respectively. It obeys the functional central limit theorr%& ZE(TP +pl)” Wy 3 (By,, By)', with
the long-run covariance matri2 = diag 2y, Ree]. Due to fhe block diagonality &, it can be
seen thaB,, andB, are independent. It is straightforward to see that the asymptotic distribution
of the feasible DSUR estimator is identical to that of the DSUR estimator of Proposition
As discussed above, some computational convenience is achieved by the two-step

procedure. This entails no sacrifice in terms of asymptotic efficiency as seen in:

Proposition 2 (Asymptotic Equivalence of the Two-Step Estimator). Under the con-
ditions of Assumption$ and 2, the two-step DSUR estimatfr) is asymptotically equivalent
to the one-step DSUR estimator of PropositbrMoreover, if the same set of leads and lags
Zpt is included in every equation, this OLS-SUR two-step estimator is numerically equivalent to
a two-step estimator where endogeneity is purged by GLS in the first step asiimated by
running SUR on the GLS residuals in the second step. N

The asymptotic equivalence obtains due to the consisten@bigfs and its asymptotic
independence of the estimator gpf Since asymptotic equivalence is achieved in regressions
using least squares residuals from first-step regressions, we will henceforth assume that
endogeneity has been controlled for in this fashion and will work in terms of these first-step
regression residuals.

Under cointegration vector homogenemi == B, =B, wemust restrict the amount
of long-run dependence among regressors across equatlons These restrictions are given in:

Assumption 3. Q[ has full rank.

Assumption3 does not permit a common regressor across equations, nor does it allow
the regressors across equations to be cointegrated. The properties of restricted DSUR are given
in7
in

Proposition 3 (Asymptotic Distribution of Restricted DSUR). Let be = (B, ...,

ex)s R be @ gx k matrix of constants such th&g = r and Vdsur = ZtT:’pﬂrl X 5%
Then under the conditions of Assumptidr8, as T, — oo,

-1
T* (érdsur_ E) _D) (/ beﬂu&d&) (/ beﬂu&d§u> ’ (15)

(Rérdsur —) [RVrdsurR (Rﬂrdsur —) B) Xg' (16)

and

2.1.2. Alternative parametric estimators. We now discuss the asymptotic properties of
DOLS, system DOLS, and SSE for estimating heterogeneous cointegration vectors and panel
DOLS for estimating homogeneous cointegration vectors.

. . r A~ S\ > & o /
7. In matrix notation, letY+ = (Y3,..., Yn)' whereY; = (yIerl ..... Vit p)

X = (A|p+1 ..... Ki7_ ID) is the T, x k matrix of regressors, anly = (0, ..., gN) G = Oipt1. - GiT—p).

The stacked system of observation¥is = XT/S + 07 whereﬁrdsur [XT(Quu QIT)XT]™ [X/ Qi ® IHYT].
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DOLS and system DOLSDOLS ignores dependence across individuals in estimation.
Controlling for endogeneity in equatidncan be achieved by projectirtg;t ontoz;, or onto
Zy = (z NTLREE . Z Nt)’ as in DSUR. The first option involves only those time series that
explicitly appear in equatlonand is a member of wh&aikkonen(1997) calls theS; class. The
second option, which employs auxiliary observations, is an example of what he cdls theess.

Park and Ogak{199]) consider a similar distinction in their study of canonical cointegrating
regressions (CCR). We conform to Park and Ogaki’s terminology and refer to the procedure that
controls for endogeneity by conditioning @y, as the “system” DOLS estimator. We call the
estimator that conditions only ar);, DOLS.

While the joint distribution of DOLS across equations depends on the long-run covariance
matrix £y, the estimator itself does not exploit this information. Here, we discuss two-step
estimation of system DOLS and compare it to DSUR. In two-step system DOLS, endogeneity is
purged by least squares and the cointegration vector is estimated by running OLS on the residuals
from the first-step regressions.

Let ¥it be the error obtained from regressing on Zpnt and letX;; be thek x 1 vector of
errors obtained from regressing each element, pbn z,.- Stacking the equations together as

the system glveict = Xtﬁ+gt, where the dlmensmnalltles of the matrices are as defined above.
The system DOLS estimatofis

-1
2 T-p & o T-p &~ .
ésysdolsz [Zt—p-ﬂ tht] [Zt—p+1 tht:| ) (17)
for which we have:

Proposition 4 (Asymptotic Distribution of System DOLS). Under the conditions of
Assumptiond and2, as T, — oo,

-1
B g 2 ([ e) ([ etz “
_) - qu, (19)

(Résysdols_ L)/[R\A/Sysdoléq/] (RIB

N _ -1 _ _ .
whereVsysois= | 10 XXt | [0 Xe@uoXi | [ S0 Xexi | andRisagx Nk
matrix of constants such th&g =r.

and

sysdols

Saikkonen showed that within the context of the standard multivariate regression
framework, ordinary DOLS is efficient within the class & estimators and that the class
of Sc estimators are efficient relative to th® class The reason for this is as follows. In
ordinary DOLS, endogeneity is purged by prOJectU}g onto zplt Substituting this projection

representation intalj givesyit = X,t,B + Z,8; + &it, wheregjt is the projection error Wh|ch is

by construction orthogonal to included leads and lagagf; . Since(1//T) > it» €)' 4
(B;i,g’ei)/ with long-run covariance matrix dig@; ;. €q.q). it follows that conditional

ol
lip-o—l
8. LetXj = : andXyt = diagXy, ..., XN 1. Then in the standard matrix notation,

%
Xt _p
Vsysdols= (X5 XT) 71X (Quu ® IT)X7 (Xp X7) 7L
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on By, avar(;%d ) = Q.0 () Bg B/a)_l SinceQy ;, is the long-run variance of the error from
projectingu;; ontoz,; < z, . andQy; y; is the long-run variance of the error from pl’OjeCtlﬂ]b
ontoz,, it must be the case th&t;, ; > Qu;u - Thus, ava(rﬁi’dols) > avar(ghsysdolg.

Our representation of the observations (Assumplipdiffers from Saikkonen'’s in that it
imposes “zero-restrictions” on the multivariate regression in the sense that each equation contains
a different set of regressors. Thus in the context of the model that we study, DSUR exploits the

cross-equation correlations and enjoys asymptotic efficiency advantages over single-equation
methods. A comparison of the asymptotic efficiency of system DOLS and DSUR gives:

Proposition 5.  Under the conditions of Assumptioh&nd?2,
ava'(édsur) = avar(ésysdolg'

DSUR is asymptotically efficient relative to the DOLS methods when the equilibrium
errors exhibit cross-sectional dependence and when regressors in the cointegrating regression are
heterogeneous across individuals. The latter condition is typical in panel cointegration analysis.

It is straightforward to see that system DOLS and DSUR are asymptotically equivalent if the
off-diagonal elements &, are zero.

Saikkonen’s system estimatoSaikkonen(1993 proposed an estimator for a structural
system of cointegrating equations. For presentation of Saikkonen’s estimatozt let
(Yits - YND, X = (Xgq, .- -5 X)), @andu; = (uy, ..., uny)’. Saikkonen considered the
structural simultaneous equatlon systBm = Cx; +¢& whereB andC are matrices of structural
coefficients. Whem is non-singular, premultlphcatlon glv% AX; +U;, which is the system

of cointegrating regressions stacked together whete B—1C, andu, = B~ le,. While DSUR

is an estimator of the reduced form coefficieAtsSaikkonen’s primary interest lies in estimation

of the structural coefficients when linear identification restrictions are available. The coefficient
vector of interest |s§3I = (-0, Y, Y whereg, andy are column vectors formed by the non-zero
elements inrow of B — Iy andC respectlvely "Now leH be the “selection matrix” that gives

H (1 ® Zt=1 XX )H = thl Xt Qg1X.2 Then Saikkonen’s system estimator (SSE) is

ESSE:[ ( U®Z xtxt> }_1 ( U®Z xtxt> (20)

whered = vegqA’), A’ = [ZtT li(”t?t] 12: 1% [Vt - ... Yntl is a system estimator of the
reduced form coefficients ar is the vector of regression errors from regressipngn Zy @ and
similarly for V.

SSE and DSUR are only comparable when the reduced form and the structure are the
same(B = ly). In this case, SSE and DSUR are asymptotically equivalent. However, this
equivalence does not hold in finite samples where DSUR is more efficient. It can be shown,
albeit under the more restrictive regularity conditionsQgaki and Choi2007), that DSUR
is the conditionally Best Linear Unbiased Estimator (BLUE)Although SSE with a known
long-run covariance matrix is both linear and unbiased, it is not identical to DSUR and
is therefore less efficient for finitd. To gain intuition for why this is so, we draw on a
parallel result in the case of a single cointegrating regression. There, dynamic generalized

9. SeeSaikkonen(1993 for construction of the selector matrik.
10. They assume that strict exogeneity can be achieved by including a fixed number of leads and lags of the
first-differenced regressors and that the conditional error covariance matrix is known.
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least squares (DGLS) is asymptotically equivalent to DOBSil{ips and Park1988, Jo and
Park (1997), but a similar Ogaki and Choi analysis finds that DGLS is conditionally BLUE.
Below, we find in our Monte Carlo experiments that DSUR is substantially more efficient
than SSE in small samples even when some of Ogaki and Choi’'s regularity conditions are
violated.

We note also that thBloon (1999 fully modified SUR estimator is linear unbiased when
the long-run covariance matrix is known. By the same reasoning, DSUR is more efficient under
the Ogaki and Choi conditions. On the other hand,Raek and Ogak{1991) non-parametric
Seemingly Unrelated Canonical Cointegrating Regression estimator is not linear and cannot
be directly compared. What we can say, however, is that if strict exogeneity can be achieved
by parametric adjustment, then DSUR will dominate the non-parametric estimators, but if the
parametric assumption is violated, it is possible that robust non-parametric estimators will
dominate parametric approaches.

Panel DOLS. In panel DOLS, control for cross-equation endogeneity can also be
achieved by working with first-step errors from regressimgand each element of;; on

Zpnt Using “hats” to denote the resulting least squares residuals, the panel DOLS estimator

IS

~ . T-p ., -1 T-p . . 21

épdols - Zt:p+1 XXt Zt:p+1 XtXt ’ ( )
where&y = (Xy., - . ., Xy¢) IS @akx N matrix. The asymptotic sampling properties of panel DOLS
under cross-sectional dependence are given as a corollary to Propdsition

Corollary 6 (Asymptotic Distribution of Panel DOLS). Let be = (Bg ..., Bgy),

Y T-p / -1 T-p / T-p / -1 :
V pdols = [Zt=p+l xtxt] [Zt:pH xtszuuxt] [Zt=p+1 xtxt] , andR be a gx Nk matrix of
constants such th&pg = r. Then under the conditions of Assumptidn8, as T. — oo,

-1
Te(Boaos— B) = ( / bebg) / bed B, (22)
and

(RB s — 1) IRVpaoR I (RE 4o — 1) = 13- (23)

pdols -

Finally, it is obvious that avdp ,_ ) < ava'(épdms)'

2.2. Monte Carlo experiments

In this section, we study the small sample properties of the estimators discussed above by
way of a series of Monte Carlo experiments. First, we compare the performance of feasible
DSUR, SSE, system DOLS, and DOLS in an environment where the cointegration vector exhibits
heterogeneity across equations. Second, we compare feasible restricted DSUR, and panel DOLS
in an environment where the cointegrating vector is identical across equations.

2.2.1. Experimental design. Each cointegrating regression has a single regressor. The
general form of the data generating process (DGP) is given by
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TABLE 1

Monte Carlo performance of DSUR, system DOLS (SDOLS), and SSE (Saikkonen’s system
estimator) under cointegration vector heterogeneity (BIC: selection rule)

True DSUR percentiles MSE relative to DOLS
N mean T 5% 50% 95%  Mean DSUR SDOLS SSE
Low cross-sectional dependence

100 1359 1524 1712 1528 0781 0861 4535

3 1506 200 1437 1514 1604 1517 0646 0844 3504
300 1462 1512 1570 1513 0609 0831 2907

100 1273 1446 1630 1448 0568 0818 7819

5 1437 200 1362 1441 1526 1442 0467 0777 6318
300 1388 1440 1497 1441 0445 0773 6188

100 1326 1483 1647 1484 0430 0764 13862

8 1478 200 1409 1480 1555 1481 0340 0706 11166
300 1434 1479 1528 1480 0322 0693 10280

High cross-sectional dependence

100 1279 1512 1745 1512 0379 1003 6385

3 1506 200 1405 1508 1609 1508 0295 0970 6012
300 1442 1507 1572 1507 0251 0965 5927

100 1224 1442 1658 1442 0261 1018 12442

5 1437 200 1346 1439 1533 1439 0197 0964 12661
300 1380 1438 1498 1438 0163 0946 13112

100 1304 1481 1663 1482 0201 1010 23721

8 1478 200 1402 1479 1557 1479 0150 0924 24580
300 1430 1478 1529 1479 0132 0917 25650

Vit = BiXit + U},
n—1
ui-I; = P uiTt—l + Zj:l 8ij AXit—1 + wit,
AXit = ¢i AXir—1 + Mig,
wit = Aj6 + it

Cross-sectional dependence and cross-sectional endogeneity are modulated byopyarying
and A;. For each experiment, we generate 5000 random sampl@&s of 100, 200, and 300
observations. The parameters are set according to U[0-2,0-8], ¢ ~ U[0-1,0-2], §jj ~
U[0-2, 0-8] whereU[-] is the uniform distribution. Under heterogeneous cointegration, we set
Bi ~ UIL, 2] whereas under homogeneous cointegration weBset= 1. Cross-sectional
dependence is said to be low whgn ~ U[O, 1] (correlation ranges between 0 and))and
is said to be high whek; ~ U[1, 3] (correlation ranges betweerband 699) 11

2.2.2. ResultsTablel reports 5, 50, and 95 percentiles and the mean of the Monte Carlo
distribution for DSUR, system DOLS, and SSE as well as their relative (to DOLS) mean square
error. The relative efficiency of DSUR is seen to improve for a giseras T increases but
also for givenT and asN grows over the range dfl and T that we consider. Fof = 100,
under low cross-sectional dependence, DSUR achieves a 22% reduction in mean square error
relative to DOLS wherN = 3 but achieves a 57% reduction whidn= 8. Even greater relative
efficiency gains are achieved when there is a high degree of cross-sectional dependence. System

11. We have experimented extensively with a variety of DGPs. In all the cases that we studied, we found that
DSUR exhibits moderate to strong efficiency advantages over the comparison estimators. To economize on space, we
report a small set of illustrative results. Results from alternative DGPs are available from the authors upon request.



810 REVIEW OF ECONOMIC STUDIES

TABLE 2
Monte Carlo performance: DSUR tests of homogeneity restrictions
Ho:B1=---=BN Ho:B1=--=Bn=1
N T 10% 5% 5% size 10% 5% 5% size
Low cross-sectional dependence
100 17676 8694 0104 26794 13662 0141
3 200 11473 6952 0068 15087 9648 0086
300 9563 5875 0047 12612 8135 0056
100 31261 19166 0234 39531 23412 0274
5 200 20458 13241 0127 24222 15366 0145
300 17294 11258 0092 20151 13725 0104
100 54803 3378 0395 58203 39126 0430
8 200 29335 21165 0185 32443 23945 0204
300 26107 19595 0150 2839 2135 0162
High cross-sectional dependence
100 1462 8378 0106 204 11821 0131
3 200 11503 6968 0073 14469 9416 0087
300 10672 6674 0063 13672 8824 0071
100 21809 13532 0125 25255 16706 0145
5 200 15754 10292 0064 18145 12141 0068
300 14517 9603 0052 16567 11285 0053
100 3439 23113 0207 38695 25861 0224
8 200 22292 16821 0101 24848 18474 0103
300 22004 16104 0087 2423 17882 0087

DOLS is generally more efficient than DOLS. The relative performance of the SSE estimator
is unsatisfactory. We conclude frofable 1 that DSUR offers substantial efficiency gains over
DOLS, SDOLS, and SSE, especially when there is a high degree of cross-sectional dependence
in the equilibrium errors.

We now turn to the small sample properties of Wald test statistics for DSUR tests of
homogeneity in the cointegrating regression slope coefficient. The first test considéted is
B1 = --- = Bn, where the Wald statistic is asymptoticajtf with N — 1 degrees of freedom
under the null hypothesis. The second test isHlgr: g1 = --- = By = 1 and the Wald
statistic here is asymptotically? with N degrees of freedonTable2 reports the percentiles of
the empirical test statistic distribution that lies to the right of the asymptotic 10% and 5% critical
values as well as the effective (5%) size of the tests. There is some size distortion in the tests
which worsens somewhat &kincreases for giveili. The tests are better sized under high cross-
sectional dependence, which is consistent Wihle 1 results that show better relative efficiency
of DSUR under high cross-sectional dependence. The size distortion in the test of equality of
coefficients is less severe than the test that all slope coefficients equal 1. The size distortions in
both tests are quite moderate when= 300.

The small sample performance of restricted DSUR for estimation under homogeneity
constraints is reported ifable 3. In addition to selected percentiles of the distribution, the
table displays the mean square error of restricted DSUR relative to panel DOLS. Here, it can
be seen that restricted DSUR achieves sizable efficiency gains over panel DOLS. The relative
performance of restricted DSUR is better under high cross-sectional dependence and generally
improves aN increases for fixed .

We conclude that in small samples, efficiency gains are available for the DSUR methods,
especially when there is moderate to strong cross-sectional dependente=Fd0, the tests of
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TABLE 3
Monte Carlo performance of restricted DSUR (RDSUR)

RDSUR percentiles Relative
N T 5% 50% 95%  Mean MSE

Low cross-sectional dependence
100 0930 1026 1146 1030 0813
3 200 0969 1013 1070 1015 0663
300 0980 1008 1044 1010 0616

100 0952 1007 1071 1009 0521
5 200 0978 1003 1032 1004 0402
300 0986 1002 1021 1003 0382

100 0964 1006 1051 1006 0330
8 200 0984 1002 1022 1003 0234
300 0990 1001 1014 1001 0223

High cross-sectional dependence
100 0904 1000 1098 1000 0205
3 200 0956 0999 1042 0999 0115
300 0972 0999 1025 0999 0103

100 0942 1001 1060 1001 0181
5 200 0974 1000 1028 1000 0124
300 0983 1001 1018 1000 0115

100 0957 1001 1047 1002 0274
8 200 0981 1000 1019 1000 0109
300 0988 1000 1012 1000 0099

Note MSE is the mean square error relative to panel DOLS.
The true mean is 1.

homogeneity restrictions are somewhat oversized and use of the asymptotic theory in applications
may lead to over-rejections of the null hypothesis. HoweverTfoe 300, the DSUR tests are
accurately sized.

3. APPLICATIONS

In this section we illustrate the usefulness of DSUR by applying it to two empirical problems in
international economics. Our first application revisits Beddstein and Horioké1980 problem

of estimating the correlation between national saving rates and national investment rates and
the interpretation of this correlation as a measure of international capital mobility. Our second
application revisits the anomaly reported lByans and Lewig1995 that the expected excess
return from forward foreign exchange rate speculation is unit-root non-stationary.

3.1. National saving and investment correlations

Let (1 /Y); be the time-series average of the investment to GDP ratio in couyrand(S/Y); be
the analogous time-series average of the saving ratio to GDPFatistein and Horiok&1980
run the cross-sectional regression

<I7>. =a+ﬁ($>i + Ui, (24)

to test the hypothesis that capital is perfectly mobile internationally. They find ghist
significantly greater than 0, and conclude that capital is internationally immaobile.
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The logic behind the Feldstein and Horioka regression goes as follows. Suppose that capital
is freely mobile internationally. National investment should depend primarily on country-specific
shocks. If the marginal product of capital in counitrig high, it will attract investment. National
saving on the other hand will follow investment opportunities not just at home, but around
the world and will tend to flow towards projects that offer the highest (risk adjusted) rate of
return. The saving rate in countiythen is determined not by countryspecific events but
by investment opportunities around the world. Under perfect capital mobility, the correlation
between national investment and national saving should be low. Following the publication of
Feldstein and Horioka’s cross-sectional study, a number of follow-up cross-sectional and panel
studies have reported that national saving rates are highly correlated with national investment
rates (for surveys of the Feldstein—Horioka literature,Bagoumi(1997) andCoakley, Kulasi
and Smith(1998).

Theoretical studies, on the other hand, have shown thaté¢hdstein and Horiok§1980
logic is not airtight.Obstfeld(1986, Cantor and MarK1988, Cole and Obstfeld1991), and
Baxter and Crucini1993 provide counterexamples in which the economic environment is
characterized by perfect capital mobility but decisions by optimizing agents lead to highly
correlated saving and investment rates. Along with theoretical criticism of the Feldstein and
Horioka hypothesis, more than a dozen empirical studies have criticized their econometrics by
arguing that the saving and investment ratios are non-stationary.

Coakleyet al. (1996 suggest an alternative interpretation of the long-run relationship
between saving and investment. By the national income accounting identity, the difference
between national investment and national saving is the current account balaasdeyet al.
argue that the current account must be stationary when the present value of expected future debt
acquisition is bounded. In other words, whether the current account balance is stationary depends
not on the degree of capital mobility but on whether the long-run solvency constraint holds. If
saving and investment are unit-root non-stationary, they are cointegrated with a cointegrating
vector (1,—1). Thus the long-run relationship between saving and investment studied by means
of time-series cointegrating regressions is best interpreted as a test of the long-run solvency
constraint and not of the degree of capital mobility. Furthermdaasen(1996, Coakley and
Kulasi (1997, andHussein(1998 show that the saving and investment ratios are cointegrated.
Under this interpretation, the current account is a key component of the equilibrium error. Cross-
sectional dependence arises naturally because the current accounts for all countries in the world
must sum to zero.

We employ DSUR to re-examine the Feldstein—Horioka puzzle using 100 quarterly
observations from thimternational Financial Statistic€D-ROM on nominal GDP, saving, and
investment from 197Q to 19954 for Australia, Austria, Canada, Finland, France, Germany,
Italy, Japan, Spain, Switzerland, the U.K., and the U.S. In contrast to previous analyses which
have employed non-system methods, we provide a direct test of the solvency constraint using
an efficient system estimation technique that explicitly accounts for cross-country dependence.
This is a natural application for DSUR as we seek efficient estimation for panel cointegration
regression with a moderate cross-sectional component.

Since our focus is on the long-run relationship between saving and investment, we follow
the Coakleyet al. interpretation that the long-run solvency constraint implies cointegration. Two
versions of their model imply slightly different forms of cointegration. First, if we assume that
saving and investment are unit-root non-stationary, then this version of their model implies that
the current account is stationary and saving and investment are cointegrated with cointegrating
vector (1,—1). Second, if we assume that the saving—GDP ratio and investment—GDP ratio
are unit-root non-stationary, we must interpret saving and investment in their model to be
normalized by GDP. The second version of their model implies that the current account over
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GDP is stationary and that saving and investment normalized by GDP are cointegrated with a
cointegrating vector of (1;-1).
For the first version of the model, we run the regression in levels after normalizing saving

and investment by GDP,
I S
(7), 7o), v .

Presumably, the reason for normalizing investment and saving by GDP in many applications is to
transform the data into stationary observations, as they would be if the economy is on a balanced
growth path. However, we find very little empirical evidence for this implication of balanced
growth in our data-sef?

For the second version of ti@pakleyet al. model, we run the regression in log levels,

In(lit) = & + Bi IN(Sit) + uit. (26)

With the relatively short time series available, it was not feasible to simultaneously estimate
all 12 countries’ regressions by DSUR due to the excessive number of parameters in the system.
To proceed, we break the panel into subsamples and estimate separate systems for European and
non-European countries.

Table4 reports our estimates. We first discuss the results in ratio form. For the European
countries, the BIC rule selects = 3. Only our DSUR slope coefficient estimate for the
U.K. is significantly different from 1. For non-European countrips=£ 3), the point estimate
is marginally significantly different from 1 only for the U.S. Tests of homogeneity provide
little evidence against the hypothesis of slope coefficient equality. In the European system, the
asymptoticp-value for the test oHg : 81 = --- = BN is 0-31. The asymptotig-value for
the test ofHp : 1 = --- = Bn = 1 is 025. For the non-European system, neither of the
tests for homogeneity can be rejected at the asymptotic 1% level. These results suggest that it
is reasonable to pool and to re-estimate the two systems under homogeneity. When we do so,
we obtain a restricted DSUR estimateé)49 which is insignificantly different from 1 for the
European system. The restricted DSUR estimate for the non-European syste8filof<also
insignificantly different from 1.

Looking at the estimates from the log levels regression, the European data-set tells a similar
story. These estimates, again associated with= 3, are all insignificantly different from
1. Neither test of the homogeneity restrictions rejects at the 5% level. For the non-European
countries, our BIC rule sefs = 2. Here, the DSUR estimate for the U.S. 6334 is significantly
greater than 1. Since the homogeneity restrictions are not rejected, we re-estimate by restricted
DSUR. This gives a point estimate o089 which is insignificantly different from 1.

To summarize, the weight of the evidence suggests that the long-run slope coefficients in
the saving—investment regressions are very close to 1 for most countries which is consistent with
the hypothesis that thHeoakleyet al. solvency constraint is not violated.

12. We perform thePhillips and Sul(2003 panel unit-root test which is robust to cross-sectional dependence.
Their suggestion is to apply an orthogonalization procedure to the observations under the assumption that the cross-
sectional dependence is generated by a factor structure, and then to apyggditeda and Wi§1999 panel unit-root test
to the orthogonalized observations. The series tested and assqeizfebs from the tests are as follov&.Y, (0-972),

1/Y, (0-:999), In(S), (1-.000), In(1), (1-000). Since none of thg-values are less thanb, the null hypothesis of a unit
root is not rejected. In differences, we obtain {& — 1)/Y, (0-000), and In(S/1)(0-000 and are able to reject the
unit-root null hypothesis for these cases.
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TABLE 4
Saving-investment correlations

Ratios Log levels
Bi t(g=1) B t(g =1

A. European system

Austria 0988 —0127 0987  —0.707
Finland 1189 0666 0922  —1585
France @898 —0-850 0982  —0683
Germany 0690 —0-692 1007 0059
Italy 1.049 0188 0971  —0.901
Spain 0729 —-1.821 1007 0177
Switzerland 1144 0414 0920 -0713
UK. 0566 —2.398 1002 0058
X2 8284 2513

(p-value) (0308) (0926)

xE 10917 3075

(p-value) (0251) (0930)

Restricted 1049 0701 0990  —0.730
B. Non-European system

Australia 0713 —0711 0994  —0179
Canada ®32 —1.695 0988  —0181
Japan ®82 —0-069 0971  -0519
u.s. 0803 —1.632 1094 2367
X3 0443 3666

(p-value) (0931) (0300)

X2 6-996 4984

(p-value) (0136) (0289)

Restricted B61 —-1.204 0989 —0-444

Note The statistic for the test of homogeneityxi§ in panel A and
X% in panel B. The statistic for the test that slope coefficients are
all equal to 1 isxZ in panel A andyZ in panel B.

3.2. Spot and forward exchange rates

Let s¢ be the logarithm of the spot exchange rate between the home country and dquntry
and let fi; be the logarithm of the one-period forward exchange rate. It is widely agreed that
since the move to generalized floating in 1973 bgth~ 1(1) and fiy ~ | (1) and they are
cointegrated. LeB; be the cointegrating coefficient gf -1 and fi; and letpjt = fit — Et(St+1)

be the expected excess return from forward foreign exchange speculation. The spot rate can be
decomposed a1 = fit — pit +€it+1 Whereeii 11 = St+1—Et (St+1) is arational expectations

error, and the equilibrium error can be decomposeskas — i fit = (1 — 8) fit — pit + €it+1-

If 8 # 1, it follows that the expected excess retysp is non-stationary and is cointegrated

with fj;. Evans and Lewis ask whethgx; is 1(0) or | (1), by estimating the cointegrating
regression

St+1 =i + Bi fit + UiTtH- (27)

They test the hypothesislg : 8 = 1 using monthly observations from January 1975 to
December 1989 on the dollar rates of the pound, deutschmark, and yen, and are able to reject
that null hypothesis at small significance levels. The implied non-stationarity of the excess return
is an anomaly.
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TABLE 5

DSUR estimation of spot and forward
exchange rate cointegrating
regression1975.1-1996.12Three
leads and lags

B tB=1
Germany @992 —0-024
Japan D98 —0-800
U.K. 1.001 0351
X2 0-539
(p-value) (0764)
X3 0.761

(p-value) (0859)
Restricted M98 —1.833

Notes XZ is the test statistic for
testing tﬁe homogeneity hypothesis

BL = B2 = B3 x2 is the test
statistic for testing the homogeneity
hypothesig8; = 8o = 3 = 1.

Evans and Lewis employ both DOLS and an SUR estimator, but in the latter, they included
only the leads and lags of first-differenced regressors from the “own” equation and not from
cross-equations. The omission of leads and lags of the first-differenced regressors from other
equations can be problematic since this may not control for endogeneity in the dynamic
regressions even asymptotically. Strict exogeneity would require that the error in each equation at
a point in time must be uncorrelated with regressors from all equations in the system at any point
in time. However, one component of the error is the forecast error of investors for the exchange
rate and the examination is on the three exchange rates quoted relative to the U.S. dollar. If
unexpected U.S. macroeconomic shocks have an effect on all three forward rates, the forecast
error in each equation will be correlated with forward rates in the other two equations.

We revisit the Evans and Lewis problem using an updated data-set. Our data are spot and
30-day forward exchange rates for the pound, deutschmark, and yen relative to the U.S. dollar
from January 1975 to December 1996. We have 286 time-series observations sampled from
every fourth Friday of the Bank of Montreal/Harris BaRtreign Exchange Weekly Revielihe
estimation results are reportedTable5. In the light of the moderate size distortion uncovered
in the Monte Carlo analysis, we test the hypotheses using the 1% asymptotic significance
level. Our BIC rule recommends including = 3 leads and lags of the endogeneity control
variables. The DSUR estimates with = 3 are insignificantly different from 1 for each of
the currencies. We employ two tests of homogeneity in the cointegration vectors. The first one
tests the null hypothesislp : 81 = B2 = B3. The second is a test of the null hypothesis
Ho : B1 = B2 = B3 = 1. Neither of these homogeneity restrictions are rejected at conventional
significance levels. We proceed by imposing the homogeneity restrictions in estimation and
obtain a restricted DSUR estimate that is insignificantly different from 1. We conclude that the
evidence for non-stationarity of the excess return is less compelling according to the DSUR slope
coefficient estimates under homogeneity restrictions.

4. CONCLUSION

In this paper, we proposed the DSUR estimator for multiple-equation cointegrating regressions
for situations in which the cointegration vector displays heterogeneity across equations and
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in which it is homogeneous. This estimator exploits the cross-equation correlation in the
equilibrium errors and it is efficient. DSUR estimators can be successfully applied in small to
moderate systems where the number of time periods is substantially larger than the number of
cointegrating equations. DSUR will not be feasible in systems of |Iargeie to the proliferation

of free parameters that must be estimated in the error correlation.

In our application on the saving—investment regression, we used a natural classification of
subsystems according to geography such that each subsample might reasonably exhibit high
degrees of cross-equation equilibrium error correlation. Our empirical results were somewhat
mixed, but the evidence suggested that the long-run slope coefficients in the saving—investment
regressions are very close to 1 for most countries which is consistent with the hypothesis that the
long-run solvency constraint is not violated.

For our application on the spot and forward exchange rates, we argued that it is problematic
to omit leads and lags of the first-differenced regressors from other equations in applying the
SUR method to dynamic cointegrating regressions as Evans and Lewis did. We conclude that the
evidence for non-stationarity of the excess return is less compelling according to the DSUR slope
coefficient estimates under homogeneity restrictions than originally found by Evans and Lewis.

APPENDIX

Our asymptotic results are fr — oo for fixed N. For notational convenience and without loss of generality, we take
N =2

Proof of Propositioril. We note that three regularity conditions assume&aikkonen(1997) are satisfied under
Assumptionl. They are (i) the spectral density matrix of the vector of equilibrium errors is bounded away from zero,
(ii) the long-run covariance matrix exists, and (iii) the fourth-order cumulants are absolutely summable=L &t—2p,

) 1 T-p _ _ .
A= d|ag<_|_—*2 (Z‘:pﬂ xtszuulx{> : E(zptszu&z/pt)) ,Gr = diagTul2, /Til2)

and

oMxyxy @M @Mxyz %4 ]
T2 T2 7/ T/

21 22
Q7xaxy  %xaxy  2%xxz 97

2 2 3/2 3/2
A _|g-l ZT—P —Iywhe—1| _ ZT_p T T T T
A= [GT t:pJ'-l(WtSl“uW‘)GT ] T Lt=p+1| QU1

/ 12, 11 12
Xy Xy @ zy Qaz
1372 132 . ¥
21, o/ 22, o/ 21 22
277z Xy %z Xy Q77 27z
I 1372 T T

Then

T (B — . T—

[ *(Aédsur & :| = AilG?lzt_ P 1WtSZJL:1l(Ht +upt)
VT (ép.dsur_ép) =Pt

T-p

-1
t:p_HWtﬂqupt

_pa-le-1NTP —1 -1g-1
=A"1Gy Zt:p+lwt9uugt+A Gy

@
A-1l_ aA-l—1N"T—P -1
AT -ATHGTT Y WG (e + ) -

(b

From Theorem 4.1 oBaikkoner(1991), we haveGy ! zfgpﬂl Wtﬂa&ypt =op(1) andA—1 — A=1 = 0p(1) so that
terms (a) and (b) above are baip(1).
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The block diagonality oA 1 tells us thafT, (édsur_ B) and/T, (ép,dsur_ 8p) are asymptotically independent.
It follows that

. 1 -1/
Te(Byeyr— B) = (T? thszgulxt) (ﬁ thszgulgt> +0p(2)

-1
B ( / BeszgulBg> < / Be2;ld gg). (A1)

Conditional orBe, [ BeﬂJ&dgu B NQ@, [f BeSZJulBgJ) (Park and Phillips1988. LetR be aq x 2k restriction matrix.
Note thatBe and B, are independent Brownian motions. Then, conditionaBen

(ReEge~ )[R ( [ Bestidee) R']*l (R(Bagr—8) 2 12) (*.2)

Since the chi-square distribution does not depeng B@QJ&B{B, andT—l2 ZtT xtszgl}x{ B S BeQ; 1B, a test of the
null hypothesisHg : Rédsur: r, can be conducted with the Wald statistic

-1
A / T -1 A
(Rédsur_ ) [R (thl XtQug Xé) R] (Rédsur_ r) (A3)
which has a Iimitingxg distribution. ||

Proof of Propositior2.  The GLS estimator of in (5) can be obtained in two steps. In step 1 we obtain the GLS
(or SUR) residuay/, from the regression of, onZpt and the GLS residu; from the regression of; onZ pt. In step

2, we run the GLS (SUR) regressionﬂfon Xt. If in step 1 the same set of regressors are used, those GLS regressions
are numerically identical to equation-by-equation OLS||

Proof of Propositior8.  Follows straightforwardly along the lines of the proof of Propositiaand is omitted.

-1
i in withT. (4 (L5 T-P g% 1 yT-p
Proof of Propositiord.  We begin withT, (ésysdols_ B) = (TT? Zt=p+l th{) (T—* Zt=p+l tht). By
i 1 T-p o v D T 1 T-p ¢ D
Proposition1 we haveT—*2 Yt—pt1 XXt = [BeBe = dmg(]gelggl, fﬁeZEQZ) and - 35 Xeup —
12 . ~
[ BedB}, = (/BgdBy,, [Bg,dB,,). Conditional onBe, T(Esysdols_ B)

(fBeBg)fl(fBeSluuBg)(fBeBg)fl. The asymptotic chi-square distribution of the Wald statistic follows
immediately from the mixed normality of the estimator.

~ N(0, Vsysdols WhereVsysgols =

To prove Propositios, we make use of the following two lemmas.

Lemma 1.

-1
avar(Byg,) = E( / Besz;ulsg)

avat@sysdolg = E</ |3e|3£9)71 (/ Be%us;) </ BeBé)fl.

Proof. Conditional orBe, aval(édsur) = VIl, whereVy = [ BeSZJulBg. It follows that
var [v;lf BeSZJL}dEU|Be:| =v;! (/ Beszgl}szuusz;L}Bg> vit=vit

E [v*lf BeSZJL}dEU|Be:| =0.
Using the decomposition of the variance for any two random variablkesd X,

Var(Y) = E[Var(Y | X)] + Var[E(Y | X)], (A.4)
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it follows that unconditionally, avz@dsur) = E(Var(VIlf Beszguldgu)) =E(f BeQJulBg)_l. Similarly, we have
avai(B g i) = E((/ BeBL) " (/ BeRuuBL) (/ BeBL) ). |

Lemma 2. Consider the random matricest andBt. If At > BT, AT —D> A andBt —D> B, thenA > B,
almost surely.

Proof. GivenA'(A1 —BT)A > 0. Assume the converse(E(A —-B)A < O) > 0. Then there exists an> 0 such
that F@’(A —-B)A < —e) > 0. There are a countable number of continuity points within the int¢rva) 0]. Let —§
be one such continuity point wheree < —§ < 0. Then limr P(1'(A1 — B1)A < —8) = P((A — B)A < —8) > 0,
which is a contradiction. ||

Proof of Propositiorb.  Let
Xt = diag(Xq¢, Xot) 1 (2K x 2), X7 = diag(xp+1, s XTop) 2Tk x 2Ty)

Xt @~1x Xt X xt@xr, \ "1 /XL X
A Ty _ T T Ty Ty Te " Tx
vin = S v = (T ) () ()
Then
— -1
v Vo X5 @7y, (X Xt \ (X eXT, X5 X1,
1T, 2T — T*2 T*Z T*Z T*Z
-1/2 1/291/2 1/2
_ X5 e . Ql2xy | (X5, eY2el/2Xs,\ (X @Y
Ts Ts T,F2 Ts
Q12+ 1
x (T** DT [l =MT, (M MT,)""M7 DT,

whereD1, = (1/ TR Y2XT, : (2T« x 2T,) andM, = (1/T.)@Y?X1,. This is a system of B. non-negative
quadratic forms in a symmetric idempotent matrix. For giXef) and T, we haveVit, > Vor, which implies that

-1 -1 -1 -1 . ~ ~
VlT* < VZT*. By Lemmaz2, we hath—:'\/l < V2 , and Lemmél gives ava(édsur) < avar(ﬁsysdolg. I

Comments about SSE
Here, we show that SSE, tHgaikkonen(1993 system estimator, is not efficient for finite samples under regularity
conditions ofOgaki and Cho{200]) which we state as:

Assumption 4. (Strict exogeneity with finite leads and lags for a system of dynamic cointegrating regressions)

(i) (Strict exogeneity with finite leads and lags). Fﬁr 53 Zi/tﬁi +Ujt, which is the projection of the equilibrium error
ontojpit = (Agltipli ey AKH% ey Al,Ntpri ey AK’NHqu ), whereg; is the vector of unknown
projection coefficients, and 4= X/, .... Xj1. ..., Xq. - - - X)y7) With x a vector of real numbers,

E(uit | X1 =x) =0.
(i) (Known covariance structure). @u’ | X1 = x) = V, where u= (uss, ..., UT, ..., UNT, ..., UNT) @ndV
is a known non-singular matrix of real numbers.

Letting N = 2, consider the stacked model,

By
yl |: Wl :| él |: us :|
RA — + A.5
[ Y, } Wil B U2 "o
P
X1 Zy
whereW; = : : . Write the stacked model irA(5) compactly ay = Wy + u. We also require:
X1 ZT
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Assumption 5. For Xt = x, the realized value diV has full column rank.

The GLS estimator of the grand coefficient vectois [W'V~1wW]~1w’v—1y. By Ogaki and Choi (2001), this
GLS estimator is the Best Linear Unbiased Estimator (BLUE) conditionaﬁ@n; X. The DSUR estimator of the
cointegration vector parameters is that part of the GLS estimatdg. for

To show that SSE is, in this environment, inefficient in finite samples, we need only demonstrate the non-
equivalence between SSE and DSUR in the context that we study. We do tHié fer2, andA = A’ = C =
diagaj 1, agp] (a single regressor in each equation) for which we have- 1o = [by, by], 81 = a11, 62 = apy,
Hi=(1 0 )', Hy=(0 1 )’, 81 = [a11. 8121, 8y = [821, &p2]'. For fixedT, let Qt = Y x; X, and notice
'[hatH/(SZJu1 ®QT)H = SZJU1 © QT, whereH = diagH1, Hy) and “©" is the Hamadad product operaftLet
be theij-th element ofSlJul. In the case where endogeneity is purged by including a fixed number of leads and lags of
AXijt, SSE is for fixedl

Bsser = H'(®ad ® QH)™H' @5 ® Qrived AT)
= H@gd o @t © an i ® r Hrec(Y %))
= (R 0Qn) (@i ® QT Q;l)vec(thﬂ)
# Basuct

whereXit (Vjt) is the residual from regressing; (yjt) on the leads and lags afxij;. Clearly the two estimators
are not identical for any finitel. They are, however, asymptotically equivalent. This can be seen by noting that
T2Qr - Q7hH - 0asT — .
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