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We propose the parametric Dynamic Seemingly Unrelated Regression (DSUR) estimator for
simultaneous estimation of multiple cointegrating regressions. DSUR is efficient when the equilibrium
errors are correlated across equations and is applicable for panel cointegration estimation in environments
where the cross section is small relative to the available time series. We study the asymptotic and small
sample properties of the DSUR estimator for both heterogeneous and homogeneous cointegrating vectors.
We then apply the method to analyse two long-standing problems in international economics. Our first
application revisits the estimation of long-run correlations between national investment and national
saving. Our second application revisits the question of whether the forward exchange rate is an unbiased
predictor of the future spot rate.

INTRODUCTION

Multiple-equation cointegrating regressions are frequently encountered in applied research.
Many applications arise in the context of panel cointegration regression. For example, one
might combine multiple macroeconomic time series from a cross section of countries to
estimate long-run money demand elasticities, the relation between investment and saving shares,
relations among asset prices or relations among commodity prices. In this paper, we propose
a parametric method for estimating multiple cointegrating regressions called the Dynamic
Seemingly Unrelated Regression (DSUR) estimator. The DSUR method is feasible for balanced
panels where the number of cointegrating regression equationsN is substantially smaller than
the number of time-series observationsT and is applicable both in environments where the
cointegrating vectors are homogeneous across equations and where they are not. DSUR achieves
significant efficiency gains over non-system methods such as dynamic ordinary least squares
(DOLS) when heterogeneous sets of regressors enter into the regressions and when equilibrium
errors are correlated across cointegrating regressions.

We illustrate the usefulness of DSUR by revisiting two long-standing problems in
international economics. Our first application revisits the estimation of long-run national saving
and investment correlations originally put forward byFeldstein and Horioka(1980). They study
a cross-sectional regression of the time-series averages of national investment shares on national
saving shares and reason that the estimated slope coefficient is inversely related to the degree of
capital mobility. Finding the slope coefficient to be insignificantly different from 1, they conclude
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that the degree of international capital mobility is low.Coakley, Kulasi and Smith(1996) extend
this work by showing that under a time-series interpretation, the solvency constraint restricts
the current account balance (savings minus investment) to being stationary irrespective of the
degree of capital mobility. They suggest that Feldstein and Horioka’s cross-section regression
may be capturing this long-run relationship when long-run time-series averages are used in the
regression. By employing DSUR, we obtain efficient estimates of the cointegrating coefficients
in a system of cointegrating regressions of national investment variables on saving variables
for a small panel of OECD countries. This allows us to conduct a direct test of the long-run
relationship implied by the solvency conditions by testing the hypothesis that the slope coefficient
is 1. The weight of the evidence supports the hypothesis that the solvency condition is not
violated.

Our second application revisits theEvans and Lewis(1995) analysis of cointegrating
regressions of the future spot exchange rate on the current forward exchange rate. Finding
the slope coefficient in this cointegrating regression to be significantly different from 1, they
report a new anomaly in international finance—that the expected excess return from forward
foreign exchange speculation is unit-root non-stationary. While Evans and Lewis employ an
SUR cointegration vector estimator, their control for endogeneity is incomplete. When we
update Evans and Lewis’s sample and complete the endogeneity control with DSUR, we find
the evidence for a non-stationary expected excess return to be less compelling.

DSUR provides a parametric alternative to non-parametric estimators of seemingly
unrelated cointegrating regressions proposed byPark and Ogaki(1991), who generalized
the Park (1992) Canonical Cointegrating Regression estimators and byMoon (1999) who
generalized thePhillips and Hansen(1990) fully modified estimators.1 DSUR estimators are
asymptotically equivalent to these non-parametric estimators. In finite samples, DSUR has the
usual advantages and disadvantages compared to the non-parametric estimators: DSUR is more
efficient than the non-parametric estimators if the parametric assumptions are correct, while the
non-parametric methods are more robust.

We discuss the asymptotic properties of DSUR forT → ∞ with N fixed. For the
estimation of heterogeneous cointegration vectors, we discuss the advantages of DSUR in
relation to the following parametric estimators: DOLS, proposed byPhillips and Loretan(1991)
andStock and Watson(1993), a generalized DOLS estimator developed bySaikkonen(1991)
which Park and Ogaki(1991) call “system DOLS”, and a system estimator introduced by
Saikkonen(1993). System DOLS is distinguished from ordinary DOLS in that endogeneity
in equationi is corrected by introducing leads and lags of the first difference not only of
the regressors of equationi but also of the regressors from all other equations in the system.
Saikkonen(1991) developed system DOLS in a multivariate regression framework and showed
that the system DOLS estimator is asymptotically more efficient than DOLS. TheSaikkonen
(1993) system estimator (SSE) is primarily intended for estimating “structural” coefficients
in a system of cointegrating relations where linear identifying restrictions are available. This
contrasts with DSUR which is primarily a strategy for estimating “reduced form” coefficients.
However, the two estimators are comparable when the structure is identical to the reduced form.
In this case, they are asymptotically equivalent but DSUR is efficient relative to SSE in finite
samples.

Cross-equation restrictions (e.g.homogeneity restrictions) can be conveniently tested using
Wald statistics which are asymptotically distributed as chi-square variates. If the null hypothesis
of cointegration vector homogeneity is not rejected, estimation can be performed using a pooled

1. After the first version of this paper was completed, we discovered thatMoon and Perron(2000) also studied
dynamic SUR.
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estimator of the cointegration vector that exploits the long-run dependence across individuals.
We call this pooled estimator restricted DSUR and show that it is asymptotically efficient relative
to panel DOLS.2

We conduct a series of Monte Carlo experiments to assess the small sample performance of
DSUR in relation to alternative parametric estimators and the accuracy of the asymptotic theory.
Because the equilibrium error may be correlated with an infinite number of leads and lags of
changes in the regressors, a practical question of interest concerns the performance of parametric
cointegration regression estimators that control for endogeneity by including a finite number
of leads and lags. We find that the asymptotic distribution theory developed for DSUR works
reasonably well and that there are important and sizable efficiency gains to be enjoyed by using
DSUR over the DOLS methods and Saikkonen’s SSE estimator.

The plan of the paper is as follows.Section 1 presents the estimator and discusses
computational issues. We include in our discussion estimation of the required long-run
covariance matrices and selection of lead and lag length.Section2 contains a discussion of
the asymptotic and small sample properties of the estimator and comparisons to alternative
parametric estimators. Readers who are primarily interested in computational aspects of DSUR
can skip this section without loss of continuity. The applications are presented inSection3 and
Section4 concludes the paper. Proofs of propositions are contained in the Appendix.

1. THE DSUR ESTIMATOR

We consider a fixed number ofN cointegrating regressions each withT observations. For
example, the data may be balanced panels of individuals indexed byi = 1, . . . , N tracked over
time periodst = 1, . . . , T . Vectors are underlined and matrices appear in bold face but scalars
have no special notation. The data are generated according to:

Assumption 1 (Triangular Representation). Each equation i = 1, . . . , N has the
triangular representation,

yi t = x′

i tβ i
+ u†

i t , (1)

1xi t = ei t , (2)

where xi t and ei t are k × 1-dimensional vectors. Letting u†
t = (u†

1t , . . . ,u
†
N T)

′, e′
t =

(e′

1t , . . . ,e
′

N T)
′, we have thatw†

t = (u†′

t ,e
′
t )

′ is an N(k + 1)-dimensional vector with the

orthonormal Wold moving average representation,w
†
t = 9†(L)εt , where

∑
∞

r =0 r |ψ
†mn
ir | < ∞,

ψ
†mn
ir is the m,n-th element of the matrix9†

ir and εt is a martingale difference sequence with
E(εt ) = 0, E(εtε

′
t ) = Ik, and finite fourth moments.

The endogeneity problem shows up as correlation between thei -th equilibrium erroru†
i t and

potentially an infinite number of leads and lags of the first-differenced regressors from all of the
equations in the system1x j t = ej t , (i, j = 1, . . . , N). To control for endogeneity, we include
leads and lags of these variables in the regressions. However, any feasible parametric estimation

2. Kao and Chiang(2000) andMark and Sul(2003) studied the properties of panel DOLS under the assumption
of independence across cross-sectional units.Phillips and Moon(1999) andPedroni(2000) study a panel fully modified
OLS estimator also under cross-sectional independence. Moreover, the asymptotic theory employed in these papers
requires bothT andN to go to infinity. While extant analyses of panel DOLS have been conducted under the assumption
of independence across cross-sectional units, we show that the asymptotic distribution of panel DOLS is straightforward
to obtain under cross-sectional dependence.
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strategy can include only a finite numberp of leads and lags which induces a separate truncation
error. To keep track of the truncation error, let

z′

pit = (1x′

i t−p, . . . ,1x′

i t+p),

z′

pt = (z′

p1t , . . . , z
′

pNt),

δ p1 = (δ′11,−p, . . . , δ
′

11,p, . . . , δ
′

1N,−p, . . . , δ
′

1N,p),

·
·
·

δ pN = (δ′N1,−p, . . . , δ
′

N1,p, . . . , δ
′

N N,−p, . . . , δ
′

N N,p),

whereδi j ,p is ak × 1 vector of coefficients. Under Assumption1, the equilibrium errors can be
represented as

u†
i t = z′

ptδ pi + vpit + ui t , (3)

where

vpit =

∑
j>|p|

δ′i 1, j1xi t− j + · · · +

∑
j>|p|

δ′i N , j1xN,t− j , (4)

are the truncation errors induced for givenp arising from the dependence of the equilibrium
errors on(1x′

1t , . . . ,1x′

Nt) at distant leads and lags. Because the equilibrium errorsu†
i t and

the first-differenced regressors1x j t are stationary, the dependence between them at very distant
leads and lags becomes trivial. We proceed by ignoring the truncation errors in the estimation.
In Section2, we show that doing so is asymptotically justified under the regularity conditions of
Saikkonen(1991).3

There are three points worth noting here. First, including leads and lags of the first-
differenced regressorsz′

i t in the cointegrating regressions controls for endogeneity but generally
does not remove serial correlation. Therefore, in most applications it is likely thatui t will be
serially correlated. Second,u†

i t will probably be correlated with both leads and lags of the first-
differenced regressors so it is necessary to include both leads and lags in the estimation.4 Third,
in the system environment, it is important to include leads and lags of the regressors from
cross-equations in addition to own equation regressors. That is, the parametric adjustment for
endogeneity in equationi = 1 will generally require including leads and lags not only of1x1t , as
is the case in the single-equation environment (or in the panel environment under cross-sectional
independence), but also leads and lags of1x2t to1xNt.

1.1. DSUR

Substituting (3) into (1) and ignoring the truncation error yields the regressionyi t = x′

i tβ i
+

z′

ptδ pi + ui t . Let y
t

= (y1t , . . . , yNt)
′, ut = (u1t , . . . ,uNt)

′, β = (β ′

1
, . . . , β

N
)′, δ p =

(δ′p1, . . . , δ
′

pN)
′, Z pt = (I N ⊗ zpt), Xt = diag(x1t , . . . , xNt) andWt = (X′

t ,Z
′
pt)

′. Then the
equations can be stacked together in a system as

y
t
= (β ′, δ′p)Wt + ut . (5)

3. For ease of notation we assume an equal numberp of leads and lags but the extension of the analysis to
asymmetric numbers of leads and lags is straightforward.Stock and Watson(1993), for example, assume that the
equilibrium errors are correlated only with a finite number of leads and lags of the first-differenced regressors.

4. In investigations of predictions of rational expectations models, one might think that lags are unnecessary
because the disturbance term has zero expectation conditional on the information available to the agents. Alternatively, it
might be reasoned that leads are unnecessary because lags will render the disturbance term serially uncorrelated. As can
be seen from our analysis, neither of these arguments is correct.
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Denote the long-run covariance matrix ofut by �uu. The DSUR estimator with known�uu

is [
β̂

dsur
δ̂ p,dsur

]
=

(∑T−p

t=p+1
Wt�

−1
uu W′

t

)−1(∑T−p

t=p+1
Wt�

−1
uu y

t

)
. (6)

We show inSection2.1.1that β̂
dsur

is asymptotically mixed normal. It follows that tests of
the linear restrictionsRβ = r , whereR is aq × Nk matrix of constants andr is aq-dimensional

vector of constants, can be constructed by lettingV̂dsur =
∑T−p

t=p+1 Xt�
−1
uu X′

t and forming

the Wald statisticWdsur =
(
Rβ̂

dsur
− r

)′
[RV̂dsurR′

]
−1
(
Rβ̂

dsur
− r

)
which is asymptotically

distributed as a chi-square variate withq degrees of freedom under the null hypothesis. This
Wald statistic provides a convenient test of homogeneity restrictions on the cointegrating vectors,
H0 : β1 = · · · = βN .

In applications, we replace�uu with a consistent estimator,̂�uu
p

→ �uu. Estimation of the
long-run covariance matrix is discussed below. Such an estimator might be called a “feasible”
DSUR estimator. It is straightforward to see that the asymptotic distribution of the feasible
DSUR estimator is identical to that of the DSUR estimator where�uu is known. Accordingly,
we will not make a distinction between estimators formed with a known�uu or one that is
estimated.

Because the parametric control for endogeneity takes up degrees of freedom, DSUR is
applicable whereN is substantially smaller thanT . For T = 100, we show below in our
Monte Carlo experiments and in our applications that systems withN = 8 are feasibly
estimated.

1.2. Two-step DSUR

Some computational economies can be achieved by conducting estimation in two steps. The first
step purges endogeneity by least squares and the second step estimatesβ by running SUR on the
least squares residuals obtained from the first-step regressions. When the numbers of included
leads and lagsp are identical across equations, this OLS-SUR two-step estimator is numerically
equivalent to a two-step procedure in which endogeneity is purged by generalized least squares
(GLS) in the first step and then running SUR on these GLS residuals. Under standard regularity
conditions, the two-step DSUR estimator is asymptotically equivalent to the DSUR estimator
β̂

dsur
discussed above.
To form the two-step estimator, letz′

pt γ̂
y
pi

be the fitted least squares regression ofyi t onto

zpt and let(Ik ⊗ z′

pt)γ̂
x
pi

be the vector of fitted least squares regressions ofxi t ontoz′

pt. Denote

the regression errors bŷyi t = yi t − z′

pt γ̂
y
pi

and x̂i t = xi t − (Ik ⊗ z′

pt)γ̂
x
pi

. Now represent the

equation system aŝyi t = x̂′

i tβ i
+ ûi t , where

ûi t = z′

pt(δ pi − γ̂
y
pi )+

[
(Ik ⊗ z′

pt)γ̂
x
pi

]
β

i
+ ui t

= z′

pt(δ pi − δ̂ pi,ols)+ ui t ,

andδ̂ pi,ols = γ̂
y
pi

− β ′

i
γ̂

x
pi

. Stacking the equations together asŷ
t
= X̂′

tβ + ût and running SUR

gives the two-step DSUR estimator,

β̂
2sdsur

=

[∑T−p

t=p+1
X̂t�

−1
uu X̂′

t

]−1 [∑T−p

t=p+1
X̂t�

−1
uu ŷ

t

]
. (7)
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1.3. Restricted DSUR

We now turn to estimation of the cointegration vector under the homogeneity restrictions
β

1
= · · · = β

N
= β. As in two-step DSUR, endogeneity can first be purged by regressing

yi t and each element ofxi t on zpt. Let ŷi t and x̂i t denote the resulting regression errors. The

problem now becomes one of estimatingβ, in the system of equationŝyi t = x̂′

i tβ+ ûi t . Stacking
the equations together gives

ŷ
t
= x̂′

tβ + ût , (8)

wherex̂t = (x1t , . . . , xNt) is ak × N matrix.
Let �uu = LL ′ be the lower triangular Choleski decomposition of the long-run error

covariance matrix. Premultiply (8) by L−1 to get ŷ∗

t
= x̂∗

′

t β + û∗

t where ŷ∗

t
= L−1ŷ

t
,

x̂∗
t = x̂t (L−1)′, andû∗

t = L−1ût . The restricted DSUR estimator is obtained by running OLS on
these transformed observations:

β̂
rdsur

=

[∑N

i =1

∑T−p

t=p+1
x̂∗

i t x̂
∗
′

i t

]−1 [∑N

i =1

∑T−p

t=p+1
x̂∗

i t ŷ∗

i t

]
=

[∑T−p

t=p+1
x̂t�

−1
uu x̂′

t

]−1 [∑T−p

t=p+1
x̂t�

−1
uu ŷ

t

]
. (9)

This estimator is also asymptotically mixed normal. Tests of the set ofq linear
restrictionsRβ = r can be conducted by comparing the Wald statisticWrdsur =

(
Rβ̂

rdsur
−

r
)′
[RV̂rdsurR′

]
−1
(
Rβ̂

rdsur
− r

)
to the chi-square distribution withq degrees of freedom where

R is a q × k matrix of constants,r is a q-dimensional vector of constants and̂Vrdsur =∑T−p
t=p+1 xt�

−1
uu x′

t .

1.4. Estimating the long-run covariance matrix

While many estimators of the long-run covariance matrix�uu are available, accurate estimation
can become a challenge asN increases. A single factor structure is an efficient parameterization
that has been found to adequately model the long-run cross-sectional covariance.5 We adopt the
approach ofPhillips and Sul(2003), which begins by assuming the parametric structure

u†
i t = z′

ptδ pi + ui t , (10)

ui t = ρi ui t−1 +

∑n−1

j =1
ηi j1ui t− j + wi t , (11)

wi t = λi θt + ζi t . (12)

Equation (10) is a restatement of (3) that ignores the truncation error. In (11), potential serial
correlation inui t is allowed for by letting it follow an AR(n) process. The cross-sectional

dependence is modelled by (12) whereθt
i.i.d.
∼ (0,1) is the single factor,λi is the factor loading

for individual i and ζi t is an i.i.d. idiosyncratic error. Lettingwt = (w1t , . . . , wNt)
′, ζ

t
=

(ζ1t , . . . , ζNt)
′, λ = (λ1t , . . . , λNt)

′,Vζ ζ = E
(
ζ

t
ζ ′

t

)
, we haveVww = E(wtw

′
t ) = Vζ ζ + λλ′.

Thus to estimate�uu, proceed as follows:

Step 1. Run OLS onyi t = ai + x′

i tβ i
+ z′

ptδ pi + ui t and obtain the quasi-residualŝu∗

i t =

ûi t + âi = yi t − x′

i t β̂ i
− z′

pt̂δ pi .

5. SeeBai and Ng(2002), Phillips and Sul(2003) andMoon and Perron(2004).
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Step 2. Estimate the AR(n) coefficients. To reduce bias, use recursive mean adjusted least
squares by running OLS on(̂u∗

i t − µi t−1) = ρi (̂u∗

i t−1 − µi t−1)+
∑n−1

j =1 ηi j1u∗

i t− j + ξi t ,

whereµi t−1 = (t − 1)−1∑t−1
s=1 û∗

is is the recursive mean of the quasi-residuals. Using the

estimated AR(n) coefficients, recover the residuals,ŵi t = û∗

i t −ρ̂i û∗

i t−1−
∑n−1

j =1 η̂i j1û∗

i t− j .

Step 3. Form the sample error covariance matrixM T = T−1∑T
t=1 ŵt ŵ

′
t . Estimateλi andVζ ζ

by the iterative method of moments,(̂λ, V̂ζ ζ ) = arg minλ,Vζ ζ {tr[(M T − Vζ ζ − λλ′)(M T −

Vζ ζ − λλ′)′]}. Use the estimates to form the parametric estimateV̂ww = V̂ζ ζ + λ̂ λ̂
′
.

Step 4. Obtain the estimate of the long-run covariance matrix,�̂uu = (I − ρ̂)−1V̂ww(I − ρ̂)−1,
whereρ̂ = (ρ̂1t , . . . , ρ̂Nt)

′.

1.5. Lead and lag length selection

An important problem in practice concerns the choice ofp. Unfortunately, no standard method
has emerged even for time series. Often, thead hoc rule used byStock and Watson(1993)
that setsp = 1 for T = 50, p = 2 for T = 100, andp = 3 for T = 300 is adopted
in Monte Carlo and empirical studies. While it is desirable to have a data dependent method,
such as an information criterion or general-to-specific rules for choosingp, such rules quickly
become unwieldy as the size of the cross section grows. To balance concerns for employing a data
dependent method in applications, evaluation of estimator performance, and manageability of the
method, we apply the following modified BIC rule to choosep: Let p+

i j (p
−

i j ) denote the number

of leads (lags) of1x j in equationi . First run DOLS and determine(p+

i i , p−

i i ) by minimizing

BIC, then fori 6= j , set(p+

i j , p−

i j ) = (p+

i i , p−

i i ).

2. SAMPLING PROPERTIES OF DSUR AND SOME ALTERNATIVE COINTEGRATION
VECTOR ESTIMATORS

Section2.1discusses the asymptotic properties of DSUR in comparison to alternative parametric
cointegration vector estimators. The Monte Carlo experiments are discussed inSection2.2.

2.1. Asymptotic properties

Let W(r ) be a vector standard Brownian motion for 0≤ r ≤ 1, and let[Tr ] denote the largest
integer value ofTr for 0 ≤ r ≤ 1. We will not make the notational dependence onr explicit, so
integrals such as

∫ 1
0 W(r )dr are written as

∫
W and ones such as

∫ 1
0 W(r )dW(r )′ are written as∫

WdW′. Scaled vector Brownian motions are denoted byB = 3W where3 is a scaling matrix.

It follows from Assumption 1 that w†
t obeys the functional central limit theorem,

1
√

T

∑[Tr ]
t=1 w

†
t

D
→ B†(r ) = 9†(1)W(r ) where B†

= (B†
u, B′

e1
, . . . , B′

eN
)′ is an N(k + 1)-

dimensional scaled vector Brownian motion with covariance matrix,�†
= 9†(1)9†(1)′ =∑

∞

j =−∞
E[w

†
jw

†′

0 ] = 0
†
0+
∑

∞

j =1(0
†
j +0

†′

j ). The long-run covariance matrix and its components
can be partitioned as

�†
=

[
�†

uu �†
ue

�†
eu �†

ee

]
=


�†

uu �†
ue1

· · · �†
ueN

�†
e1u �†

e1e1
· · · �†

e1eN

·
·
·

·
·
·

· · ·
·
·
·

�†
eNu �†

eNe1
· · · �†

eNeN

 ,
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0
†
j =

[
0

†
uu, j 0

†
ue, j

0
†
eu, j 0

†
ee, j

]
=


0

†
uu, j 0

†
ue1, j

· · · 0
†
ueN , j

0
†
e1u, j 0

†
e1e1, j

· · · 0
†
e1eN , j

·
·
·

·
·
·

· · ·
·
·
·

0
†
eNu, j 0

†
eNe1, j

· · · 0
†
eNeN , j


where�†

ei u is the long-run covariance betweenei t and(u†
1t , . . . ,u

†
Nt), i = 1, . . . , N, 0

†
uu, j =

E(u†
t u†′

t− j ), 0
†
uek, j

= E(u†
t e′

kt− j ), and0
†
ekes, j

= E(ekte
′

st− j ).
We reintroduce the truncation errors by lettingv pt = (vp1t , . . . , vpNt)

′ and rewriting (5)
as y

t
=
(
β ′, δ′p

)
Wt + v pt + ut . We ensure that the truncation errors vanish asymptotically by

following Saikkonen(1991) with:

Assumption 2 (Lead and Lag Dependence). Let p(T) be the number of leads and lags
of1xi t (i = 1, . . . , N), included in(3). We assume that

(i) p(T)/T1/3
→ 0 as T → ∞, and

(ii)
√

T
∑

| j |>p(T)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
δ′11, j · · · δ′1N, j

·
·
·

· · ·
·
·
·

δ′N1, j · · · δ′N N, j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ → 0,

where‖ · ‖ is the Euclidean norm.

The second condition in Assumption2 places an upper bound on the allowable dependence
of u†

i t on1x j t at very distant leads and lags, while the first condition controls the rate at which
additional leads and lags must be included in order for the truncation induced specification error
to vanish.

2.1.1. DSUR asymptotic properties. We are now in a position to state6

Proposition 1 (Asymptotic Distribution of DSUR). Let T∗ = T − 2p. Under the
conditions of Assumptions1 and2,

(i) T∗

(
β̂

dsur
− β

)
and

√
T∗(δ̂ p,dsur− δ p) are asymptotically independent.

(ii) If Be = diag(Be1
, . . . , BeN

), V̂dsur =
∑T−p

t=p+1 Xt�
−1
uu X′

t , andR is a q × Nk matrix of
constants such thatRβ = r , then as T∗ → ∞,

T∗

(
β̂

dsur
− β

) D
→

(∫
Be�

−1
uu B′

e

)−1 ∫
Be�

−1
uu d Bu, (13)

and (
Rβ̂

dsur
− r

)′
[RV̂dsurR′

]
−1(Rβ̂

dsur
− r

) D
→ χ2

q . (14)

The intuition behind Proposition1 is that asymptotically, as the effects of the truncation
error become trivial, one obtains a newly defined vector processw′

t = (u1t , . . . ,uNt,e′

1t , . . . ,

e′

Nt), with the moving average representationwt = diag[911(L),922(L)](ε′1t , ε
′

2t )
′, where

6. We follow Saikkonen(1991) in adopting a “degrees of freedom” adjustment, even though the asymptotic
results are obviously the same without this adjustment.
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911(L) and922(L) are (N × N) and (Nk × Nk) matrix polynomials in the lag operatorL,

respectively. It obeys the functional central limit theorem1√
T∗

∑[(T−p)r ]

t=p+1 wt
D
→ (B′

u, B′
e)

′, with

the long-run covariance matrix� = diag[�uu,�ee]. Due to the block diagonality of�, it can be
seen thatBu andBe are independent. It is straightforward to see that the asymptotic distribution
of the feasible DSUR estimator is identical to that of the DSUR estimator of Proposition1.

As discussed above, some computational convenience is achieved by the two-step
procedure. This entails no sacrifice in terms of asymptotic efficiency as seen in:

Proposition 2 (Asymptotic Equivalence of the Two-Step Estimator). Under the con-
ditions of Assumptions1 and 2, the two-step DSUR estimator(7) is asymptotically equivalent
to the one-step DSUR estimator of Proposition1. Moreover, if the same set of leads and lags
zpt is included in every equation, this OLS-SUR two-step estimator is numerically equivalent to
a two-step estimator where endogeneity is purged by GLS in the first step andβ estimated by
running SUR on the GLS residuals in the second step.

The asymptotic equivalence obtains due to the consistency ofδ̂ pi,ols and its asymptotic
independence of the estimator ofβ. Since asymptotic equivalence is achieved in regressions
using least squares residuals from first-step regressions, we will henceforth assume that
endogeneity has been controlled for in this fashion and will work in terms of these first-step
regression residuals.

Under cointegration vector homogeneity,β
1

= · · · = β
N

= β, we must restrict the amount
of long-run dependence among regressors across equations. These restrictions are given in:

Assumption 3. �†
ee has full rank.

Assumption3 does not permit a common regressor across equations, nor does it allow
the regressors across equations to be cointegrated. The properties of restricted DSUR are given
in7

Proposition 3 (Asymptotic Distribution of Restricted DSUR). Let be = (Be1
, . . . ,

BeN
), R be a q× k matrix of constants such thatRβ̂

rdsur
= r and V̂rdsur =

∑T−p
t=p+1 xt�

−1
uu x′

t .
Then under the conditions of Assumptions1–3, as T∗ → ∞,

T∗

(
β̂

rdsur
− β

) D
→

(∫
be�

−1
uu b′

e

)−1(∫
be�

−1
uu d Bu

)
, (15)

and (
Rβ̂

rdsur
− r

)′
[RV̂rdsurR′

]
−1(Rβ̂

rdsur
− r

) D
→ χ2

q . (16)

2.1.2. Alternative parametric estimators. We now discuss the asymptotic properties of
DOLS, system DOLS, and SSE for estimating heterogeneous cointegration vectors and panel
DOLS for estimating homogeneous cointegration vectors.

7. In matrix notation, letŶT =
(
Ŷ

′

1, . . . , Ŷ
′

N
)′ where Ŷi =

(
ŷ

i p+1
, . . . , ŷ

iT−p

)′, X̂T = (X̂′
1, . . . , X̂

′
N )

′,

X̂i =
(
x̂i p+1, . . . , x̂iT−p

)′ is theT∗ × k matrix of regressors, and̂uT =
(
û1, . . . , ûN

)′, ûi = (ûi p+1, . . . , ûiT−p)
′.

The stacked system of observations isŶT = X̂Tβ + ûT whereβ̂rdsur = [X̂′
T (�

−1
uu ⊗ I T )X̂T ]

−1[X̂′
T (�

−1
uu ⊗ I T )ŶT

]
.
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DOLS and system DOLS.DOLS ignores dependence across individuals in estimation.
Controlling for endogeneity in equationi can be achieved by projectingu†

i t onto zpit or onto
zpt = (z′

p1t , . . . , z
′

pNt)
′ as in DSUR. The first option involves only those time series that

explicitly appear in equationi and is a member of whatSaikkonen(1991) calls theS2 class. The
second option, which employs auxiliary observations, is an example of what he calls theSC class.
Park and Ogaki(1991) consider a similar distinction in their study of canonical cointegrating
regressions (CCR). We conform to Park and Ogaki’s terminology and refer to the procedure that
controls for endogeneity by conditioning onzpt as the “system” DOLS estimator. We call the
estimator that conditions only onzpit DOLS.

While the joint distribution of DOLS across equations depends on the long-run covariance
matrix �uu, the estimator itself does not exploit this information. Here, we discuss two-step
estimation of system DOLS and compare it to DSUR. In two-step system DOLS, endogeneity is
purged by least squares and the cointegration vector is estimated by running OLS on the residuals
from the first-step regressions.

Let ŷi t be the error obtained from regressingyi t on zpt and letx̂i t be thek × 1 vector of
errors obtained from regressing each element ofxi t on zpt. Stacking the equations together as

the system giveŝy
t
= X̂′

tβ+ ût , where the dimensionalities of the matrices are as defined above.

The system DOLS estimator is8

β̂
sysdols

=

[∑T−p

t=p+1
X̂t X̂′

t

]−1 [∑T−p

t=p+1
X̂t ŷt

]
, (17)

for which we have:

Proposition 4 (Asymptotic Distribution of System DOLS). Under the conditions of
Assumptions1 and2, as T∗ → ∞,

T∗

(
β̂

sysdols
− β

) D
→

(∫
BeB′

e

)−1(∫
Bed Bu

)
, (18)

and (
Rβ̂

sysdols
− r

)′
[RV̂sysdolsR′

]
−1(Rβ̂

sysdols
− r

) D
→ χ2

q , (19)

whereV̂sysdols=

[∑T−p
t=p+1 XtX′

t

]−1 [∑T−p
t=p+1 Xt�uuX′

t

] [∑T−p
t=p+1 XtX′

t

]−1
andR is a q× Nk

matrix of constants such thatRβ = r .

Saikkonen showed that within the context of the standard multivariate regression
framework, ordinary DOLS is efficient within the class ofS2 estimators and that the class
of SC estimators are efficient relative to theS2 class. The reason for this is as follows. In
ordinary DOLS, endogeneity is purged by projectingu†

i t onto zpit . Substituting this projection
representation into (1) givesyi t = x′

i tβ i
+ z′

i t δi + ζi t , whereζi t is the projection error which is

by construction orthogonal to included leads and lags of1xi t . Since(1/
√

T)
∑
(ζi t ,e′

i t )
′ D

→(
Bζ i , B′

ei

)′ with long-run covariance matrix diag
(
�ζi ,ζi ,�ei ,ei

)
, it follows that conditional

8. Let x̂i =


x̂′

i p+1

·
·
·

x̂′
iT−p

 andXT = diag[̂x1, . . . , x̂N ]. Then in the standard matrix notation,

Vsysdols= (X′
T XT )

−1X′
T (�uu ⊗ I T )XT (X′

T XT )
−1.
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on Bei
, avar

(
β̂

dols

)
= �ζi ,ζi

( ∫
Bei

B′
ei

)−1. Since�ζi ,ζi is the long-run variance of the error from

projectingu†
i t ontozpit ⊆ zpt and�ui ,ui is the long-run variance of the error from projectingu†

i t

ontozpt, it must be the case that�ζi ,ζi ≥ �ui ,ui . Thus, avar
(
β̂

i,dols

)
≥ avar

(
β̂

i,sysdols

)
.

Our representation of the observations (Assumption1) differs from Saikkonen’s in that it
imposes “zero-restrictions” on the multivariate regression in the sense that each equation contains
a different set of regressors. Thus in the context of the model that we study, DSUR exploits the
cross-equation correlations and enjoys asymptotic efficiency advantages over single-equation
methods. A comparison of the asymptotic efficiency of system DOLS and DSUR gives:

Proposition 5. Under the conditions of Assumptions1 and2,

avar
(
β̂

dsur

)
≤ avar

(
β̂

sysdols

)
.

DSUR is asymptotically efficient relative to the DOLS methods when the equilibrium
errors exhibit cross-sectional dependence and when regressors in the cointegrating regression are
heterogeneous across individuals. The latter condition is typical in panel cointegration analysis.
It is straightforward to see that system DOLS and DSUR are asymptotically equivalent if the
off-diagonal elements of�uu are zero.

Saikkonen’s system estimator.Saikkonen(1993) proposed an estimator for a structural
system of cointegrating equations. For presentation of Saikkonen’s estimator, lety

t
=

(y1t , . . . , yNt)
′, xt = (x1t , . . . , xnt)

′, and ut = (u1t , . . . ,uNt)
′. Saikkonen considered the

structural simultaneous equation systemBy
t
= Cxt +et whereB andC are matrices of structural

coefficients. WhenB is non-singular, premultiplication givesy
t
= Axt +ut , which is the system

of cointegrating regressions stacked together whereA = B−1C, andut = B−1et . While DSUR
is an estimator of the reduced form coefficientsA, Saikkonen’s primary interest lies in estimation
of the structural coefficients when linear identification restrictions are available. The coefficient
vector of interest isβ

i
= (−θ ′

i , γ
′

i
)′ whereθ i andγ

i
are column vectors formed by the non-zero

elements in rowi of B − I N andC, respectively. Now letH be the “selection matrix” that gives
H′
(
�−1

uu ⊗
∑T

t=1 x′
t xt

)
H =

∑T
t=1 Xt�

−1
uu Xt .9 Then Saikkonen’s system estimator (SSE) is

β̂
SSE

=

[
H′

(
�−1

uu ⊗

∑T

t=1
x′

t xt

)
H
]−1

H′

(
�−1

uu ⊗

∑T

t=1
x′

t xt

)
â, (20)

whereâ = vec(Â′), Â′
=

[∑T
t=1 x̂′

t x̂t

]−1∑T
t=1 x̂t [̂y1t , . . . , ŷNt] is a system estimator of the

reduced form coefficients and̂xt is the vector of regression errors from regressingxt on zpt, and
similarly for ŷi t .

SSE and DSUR are only comparable when the reduced form and the structure are the
same(B = I N). In this case, SSE and DSUR are asymptotically equivalent. However, this
equivalence does not hold in finite samples where DSUR is more efficient. It can be shown,
albeit under the more restrictive regularity conditions ofOgaki and Choi(2001), that DSUR
is the conditionally Best Linear Unbiased Estimator (BLUE).10 Although SSE with a known
long-run covariance matrix is both linear and unbiased, it is not identical to DSUR and
is therefore less efficient for finiteT . To gain intuition for why this is so, we draw on a
parallel result in the case of a single cointegrating regression. There, dynamic generalized

9. SeeSaikkonen(1993) for construction of the selector matrixH.
10. They assume that strict exogeneity can be achieved by including a fixed number of leads and lags of the

first-differenced regressors and that the conditional error covariance matrix is known.
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least squares (DGLS) is asymptotically equivalent to DOLS (Phillips and Park(1988), Jo and
Park (1997)), but a similar Ogaki and Choi analysis finds that DGLS is conditionally BLUE.
Below, we find in our Monte Carlo experiments that DSUR is substantially more efficient
than SSE in small samples even when some of Ogaki and Choi’s regularity conditions are
violated.

We note also that theMoon (1999) fully modified SUR estimator is linear unbiased when
the long-run covariance matrix is known. By the same reasoning, DSUR is more efficient under
the Ogaki and Choi conditions. On the other hand, thePark and Ogaki(1991) non-parametric
Seemingly Unrelated Canonical Cointegrating Regression estimator is not linear and cannot
be directly compared. What we can say, however, is that if strict exogeneity can be achieved
by parametric adjustment, then DSUR will dominate the non-parametric estimators, but if the
parametric assumption is violated, it is possible that robust non-parametric estimators will
dominate parametric approaches.

Panel DOLS. In panel DOLS, control for cross-equation endogeneity can also be
achieved by working with first-step errors from regressingyi t and each element ofxi t on
zpt. Using “hats” to denote the resulting least squares residuals, the panel DOLS estimator
is

β̂
pdols

=

[∑T−p

t=p+1
x̂t x̂′

t

]−1 [∑T−p

t=p+1
x̂t ŷt

]
, (21)

wherex̂t = (x̂1t , . . . , x̂Nt) is ak×N matrix. The asymptotic sampling properties of panel DOLS
under cross-sectional dependence are given as a corollary to Proposition4.

Corollary 6 (Asymptotic Distribution of Panel DOLS). Let be = (Be1
, . . . , BeN

),

V̂pdols =

[∑T−p
t=p+1 xtx′

t

]−1 [∑T−p
t=p+1 xt�uux′

t

] [∑T−p
t=p+1 xtx′

t

]−1
, andR be a q× Nk matrix of

constants such thatRβ = r . Then under the conditions of Assumptions1–3, as T∗ → ∞,

T∗

(
β̂

pdols
− β

) D
→

(∫
beb′

e

)−1 ∫
bed Bu, (22)

and (
Rβ̂

pdols
− r

)′
[RV̂pdolsR′

]
−1(Rβ̂

pdols
− r

) D
→ χ2

q . (23)

Finally, it is obvious that avar
(
β̂

rdsur

)
≤ avar

(
β̂

pdols

)
.

2.2. Monte Carlo experiments

In this section, we study the small sample properties of the estimators discussed above by
way of a series of Monte Carlo experiments. First, we compare the performance of feasible
DSUR, SSE, system DOLS, and DOLS in an environment where the cointegration vector exhibits
heterogeneity across equations. Second, we compare feasible restricted DSUR, and panel DOLS
in an environment where the cointegrating vector is identical across equations.

2.2.1. Experimental design. Each cointegrating regression has a single regressor. The
general form of the data generating process (DGP) is given by
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TABLE 1

Monte Carlo performance of DSUR, system DOLS (SDOLS), and SSE (Saikkonen’s system
estimator) under cointegration vector heterogeneity (BIC: selection rule)

True DSUR percentiles MSE relative to DOLS
N mean T 5% 50% 95% Mean DSUR SDOLS SSE

Low cross-sectional dependence
100 1·359 1·524 1·712 1·528 0·781 0·861 4·535

3 1·506 200 1·437 1·514 1·604 1·517 0·646 0·844 3·504
300 1·462 1·512 1·570 1·513 0·609 0·831 2·907

100 1·273 1·446 1·630 1·448 0·568 0·818 7·819
5 1·437 200 1·362 1·441 1·526 1·442 0·467 0·777 6·318

300 1·388 1·440 1·497 1·441 0·445 0·773 6·188

100 1·326 1·483 1·647 1·484 0·430 0·764 13·862
8 1·478 200 1·409 1·480 1·555 1·481 0·340 0·706 11·166

300 1·434 1·479 1·528 1·480 0·322 0·693 10·280

High cross-sectional dependence
100 1·279 1·512 1·745 1·512 0·379 1·003 6·385

3 1·506 200 1·405 1·508 1·609 1·508 0·295 0·970 6·012
300 1·442 1·507 1·572 1·507 0·251 0·965 5·927

100 1·224 1·442 1·658 1·442 0·261 1·018 12·442
5 1·437 200 1·346 1·439 1·533 1·439 0·197 0·964 12·661

300 1·380 1·438 1·498 1·438 0·163 0·946 13·112

100 1·304 1·481 1·663 1·482 0·201 1·010 23·721
8 1·478 200 1·402 1·479 1·557 1·479 0·150 0·924 24·580

300 1·430 1·478 1·529 1·479 0·132 0·917 25·650

yi t = βi xi t + u†
i t ,

u†
i t = ρi u

†
i t−1 +

∑n−1

j =1
δi j1xi t−1 + wi t ,

1xi t = φi1xi t−1 + mi t ,

wi t = λi θt + ζi t .

Cross-sectional dependence and cross-sectional endogeneity are modulated by varyingρi

andλi . For each experiment, we generate 5000 random samples ofT = 100,200, and 300
observations. The parameters are set according toρi ∼ U [0·2,0·8], φi ∼ U [0·1,0·2], δi j ∼

U [0·2,0·8] whereU [·] is the uniform distribution. Under heterogeneous cointegration, we set
βi ∼ U [1,2] whereas under homogeneous cointegration we setβi = 1. Cross-sectional
dependence is said to be low whenλi ∼ U [0,1] (correlation ranges between 0 and 0·5) and
is said to be high whenλi ∼ U [1,3] (correlation ranges between 0·5 and 0·99).11

2.2.2. Results.Table1 reports 5, 50, and 95 percentiles and the mean of the Monte Carlo
distribution for DSUR, system DOLS, and SSE as well as their relative (to DOLS) mean square
error. The relative efficiency of DSUR is seen to improve for a givenN as T increases but
also for givenT and asN grows over the range ofN andT that we consider. ForT = 100,
under low cross-sectional dependence, DSUR achieves a 22% reduction in mean square error
relative to DOLS whenN = 3 but achieves a 57% reduction whenN = 8. Even greater relative
efficiency gains are achieved when there is a high degree of cross-sectional dependence. System

11. We have experimented extensively with a variety of DGPs. In all the cases that we studied, we found that
DSUR exhibits moderate to strong efficiency advantages over the comparison estimators. To economize on space, we
report a small set of illustrative results. Results from alternative DGPs are available from the authors upon request.
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TABLE 2

Monte Carlo performance: DSUR tests of homogeneity restrictions

H0 : β1 = · · · = βN H0 : β1 = · · · = βN = 1
N T 10% 5% 5% size 10% 5% 5% size

Low cross-sectional dependence
100 17·676 8·694 0·104 26·794 13·662 0·141

3 200 11·473 6·952 0·068 15·087 9·648 0·086
300 9·563 5·875 0·047 12·612 8·135 0·056

100 31·261 19·166 0·234 39·531 23·412 0·274
5 200 20·458 13·241 0·127 24·222 15·366 0·145

300 17·294 11·258 0·092 20·151 13·725 0·104

100 54·803 33·78 0·395 58·203 39·126 0·430
8 200 29·335 21·165 0·185 32·443 23·945 0·204

300 26·107 19·595 0·150 28·39 21·35 0·162

High cross-sectional dependence
100 14·62 8·378 0·106 20·4 11·821 0·131

3 200 11·503 6·968 0·073 14·469 9·416 0·087
300 10·672 6·674 0·063 13·672 8·824 0·071

100 21·809 13·532 0·125 25·255 16·706 0·145
5 200 15·754 10·292 0·064 18·145 12·141 0·068

300 14·517 9·603 0·052 16·567 11·285 0·053

100 34·39 23·113 0·207 38·695 25·861 0·224
8 200 22·292 16·821 0·101 24·848 18·474 0·103

300 22·004 16·104 0·087 24·23 17·882 0·087

DOLS is generally more efficient than DOLS. The relative performance of the SSE estimator
is unsatisfactory. We conclude fromTable1 that DSUR offers substantial efficiency gains over
DOLS, SDOLS, and SSE, especially when there is a high degree of cross-sectional dependence
in the equilibrium errors.

We now turn to the small sample properties of Wald test statistics for DSUR tests of
homogeneity in the cointegrating regression slope coefficient. The first test considered isH0 :

β1 = · · · = βN , where the Wald statistic is asymptoticallyχ2 with N − 1 degrees of freedom
under the null hypothesis. The second test is forH0 : β1 = · · · = βN = 1 and the Wald
statistic here is asymptoticallyχ2 with N degrees of freedom.Table2 reports the percentiles of
the empirical test statistic distribution that lies to the right of the asymptotic 10% and 5% critical
values as well as the effective (5%) size of the tests. There is some size distortion in the tests
which worsens somewhat asN increases for givenT . The tests are better sized under high cross-
sectional dependence, which is consistent withTable1 results that show better relative efficiency
of DSUR under high cross-sectional dependence. The size distortion in the test of equality of
coefficients is less severe than the test that all slope coefficients equal 1. The size distortions in
both tests are quite moderate whenT = 300.

The small sample performance of restricted DSUR for estimation under homogeneity
constraints is reported inTable 3. In addition to selected percentiles of the distribution, the
table displays the mean square error of restricted DSUR relative to panel DOLS. Here, it can
be seen that restricted DSUR achieves sizable efficiency gains over panel DOLS. The relative
performance of restricted DSUR is better under high cross-sectional dependence and generally
improves asN increases for fixedT .

We conclude that in small samples, efficiency gains are available for the DSUR methods,
especially when there is moderate to strong cross-sectional dependence. ForT = 100, the tests of
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TABLE 3

Monte Carlo performance of restricted DSUR (RDSUR)

RDSUR percentiles Relative
N T 5% 50% 95% Mean MSE

Low cross-sectional dependence
100 0·930 1·026 1·146 1·030 0·813

3 200 0·969 1·013 1·070 1·015 0·663
300 0·980 1·008 1·044 1·010 0·616

100 0·952 1·007 1·071 1·009 0·521
5 200 0·978 1·003 1·032 1·004 0·402

300 0·986 1·002 1·021 1·003 0·382

100 0·964 1·006 1·051 1·006 0·330
8 200 0·984 1·002 1·022 1·003 0·234

300 0·990 1·001 1·014 1·001 0·223

High cross-sectional dependence
100 0·904 1·000 1·098 1·000 0·205

3 200 0·956 0·999 1·042 0·999 0·115
300 0·972 0·999 1·025 0·999 0·103

100 0·942 1·001 1·060 1·001 0·181
5 200 0·974 1·000 1·028 1·000 0·124

300 0·983 1·001 1·018 1·000 0·115

100 0·957 1·001 1·047 1·002 0·274
8 200 0·981 1·000 1·019 1·000 0·109

300 0·988 1·000 1·012 1·000 0·099

Note: MSE is the mean square error relative to panel DOLS.
The true mean is 1.

homogeneity restrictions are somewhat oversized and use of the asymptotic theory in applications
may lead to over-rejections of the null hypothesis. However, forT = 300, the DSUR tests are
accurately sized.

3. APPLICATIONS

In this section we illustrate the usefulness of DSUR by applying it to two empirical problems in
international economics. Our first application revisits theFeldstein and Horioka(1980) problem
of estimating the correlation between national saving rates and national investment rates and
the interpretation of this correlation as a measure of international capital mobility. Our second
application revisits the anomaly reported byEvans and Lewis(1995) that the expected excess
return from forward foreign exchange rate speculation is unit-root non-stationary.

3.1. National saving and investment correlations

Let (I /Y)i be the time-series average of the investment to GDP ratio in countryi , and(S/Y)i be
the analogous time-series average of the saving ratio to GDP ratio.Feldstein and Horioka(1980)
run the cross-sectional regression(

I

Y

)
i
= α + β

(
S

Y

)
i
+ ui , (24)

to test the hypothesis that capital is perfectly mobile internationally. They find thatβ is
significantly greater than 0, and conclude that capital is internationally immobile.
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The logic behind the Feldstein and Horioka regression goes as follows. Suppose that capital
is freely mobile internationally. National investment should depend primarily on country-specific
shocks. If the marginal product of capital in countryi is high, it will attract investment. National
saving on the other hand will follow investment opportunities not just at home, but around
the world and will tend to flow towards projects that offer the highest (risk adjusted) rate of
return. The saving rate in countryi then is determined not by country-i -specific events but
by investment opportunities around the world. Under perfect capital mobility, the correlation
between national investment and national saving should be low. Following the publication of
Feldstein and Horioka’s cross-sectional study, a number of follow-up cross-sectional and panel
studies have reported that national saving rates are highly correlated with national investment
rates (for surveys of the Feldstein–Horioka literature, seeBayoumi(1997) andCoakley, Kulasi
and Smith(1998)).

Theoretical studies, on the other hand, have shown that theFeldstein and Horioka(1980)
logic is not airtight.Obstfeld(1986), Cantor and Mark(1988), Cole and Obstfeld(1991), and
Baxter and Crucini(1993) provide counterexamples in which the economic environment is
characterized by perfect capital mobility but decisions by optimizing agents lead to highly
correlated saving and investment rates. Along with theoretical criticism of the Feldstein and
Horioka hypothesis, more than a dozen empirical studies have criticized their econometrics by
arguing that the saving and investment ratios are non-stationary.

Coakley et al. (1996) suggest an alternative interpretation of the long-run relationship
between saving and investment. By the national income accounting identity, the difference
between national investment and national saving is the current account balance.Coakleyet al.
argue that the current account must be stationary when the present value of expected future debt
acquisition is bounded. In other words, whether the current account balance is stationary depends
not on the degree of capital mobility but on whether the long-run solvency constraint holds. If
saving and investment are unit-root non-stationary, they are cointegrated with a cointegrating
vector (1,−1). Thus the long-run relationship between saving and investment studied by means
of time-series cointegrating regressions is best interpreted as a test of the long-run solvency
constraint and not of the degree of capital mobility. Furthermore,Jansen(1996), Coakley and
Kulasi (1997), andHussein(1998) show that the saving and investment ratios are cointegrated.
Under this interpretation, the current account is a key component of the equilibrium error. Cross-
sectional dependence arises naturally because the current accounts for all countries in the world
must sum to zero.

We employ DSUR to re-examine the Feldstein–Horioka puzzle using 100 quarterly
observations from theInternational Financial StatisticsCD-ROM on nominal GDP, saving, and
investment from 1970·1 to 1995·4 for Australia, Austria, Canada, Finland, France, Germany,
Italy, Japan, Spain, Switzerland, the U.K., and the U.S. In contrast to previous analyses which
have employed non-system methods, we provide a direct test of the solvency constraint using
an efficient system estimation technique that explicitly accounts for cross-country dependence.
This is a natural application for DSUR as we seek efficient estimation for panel cointegration
regression with a moderate cross-sectional component.

Since our focus is on the long-run relationship between saving and investment, we follow
theCoakleyet al. interpretation that the long-run solvency constraint implies cointegration. Two
versions of their model imply slightly different forms of cointegration. First, if we assume that
saving and investment are unit-root non-stationary, then this version of their model implies that
the current account is stationary and saving and investment are cointegrated with cointegrating
vector (1,−1). Second, if we assume that the saving–GDP ratio and investment–GDP ratio
are unit-root non-stationary, we must interpret saving and investment in their model to be
normalized by GDP. The second version of their model implies that the current account over
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GDP is stationary and that saving and investment normalized by GDP are cointegrated with a
cointegrating vector of (1,−1).

For the first version of the model, we run the regression in levels after normalizing saving
and investment by GDP, (

I

Y

)
i t

= αi + βi

(
S

Y

)
i t

+ ui t . (25)

Presumably, the reason for normalizing investment and saving by GDP in many applications is to
transform the data into stationary observations, as they would be if the economy is on a balanced
growth path. However, we find very little empirical evidence for this implication of balanced
growth in our data-set.12

For the second version of theCoakleyet al. model, we run the regression in log levels,

ln(I i t ) = αi + βi ln(Si t )+ ui t . (26)

With the relatively short time series available, it was not feasible to simultaneously estimate
all 12 countries’ regressions by DSUR due to the excessive number of parameters in the system.
To proceed, we break the panel into subsamples and estimate separate systems for European and
non-European countries.

Table4 reports our estimates. We first discuss the results in ratio form. For the European
countries, the BIC rule selectsp = 3. Only our DSUR slope coefficient estimate for the
U.K. is significantly different from 1. For non-European countries (p = 3), the point estimate
is marginally significantly different from 1 only for the U.S. Tests of homogeneity provide
little evidence against the hypothesis of slope coefficient equality. In the European system, the
asymptoticp-value for the test ofH0 : β1 = · · · = βN is 0·31. The asymptoticp-value for
the test ofH0 : β1 = · · · = βN = 1 is 0·25. For the non-European system, neither of the
tests for homogeneity can be rejected at the asymptotic 1% level. These results suggest that it
is reasonable to pool and to re-estimate the two systems under homogeneity. When we do so,
we obtain a restricted DSUR estimate 1·049 which is insignificantly different from 1 for the
European system. The restricted DSUR estimate for the non-European system of 0·861 is also
insignificantly different from 1.

Looking at the estimates from the log levels regression, the European data-set tells a similar
story. These estimates, again associated withp = 3, are all insignificantly different from
1. Neither test of the homogeneity restrictions rejects at the 5% level. For the non-European
countries, our BIC rule setsp = 2. Here, the DSUR estimate for the U.S. of 1·094 is significantly
greater than 1. Since the homogeneity restrictions are not rejected, we re-estimate by restricted
DSUR. This gives a point estimate of 0·989 which is insignificantly different from 1.

To summarize, the weight of the evidence suggests that the long-run slope coefficients in
the saving–investment regressions are very close to 1 for most countries which is consistent with
the hypothesis that theCoakleyet al. solvency constraint is not violated.

12. We perform thePhillips and Sul(2003) panel unit-root test which is robust to cross-sectional dependence.
Their suggestion is to apply an orthogonalization procedure to the observations under the assumption that the cross-
sectional dependence is generated by a factor structure, and then to apply theMaddala and Wu(1999) panel unit-root test
to the orthogonalized observations. The series tested and associatedp-values from the tests are as follows:S/Y, (0·972),
I /Y, (0·999), ln(S), (1·000), ln(I ), (1·000). Since none of thep-values are less than 0·05, the null hypothesis of a unit
root is not rejected. In differences, we obtain for(S − I )/Y, (0·000), and ln(S/I )(0·000) and are able to reject the
unit-root null hypothesis for these cases.
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TABLE 4

Saving–investment correlations

Ratios Log levels

β̂i t (βi = 1) β̂i t (βi = 1)

A. European system
Austria 0·988 −0·127 0·987 −0·707
Finland 1·189 0·666 0·922 −1·585
France 0·898 −0·850 0·982 −0·683
Germany 0·690 −0·692 1·007 0·059
Italy 1·049 0·188 0·971 −0·901
Spain 0·729 −1·821 1·007 0·177
Switzerland 1·144 0·414 0·920 −0·713
U.K. 0·566 −2·398 1·002 0·058

χ2
7 8·284 2·513

(p-value) (0·308) (0·926)
χ2

8 10·917 3·075
(p-value) (0·251) (0·930)

Restricted 1·049 0·701 0·990 −0·730

B. Non-European system
Australia 0·713 −0·711 0·994 −0·179
Canada 0·832 −1·695 0·988 −0·181
Japan 0·982 −0·069 0·971 −0·519
U.S. 0·803 −1·632 1·094 2·367

χ2
3 0·443 3·666

(p-value) (0·931) (0·300)
χ2

4 6·996 4·984
(p-value) (0·136) (0·289)

Restricted 0·861 −1·204 0·989 −0·444

Note: The statistic for the test of homogeneity isχ2
7 in panel A and

χ2
3 in panel B. The statistic for the test that slope coefficients are

all equal to 1 isχ2
8 in panel A andχ2

4 in panel B.

3.2. Spot and forward exchange rates

Let si t be the logarithm of the spot exchange rate between the home country and countryi ,
and let fi t be the logarithm of the one-period forward exchange rate. It is widely agreed that
since the move to generalized floating in 1973 bothsi t ∼ I (1) and fi t ∼ I (1) and they are
cointegrated. Letβi be the cointegrating coefficient ofsi t+1 and fi t and letpi t = fi t − Et (si t+1)

be the expected excess return from forward foreign exchange speculation. The spot rate can be
decomposed assi t+1 = fi t − pi t +εi t+1 whereεi t+1 = si t+1−Et (si t+1) is a rational expectations
error, and the equilibrium error can be decomposed assi t+1 − βi fi t = (1− βi ) fi t − pi t + εi t+1.
If βi 6= 1, it follows that the expected excess returnpi t is non-stationary and is cointegrated
with fi t . Evans and Lewis ask whetherpi t is I (0) or I (1), by estimating the cointegrating
regression

si t+1 = αi + βi fi t + u†
i t+1. (27)

They test the hypothesisH0 : βi = 1 using monthly observations from January 1975 to
December 1989 on the dollar rates of the pound, deutschmark, and yen, and are able to reject
that null hypothesis at small significance levels. The implied non-stationarity of the excess return
is an anomaly.
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TABLE 5

DSUR estimation of spot and forward
exchange rate cointegrating

regression,1975.1–1996.12. Three
leads and lags

β̂ t (β = 1)

Germany 0·992 −0·024
Japan 0·998 −0·800
U.K. 1·001 0·351

χ2
2 0·539

(p-value) (0·764)
χ2

3 0·761
(p-value) (0·859)

Restricted 0·998 −1·833

Notes: χ2
2 is the test statistic for

testing the homogeneity hypothesis
β1 = β2 = β3. χ2

3 is the test
statistic for testing the homogeneity
hypothesisβ1 = β2 = β3 = 1.

Evans and Lewis employ both DOLS and an SUR estimator, but in the latter, they included
only the leads and lags of first-differenced regressors from the “own” equation and not from
cross-equations. The omission of leads and lags of the first-differenced regressors from other
equations can be problematic since this may not control for endogeneity in the dynamic
regressions even asymptotically. Strict exogeneity would require that the error in each equation at
a point in time must be uncorrelated with regressors from all equations in the system at any point
in time. However, one component of the error is the forecast error of investors for the exchange
rate and the examination is on the three exchange rates quoted relative to the U.S. dollar. If
unexpected U.S. macroeconomic shocks have an effect on all three forward rates, the forecast
error in each equation will be correlated with forward rates in the other two equations.

We revisit the Evans and Lewis problem using an updated data-set. Our data are spot and
30-day forward exchange rates for the pound, deutschmark, and yen relative to the U.S. dollar
from January 1975 to December 1996. We have 286 time-series observations sampled from
every fourth Friday of the Bank of Montreal/Harris BankForeign Exchange Weekly Review. The
estimation results are reported inTable5. In the light of the moderate size distortion uncovered
in the Monte Carlo analysis, we test the hypotheses using the 1% asymptotic significance
level. Our BIC rule recommends includingp = 3 leads and lags of the endogeneity control
variables. The DSUR estimates withp = 3 are insignificantly different from 1 for each of
the currencies. We employ two tests of homogeneity in the cointegration vectors. The first one
tests the null hypothesisH0 : β1 = β2 = β3. The second is a test of the null hypothesis
H0 : β1 = β2 = β3 = 1. Neither of these homogeneity restrictions are rejected at conventional
significance levels. We proceed by imposing the homogeneity restrictions in estimation and
obtain a restricted DSUR estimate that is insignificantly different from 1. We conclude that the
evidence for non-stationarity of the excess return is less compelling according to the DSUR slope
coefficient estimates under homogeneity restrictions.

4. CONCLUSION

In this paper, we proposed the DSUR estimator for multiple-equation cointegrating regressions
for situations in which the cointegration vector displays heterogeneity across equations and
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in which it is homogeneous. This estimator exploits the cross-equation correlation in the
equilibrium errors and it is efficient. DSUR estimators can be successfully applied in small to
moderate systems where the number of time periods is substantially larger than the number of
cointegrating equations. DSUR will not be feasible in systems of largeN due to the proliferation
of free parameters that must be estimated in the error correlation.

In our application on the saving–investment regression, we used a natural classification of
subsystems according to geography such that each subsample might reasonably exhibit high
degrees of cross-equation equilibrium error correlation. Our empirical results were somewhat
mixed, but the evidence suggested that the long-run slope coefficients in the saving–investment
regressions are very close to 1 for most countries which is consistent with the hypothesis that the
long-run solvency constraint is not violated.

For our application on the spot and forward exchange rates, we argued that it is problematic
to omit leads and lags of the first-differenced regressors from other equations in applying the
SUR method to dynamic cointegrating regressions as Evans and Lewis did. We conclude that the
evidence for non-stationarity of the excess return is less compelling according to the DSUR slope
coefficient estimates under homogeneity restrictions than originally found by Evans and Lewis.

APPENDIX

Our asymptotic results are forT → ∞ for fixed N. For notational convenience and without loss of generality, we take
N = 2.

Proof of Proposition1. We note that three regularity conditions assumed bySaikkonen(1991) are satisfied under
Assumption1. They are (i) the spectral density matrix of the vector of equilibrium errors is bounded away from zero,
(ii) the long-run covariance matrix exists, and (iii) the fourth-order cumulants are absolutely summable. LetT∗ = T −2p,

A = diag

(
1

T2
∗

(∑T−p

t=p+1
Xt�

−1
uu X′

t

)
,E(Z pt�

−1
uu Z′

pt)

)
,GT = diag(T∗I2,

√
T∗I2)

and

Â =

[
G−1

T

∑T−p

t=p+1
(Wt�

−1
uu W′

t )G
−1
T

]
=

∑T−p

t=p+1



�11x1t x′
1t

T2
∗

�12x1t x′
2t

T2
∗

�11x1t z′
t

T3/2
∗

�12x1t z′
t

T3/2
∗

�21x2t x′
1t

T2
∗

�22x2t x′
2t

T2
∗

�21x2t z′
t

T3/2
∗

�22x2t z′
t

T3/2
∗

�11zt x′
1t

T3/2
∗

�12zt x′
2t

T3/2
∗

�11zt z′
t

T∗

�12zt z′
t

T∗

�21zt x′
1t

T3/2
∗

�22zt x′
2t

T3/2
∗

�21zt z′
t

T∗

�22zt z′
t

T∗


.

Then [
T∗

(
β̂dsur− β

)
√

T∗

(
δ̂p,dsur− δp

) ] = Â−1G−1
T

∑T−p

t=p+1
Wt�

−1
uu (ut + vpt)

= A−1G−1
T

∑T−p

t=p+1
Wt�

−1
uu ut + A−1G−1

T

∑T−p

t=p+1
Wt�

−1
uu vpt︸ ︷︷ ︸

(a)

+ (Â−1
− A−1)G−1

T

∑T−p

t=p+1
Wt�

−1
uu
(
vpt + ut

)
︸ ︷︷ ︸

(b)

.

From Theorem 4.1 ofSaikkonen(1991), we haveG−1
T
∑T−p

t=p+1 Wt�
−1
uu vpt = op(1) andÂ−1

− A−1
= op(1) so that

terms (a) and (b) above are bothop(1).
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The block diagonality ofA−1 tells us thatT∗(β̂dsur− β) and
√

T∗(δ̂p,dsur− δp) are asymptotically independent.
It follows that

T∗

(
β̂dsur− β

)
=

(
1

T2
∗

∑
Xt�

−1
uu Xt

)−1( 1

T∗

∑
Xt�

−1
uu ut

)
+ op(1)

D
→

(∫
Be�

−1
uu B′

e

)−1(∫
Be�

−1
uu d B′

u

)
. (A.1)

Conditional onBe,
∫

Be�
−1
uu d Bu

D
→ N(0, [

∫
Be�

−1
uu B′

e]) (Park and Phillips, 1988). LetR be aq×2k restriction matrix.
Note thatBe andBu are independent Brownian motions. Then, conditional onBe,

(
R(β̂dsur− β

)′) [R
(∫

Be�
−1
uu B′

e

)
R′

]−1 (
R
(
β̂dsur− β

) D
→ χ2

q
)
. (A.2)

Since the chi-square distribution does not depend on
∫

Be�
−1
uu B′

e, and 1
T2

∑T
t Xt�

−1
uu X′

t
D
→

∫
Be�

−1
uu B′

e, a test of the

null hypothesisH0 : Rβ̂dsur = r , can be conducted with the Wald statistic

(
Rβ̂dsur− r

)′ [R
(∑T

t=1
Xt�

−1
uu X′

t

)
R
]−1 (

Rβ̂dsur− r
)

(A.3)

which has a limitingχ2
q distribution. ‖

Proof of Proposition2. The GLS estimator ofβ in (5) can be obtained in two steps. In step 1 we obtain the GLS

(or SUR) residualŷ
t

from the regression ofy
t

onZ pt and the GLS residual̂Xt from the regression ofXt onZ pt . In step

2, we run the GLS (SUR) regression ofŷ
t

on X̂t . If in step 1 the same set of regressors are used, those GLS regressions
are numerically identical to equation-by-equation OLS.‖

Proof of Proposition3. Follows straightforwardly along the lines of the proof of Proposition1 and is omitted.

Proof of Proposition4. We begin withT∗

(
β̂sysdols− β

)
=

(
1

T2
∗

∑T−p
t=p+1 X̃t X̃′

t

)−1 (
1
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)
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Proposition1 we have 1
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∗
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)
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B′
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)′. Conditional onBe, T
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∼ N(0,Vsysdols) whereVsysdols =( ∫

BeB′
e
)−1( ∫ Be�uuB′

e
)( ∫

BeB′
e
)−1. The asymptotic chi-square distribution of the Wald statistic follows

immediately from the mixed normality of the estimator.

To prove Proposition5, we make use of the following two lemmas.

Lemma 1.

avar
(
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)
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)−1
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Proof. Conditional onBe, avar(β̂dsur) = V−1
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∫
Be�

−1
uu B′

e. It follows that
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]
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Using the decomposition of the variance for any two random variablesY andX,

Var(Y) = E[Var(Y | X)] + Var[E(Y | X)], (A.4)
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it follows that unconditionally, avar
(
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)
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(
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(
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))
= E
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(
β̂sysdols
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e
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Lemma 2. Consider the random matricesAT and BT . If AT ≥ BT , AT
D
→ A and BT

D
→ B, thenA ≥ B,

almost surely.

Proof. Givenλ′(AT −BT )λ ≥ 0. Assume the converse: P
(
λ′(A −B)λ < 0

)
> 0. Then there exists anε > 0 such

that P
(
λ′(A − B)λ < −ε

)
> 0. There are a countable number of continuity points within the interval[−ε,0]. Let −δ

be one such continuity point where−ε < −δ < 0. Then limT P
(
λ′(AT − BT )λ < −δ

)
= P

(
λ′(A − B)λ < −δ

)
> 0,

which is a contradiction. ‖

Proof of Proposition5. Let

xt = diag(x1t , x2t ) : (2k × 2), XT = diag(xp+1, . . . , xT−p) : (2T∗k × 2T∗)
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Comments about SSE

Here, we show that SSE, theSaikkonen(1993) system estimator, is not efficient for finite samples under regularity
conditions ofOgaki and Choi(2001) which we state as:

Assumption 4. (Strict exogeneity with finite leads and lags for a system of dynamic cointegrating regressions)

(i) (Strict exogeneity with finite leads and lags). For u†
i t = z′

i t δi +ui t ,which is the projection of the equilibrium error
onto z′pit = (1x′

1t−p1i
, . . . ,1x′

1+q1i
, . . . ,1x′

Nt−pNi
, . . . ,1x′

Nt+qNi
)′, whereδi is the vector of unknown

projection coefficients, and XT = [x′
11, . . . , x′

1T , . . . , x′
N1, . . . , x′

N T]
′ with x a vector of real numbers,

E(ui t | XT = x) = 0.

(ii) (Known covariance structure). E(uu′
| XT = x) = V, where u= (u11, . . . ,u1T , . . . ,uN1, . . . ,uN T)

′ andV
is a known non-singular matrix of real numbers.

Letting N = 2, consider the stacked model,

[
y

1
y

2

]
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[
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β2
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(A.5)
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
x′

i 1 z′
i 1

·
·
·

·
·
·

x′
iT z′

iT

. Write the stacked model in (A.5) compactly asy = Wγ + u. We also require:
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Assumption 5. For XT = x, the realized value ofW has full column rank.

The GLS estimator of the grand coefficient vectorγ is [W′V−1W]
−1W′V−1y. By Ogaki and Choi (2001), this

GLS estimator is the Best Linear Unbiased Estimator (BLUE) conditional onXT = x. The DSUR estimator of the
cointegration vector parameters is that part of the GLS estimator forβ.

To show that SSE is, in this environment, inefficient in finite samples, we need only demonstrate the non-
equivalence between SSE and DSUR in the context that we study. We do this forN = 2, andA = A′

= C =

diag[a11,a22] (a single regressor in each equation) for which we haveB = I2 = [b1,b2], δ1 = a11, δ2 = a22,

H1 =
(

1 0
)′, H2 =

(
0 1

)′, â1 = [â11, â12]
′, â2 = [â21, â22]

′. For fixedT , let QT =
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′
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uu � QT , whereH = diag(H1,H2) and “�” is the Hamadad product operator.13 Let�i j
uu

be thei j -th element of�−1
uu . In the case where endogeneity is purged by including a fixed number of leads and lags of

1xi j t , SSE is for fixedT
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′

T )

= (H′(�−1
uu ⊗ QT )H)

−1H′(�−1
uu ⊗ QT )(I ⊗ Q̂

−1
T )vec

(∑
x̂t ŷ′
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)
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where x̂i t (̂y j t ) is the residual from regressingxi t (y j t ) on the leads and lags of1xi j t . Clearly the two estimators
are not identical for any finiteT . They are, however, asymptotically equivalent. This can be seen by noting that
T−2(QT − Q̂−1

T ) → 0 asT → ∞.
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