Dynamic Selection: An Idea Flows Theory of Entry, Trade and Growth

Thomas Sampson

London School of Economics

26 May 2015

Thomas Sampson (LSE)

Dynamic Selection

26 May 2015

- Productivity dispersion across firms opens two channels for aggregate productivity gains:
 - Reallocation from low to high productivity firms (Melitz 2003; Hsieh & Klenow 2009)
 - Technology diffusion between firms (Luttmer 2007; Lucas & Moll 2014)

- Productivity dispersion across firms opens two channels for aggregate productivity gains:
 - Reallocation from low to high productivity firms (Melitz 2003; Hsieh & Klenow 2009)
 - Technology diffusion between firms (Luttmer 2007; Lucas & Moll 2014)
- What are the effects of trade when there is both reallocation and technology diffusion?

- Technologies are non-rival and partially non-excludable
- Firms learn about the process technologies used by competitors, e.g. managerial methods; organizational structure; production techniques
- But most firms do not adopt frontier technologies
 - Information asymmetries; adaptation costs; learning capacity constraints

- Technologies are non-rival and partially non-excludable
- Firms learn about the process technologies used by competitors, e.g. managerial methods; organizational structure; production techniques
- But most firms do not adopt frontier technologies
 - Information asymmetries; adaptation costs; learning capacity constraints
- Model technology diffusion by introducing knowledge spillovers where:
 - Spillovers affect entrants' productivity, not entry costs
 - Spillovers depend upon entire productivity distribution

- Incorporate knowledge spillovers into dynamic version of Melitz 2003
- Entrants' productivity draws are endogenous to incumbent productivity distribution
- Selection on productivity causes spillovers that increase productivity of future entrants
- Entry increases competition and leads to tougher selection
- Complementarity between selection and diffusion generates endogenous growth as the productivity distribution shifts upwards over time

 $\mathsf{Entry}\ \mathsf{cost} = \mathbb{P}(\mathsf{Successful\ entry}) \ast \mathbb{E}\left[\mathsf{Profits} \mid \mathsf{Successful\ entry}\right]$

 $\mathsf{Entry}\ \mathsf{cost} = \mathbb{P}(\mathsf{Successful\ entry}) * \mathbb{E}\left[\mathsf{Profits} \mid \mathsf{Successful\ entry}\right]$

• Trade liberalization creates export opportunities that increase profit flow of successful entrants

 $\mathsf{Entry}\ \mathsf{cost} = \mathbb{P}(\mathsf{Successful}\ \mathsf{entry}) * \mathbb{E}\left[\mathsf{Profits} \mid \mathsf{Successful}\ \mathsf{entry}\right]$

- Trade liberalization creates export opportunities that increase profit flow of successful entrants
- Static economy: increase in exit cut-off → P(Successful entry) falls → static selection effect

 $\mathsf{Entry}\ \mathsf{cost} = \mathbb{P}(\mathsf{Successful}\ \mathsf{entry}) * \mathbb{E}\left[\mathsf{Profits} \mid \mathsf{Successful}\ \mathsf{entry}\right]$

- Trade liberalization creates export opportunities that increase profit flow of successful entrants
- Static economy: increase in exit cut-off → P(Successful entry) falls → static selection effect
- With knowledge spillovers tougher selection does not affect $\mathbb{P}(Successful entry)$

 $\mathsf{Entry}\ \mathsf{cost} = \mathbb{P}(\mathsf{Successful}\ \mathsf{entry}) * \mathbb{E}\left[\mathsf{Profits} \mid \mathsf{Successful}\ \mathsf{entry}\right]$

- Trade liberalization creates export opportunities that increase profit flow of successful entrants
- Static economy: increase in exit cut-off $\rightarrow \mathbb{P}(\text{Successful entry})$ falls \rightarrow static selection effect
- With knowledge spillovers tougher selection does not affect $\mathbb{P}(Successful entry)$
- Instead free entry condition implies faster growth of exit cut-off \rightarrow fall in entrants' expected lifespan
- Trade leads to higher growth through dynamic selection generating a new channel for gains from trade

Thomas Sampson (LSE)

Dynamic Selection

- Growth through technology diffusion
 - Luttmer 2007; Alvarez, Buera & Lucas 2008, 2011; Perla & Tonetti 2014; Lucas & Moll 2014
- Trade, growth & scale effects
 - Grossman & Helpman 1991; Rivera-Batiz & Romer 1991; Jones 1995; Young 1998
- Trade & growth with heterogeneous firms
 - Baldwin & Robert-Nicoud 2008; Perla, Tonetti & Waugh 2014
- Static gains from trade
 - Atkeson & Burstein 2010; Arkolakis, Costinot & Rodríguez-Clare 2012; Melitz & Redding 2013

Model set-up

- 2 Evolution of productivity distribution
- Balanced growth path
- Gains from trade
- Extensions

- J + 1 symmetric economies
- Single sector producing differentiated varieties
- Single consumption good numeraire
- Continuous time
- Constant population growth $L_t = L_0 e^{nt}$

• Representative household has dynastic preferences:

$$U = \int_0^\infty e^{-\rho t} e^{\rho t} \frac{c_t^{1-\frac{1}{\gamma}}}{1-\frac{1}{\gamma}} dt$$

- Consumption per capita *c*_t
- Intertemporal elasticity of substitution $\gamma > 0$
- Discount rate $\rho > 0$
- Household budget constraint:

$$\dot{a}_t = w_t + r_t a_t - c_t - na_t$$

Assets per capita *a_t*; interest rate *r_t*

Consumption good produced under perfect competition as a CES aggregate:

$$c_t L_t = \left[\int_{\omega \in \Omega_t} q_t(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma-1}}, \qquad \sigma > 1$$

 Ω_t set of available varieties

Consumption good produced under perfect competition as a CES aggregate:

$$c_t L_t = \left[\int_{\omega \in \Omega_t} q_t(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma-1}}, \qquad \sigma > 1$$

 Ω_t set of available varieties

- Variety production follows Melitz 2003
- Each firm produces a differentiated variety
- Labor is only factor of production
- Monopolistic competition between firms
- Heterogeneity across firms in labor productivity θ
- Fixed production cost *f* units of labor per period

- Fixed export cost f_x units of labor per period per country
- Iceberg variable trade costs τ

Static profit maximization

- Firm's static optimization problem equivalent to Melitz 2003
- Exit cut-off:

$$\theta_t^* = \frac{\sigma^{\frac{\sigma}{\sigma-1}}}{\sigma-1} \left(\frac{f w_t^{\sigma}}{c_t L_t}\right)^{\frac{1}{\sigma-1}}$$

Static profit maximization

- Firm's static optimization problem equivalent to Melitz 2003
- Exit cut-off:

$$\theta_t^* = \frac{\sigma^{\frac{\sigma}{\sigma-1}}}{\sigma-1} \left(\frac{f w_t^{\sigma}}{c_t L_t}\right)^{\frac{1}{\sigma-1}}$$

• Normalize productivity relative to the exit cut-off:

$$\phi_t \equiv \frac{\theta}{\theta_t^*}$$

• Exit when $\phi_t < 1$

• Export when
$$\phi_t \ge \tau \left(\frac{f_x}{f}\right)^{\frac{1}{\sigma-1}} \equiv \tilde{\phi}$$

Details

Entry 1

- Entry cost fe denominated in labor units
- Entrant draws productivity:

$$\theta = \mathbf{x}_t \psi$$

 x_t function of incumbent productivity distribution $G_t(\theta)$ ψ stochastic component with distribution $F(\psi)$

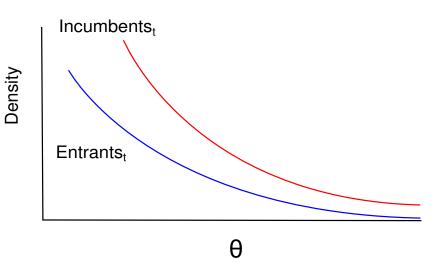
Entry 1

- Entry cost *f_e* denominated in labor units
- Entrant draws productivity:

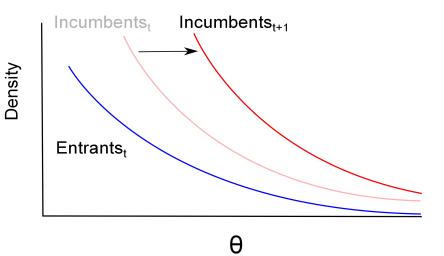
$$\theta = \mathbf{x}_t \psi$$

 x_t function of incumbent productivity distribution $G_t(\theta)$ ψ stochastic component with distribution $F(\psi)$

- xt captures knowledge spillovers from incumbents to entrants
- Assume *x_t* equals average productivity of incumbents
 - x_t is a location statistic such that if $G_{t_1}(\theta) = G_{t_0}(\frac{\theta}{\kappa})$ then $x_{t_1} = \kappa x_{t_0}$
 - 2 x_t is independent of the mass of incumbent firms
 - \bigcirc x_t is independent of the frontier productivity
- Upwards shift of incumbent firm productivity distribution leads to spillovers that benefit future entrants

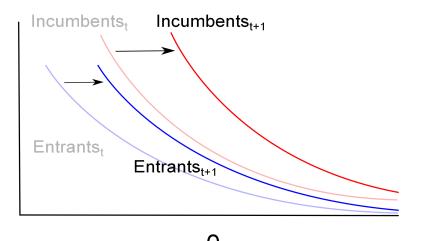


Entry & diffusion



Thomas Sampson (LSE)

Entry & diffusion



Thomas Sampson (LSE)

Density

Entry 2

• Free entry

- Costless financial intermediation sector pools entry risk across households
- Assume productivity remains constant after entry

Free entry

- Costless financial intermediation sector pools entry risk across households
- Assume productivity remains constant after entry
- Alternative assumption that leads to same balanced growth path properties in baseline model is:

$$x_t$$
 constant, $F = G_t$

 Captures technology diffusion when each entrant is randomly matched with an incumbent producer and learns incumbent's technology

• Dynamics of ϕ :

$$\phi_{t+\Delta} = \frac{\theta_t^*}{\theta_{t+\Delta}^*} \phi_t$$

• Dynamics of ϕ :

$$\phi_{t+\Delta} = \frac{\theta_t^*}{\theta_{t+\Delta}^*} \phi_t$$

• Evolution of relative productivity distribution $H_t(\phi)$:

$$M_{t+\Delta}H_{t+\Delta}(\phi) = M_t \left[H_t \left(\frac{\theta_{t+\Delta}^*}{\theta_t^*} \phi \right) - H_t \left(\frac{\theta_{t+\Delta}^*}{\theta_t^*} \right) \right] \\ + \Delta R_t \left[F \left(\frac{\phi \theta_{t+\Delta}^*}{x_t} \right) - F \left(\frac{\theta_{t+\Delta}^*}{x_t} \right) \right]$$

- *M_t* mass of incumbent firms
- Rt flow of entrants

• Taking the limit as $\Delta \to 0$ gives:

$$\frac{\dot{M}_{t}}{M_{t}} = -H_{t}'(1)\frac{\dot{\theta}_{t}^{*}}{\theta_{t}^{*}} + \left[1 - F\left(\frac{\theta_{t}^{*}}{x_{t}}\right)\right]\frac{R_{t}}{M_{t}}$$

• Taking the limit as $\Delta \to 0$ gives:

$$\begin{aligned} \frac{\dot{M}_t}{M_t} &= -H_t'(1)\frac{\dot{\theta}_t^*}{\theta_t^*} + \left[1 - F\left(\frac{\theta_t^*}{x_t}\right)\right]\frac{R_t}{M_t} \\ \dot{H}_t(\phi) &= \left\{\phi H_t'(\phi) - H_t'(1)\left[1 - H_t(\phi)\right]\right\}\frac{\dot{\theta}_t^*}{\theta_t^*} \\ &+ \left\{F\left(\frac{\phi \theta_t^*}{x_t}\right) - F\left(\frac{\theta_t^*}{x_t}\right) - H_t(\phi)\left[1 - F\left(\frac{\theta_t^*}{x_t}\right)\right]\right\}\frac{R_t}{M_t}\end{aligned}$$

Distribution assumptions

• F Pareto:

$$F(\psi) = 1 - \left(rac{\psi}{\psi_{\min}}
ight)^{-k}$$

Distribution assumptions

• F Pareto:

$$m{F}(\psi) = \mathbf{1} - \left(rac{\psi}{\psi_{\mathsf{min}}}
ight)^{-k}$$

• Initial productivity distribution $G_0(\theta)$ has a weakly thinner tail than *F*:

$$\lim_{\theta \to \infty} \frac{1 - G_0(\theta)}{\theta^{-k}} = \kappa$$

Distribution assumptions

• F Pareto:

$$m{F}(\psi) = 1 - \left(rac{\psi}{\psi_{\mathsf{min}}}
ight)^{-k}$$

• Initial productivity distribution $G_0(\theta)$ has a weakly thinner tail than *F*:

$$\lim_{\theta \to \infty} \frac{1 - G_0(\theta)}{\theta^{-k}} = \kappa$$

Define:

$$\lambda = \frac{\mathbf{x}_t \psi_{\min}}{\theta_t^*}$$

Assume $\lambda \leq 1$

• λ measures the strength of knowledge spillovers

Solve for a balanced growth path (BGP) equilibrium on which:

- Households maximize utility subject to their budget constraints
- Firms maximize static profits conditional on their productivity levels
- Free entry
- Asset, labor and output markets clear
- Solution of M_t and $H_t(\phi)$ as above
- c_t , a_t , w_t , r_t , θ_t^* , $W_t(\phi)$, M_t and R_t grow at constant rates
- Relative productivity distribution is stationary

Stationary productivity distribution

Unique stationary relative productivity distribution is Pareto:

$$H(\phi) = 1 - \phi^{-k}$$

• Knowledge spillovers on BGP:

$$x_t = \frac{k}{k-1} \theta_t^* \Rightarrow \lambda = \frac{k}{k-1} \psi_{\min}$$

And entrants obtain relative productivity draws:

$$\tilde{H}(\phi) = F\left(\frac{\phi heta_t^*}{x_t}\right) = H\left(\frac{\phi}{\lambda}\right)$$

Assumption on G₀(θ) implies H_t(φ) converges to Pareto in any economy with positive productivity growth

Sources of growth

• Let
$$g = \frac{\dot{\theta}_t^*}{\theta_t^*}$$
 be the dynamic selection rate

- Firm relative productivity \(\phi_t\) declines at rate g
- Let $\frac{\dot{c}_t}{c_t} = q$. Differentiating definition of exit cut-off gives:

$$q = g + \frac{n}{\sigma - 1}$$

- Two sources of growth
 - Oynamic selection: growth of exit cut-off causes productivity distribution to shift outwards as a traveling wave and raises average productivity
 - Population growth drives expansion in mass of varieties produced:

$$\frac{\dot{R}_t}{R_t} = \frac{\dot{M}_t}{M_t} = n$$

- What determines the dynamic selection rate?
- Free entry condition:

$$f_{e}w_{t} = \int_{\phi} W_{t}(\phi) dH\left(\frac{\phi}{\lambda}\right)$$
$$= \int_{\phi} \left[\int_{t}^{\infty} \pi_{v}(\phi_{v}) e^{-(v-t)r} dv\right] dH\left(\frac{\phi}{\lambda}\right)$$

- What determines the dynamic selection rate?
- Free entry condition:

$$f_{e}w_{t} = \int_{\phi} W_{t}(\phi) dH\left(\frac{\phi}{\lambda}\right)$$
$$= \int_{\phi} \left[\int_{t}^{\infty} \pi_{v}(\phi_{v}) e^{-(v-t)r} dv\right] dH\left(\frac{\phi}{\lambda}\right)$$

 Because of technology diffusion entrants draw relative productivity from stationary distribution

- What determines the dynamic selection rate?
- Free entry condition:

$$f_{e}w_{t} = \int_{\phi} W_{t}(\phi) dH\left(\frac{\phi}{\lambda}\right)$$
$$= \int_{\phi} \left[\int_{t}^{\infty} \pi_{v}(\phi_{v}) e^{-(v-t)r} dv\right] dH\left(\frac{\phi}{\lambda}\right)$$

- Because of technology diffusion entrants draw relative productivity from stationary distribution
- Increased profit flow $\pi_t(\phi) \rightarrow$ higher returns to entry \rightarrow rise in $\frac{R_t}{M_t} \rightarrow$ increase in g

- What determines the dynamic selection rate?
- Free entry condition:

$$f_{e}w_{t} = \int_{\phi} W_{t}(\phi) dH\left(\frac{\phi}{\lambda}\right)$$
$$= \int_{\phi} \left[\int_{t}^{\infty} \pi_{v}(\phi_{v}) e^{-(v-t)r} dv\right] dH\left(\frac{\phi}{\lambda}\right)$$

- Because of technology diffusion entrants draw relative productivity from stationary distribution
- Increased profit flow $\pi_t(\phi) \rightarrow$ higher returns to entry \rightarrow rise in $\frac{R_t}{M_t} \rightarrow$ increase in g
- Increase in dynamic selection rate shortens entrants' expected lifespan ensuring the free entry condition is satisfied

Dynamic Selection

$$\pi_{t}(\phi) = \pi_{t}^{d}(\phi) + \pi_{t}^{x}(\phi)I\left[\phi \geq \tilde{\phi}\right]$$

= $fw_{t}\left(\phi_{t}^{\sigma-1} - 1\right) + fJ\tau^{1-\sigma}w_{t}\left(\phi^{\sigma-1} - \tilde{\phi}^{\sigma-1}\right)I\left[\phi \geq \tilde{\phi}\right]$

• Trade integration (higher *J*, lower τ , lower f_x) creates new profit opportunities and raises *g*

$$\pi_{t}(\phi) = \pi_{t}^{d}(\phi) + \pi_{t}^{x}(\phi)I\left[\phi \geq \tilde{\phi}\right]$$

= $fw_{t}\left(\phi_{t}^{\sigma-1} - 1\right) + fJ\tau^{1-\sigma}w_{t}\left(\phi^{\sigma-1} - \tilde{\phi}^{\sigma-1}\right)I\left[\phi \geq \tilde{\phi}\right]$

- Trade integration (higher *J*, lower *τ*, lower *f_x*) creates new profit opportunities and raises *g*
- Higher f increases profit flow and raises g
 - Profit flow increases due to lower static competition caused by reduction in level of *M*_t

Proposition

The world economy has a unique balanced growth path on which consumption per capita grows at rate:

$$q = \frac{\gamma}{1 + \gamma(k-1)} \left[\frac{\sigma - 1}{k+1 - \sigma} \frac{\lambda^{k} f}{f_{e}} \left(1 + J\tau^{-k} \left(\frac{f}{f_{x}} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right) + \frac{kn}{\sigma-1} - \rho \right]$$

- Existence of equilibrium assumes parameter restrictions such that g > 0 and transversality condition holds Details
- Growth rate increasing in: n, γ, λ, f, J
- Growth rate decreasing in: ρ , f_e , f_x , τ

Solution details

- Growth rate is independent of population L_t
- Both R_t and M_t are proportional to L_t , but:

$$g = \frac{1}{k} \left(\lambda^k \frac{R_t}{M_t} - n \right)$$

- Larger population increases the number of varieties produced without generating knowledge spillovers (cf. Young 1998)
- In first generation endogenous growth theory trade affects growth because of scale effects and international knowledge spillovers (Grossman & Helpman 1991). Both are absent from this model

Trade & welfare

- BGP welfare depends on initial consumption level c₀ and per capita consumption growth rate q Welfare
- No transition dynamics since H(φ) independent of trade integration
- Gains from trade *z* defined by:

$$U\left(\mathit{zc}_{0}^{\mathcal{A}}, \mathit{q}^{\mathcal{A}}
ight) = U\left(\mathit{c}_{0}, \mathit{q}
ight)$$

"A" superscript denotes autarky

- Decompose gains from trade into two components $z = z^s z^d$ where:
 - Static gains z^s welfare gains holding q constant
 - 2 Dynamic gains z^d welfare gains from higher q

Static gains from trade

$$z^{s} = \left[1 + J\tau^{-k} \left(\frac{f}{f_{x}}\right)^{\frac{k+1-\sigma}{\sigma-1}}\right]^{\frac{1}{k}}$$

- z^s equals total gains from trade in Melitz 2003 if entrants draw productivity from a Pareto distribution
- z^s equals total gains from trade in this paper if there are no knowledge spillovers
- Calibrated value of static gains same as in Arkolakis, Costinot & Rodríguez-Clare 2012:

$$z^{s} = \left(\frac{1}{1 - IPR}\right)^{\frac{1}{TE}}$$

- Higher growth raises welfare conditional on *c*₀, but has ambiguous effect on *c*₀
 - Reallocation of labor from production to entry has negative effect on c₀
 - Higher marginal propensity to consume wealth raises \textit{c}_{0} if and only if $\gamma < 1$
- But net effect of q on z^d is always strictly positive
- Dynamic selection effect raises the gains from trade

- Higher growth raises welfare conditional on c₀, but has ambiguous effect on c₀
 - Reallocation of labor from production to entry has negative effect on c_0
 - Higher marginal propensity to consume wealth raises \textit{c}_{0} if and only if $\gamma < 1$
- But net effect of q on z^d is always strictly positive
- Dynamic selection effect raises the gains from trade
- Why does positive effect of trade on growth increase welfare?
 - Selection has a positive externality on the productivity of future entrants
 - Trade exploits the technology diffusion externality by increasing the dynamic selection rate

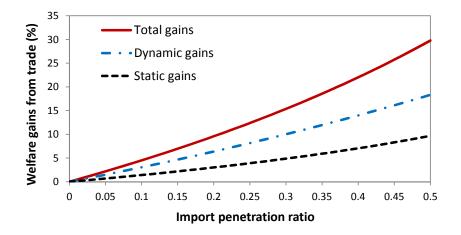
Quantifying the gains from trade

- Calibrate model using U.S. data
- Calibration uses 3 observables and 4 parameters

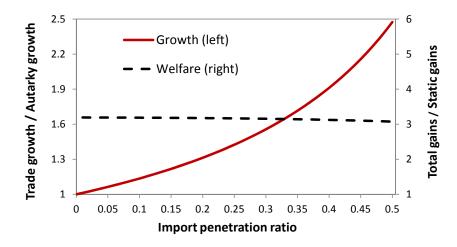
Observable/parameter Val		Value	Source
Import penetration ratio	IPR	0.081	U.S. import penetration ratio in 2000
Firm creation rate	NF	0.116	U.S. Small Business Administration 2002
Population growth rate	n	0.011	U.S. average 1980-2000
Trade elasticity	k	7.5	Anderson and Van Wincoop (2004)
Elasticity of substitution across goods	σ	8.1	σ = k/1.06 + 1 to match right tail index of employment distribution
Intertemporal elasticity of substitution	γ	0.33	García-Peñalosa and Turnovsky (2005)
Discount rate	ρ	0.04	García-Peñalosa and Turnovsky (2005)

Table 1: Calibration observables and parameters

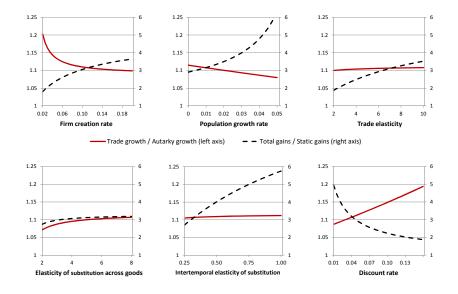
Calibration



IPR & dynamic gains



Robustness



Dynamic Selection

- International knowledge spillovers Go
- In Non-Pareto productivity distribution & frontier growth in the second seco
- Firm level productivity dynamics
- Technology diffusion to incumbents Go

- Introduce technology diffusion into an open economy model with heterogeneous firms
- Selection on productivity leads to endogenous growth through spillovers from incumbent firms to entrants
- Because of free entry trade raises the dynamic selection rate and increases growth
- Gains from trade larger than in static steady state open economy models
- In baseline calibration trade raises growth by 11% and the gains from trade are 3.2 times higher than in static models

Profit flow from domestic sales:

$$\pi_t^d(\phi_t) = fw_t \left(\phi_t^{\sigma-1} - 1\right) \mathbb{I}\left[\phi_t \ge 1\right]$$

• Profit flow from exports:

$$\pi_t^{\mathsf{x}}(\phi_t) = J\tau^{1-\sigma} f \mathsf{w}_t \left(\phi_t^{\sigma-1} - \tilde{\phi}^{\sigma-1} \right) \mathbb{I} \left[\phi_t \ge \tilde{\phi} \right]$$

• Firm value:

$$W_{t}\left(\phi_{t}\right) = \mathbb{E}\left[\int_{t}^{\infty} \pi_{\tau}\left(\phi_{\tau}\right) \exp\left(-\int_{t}^{\tau} r_{s} ds\right) d\tau\right]$$

Parameter restrictions

• To ensure g > 0 assume:

$$\frac{\sigma-1}{k+1-\sigma}\frac{\lambda^{k}f}{f_{e}} > \rho + \frac{1-\gamma}{\gamma}\frac{n}{\sigma-1}$$

• To ensure transversality condition holds assume:

$$\frac{(1-\gamma)(\sigma-1)}{k+1-\sigma}\frac{\lambda^{k}f}{f_{e}}\left[1+J\tau^{-k}\left(\frac{f}{f_{x}}\right)^{\frac{k+1-\sigma}{\sigma-1}}\right] > \gamma k(n-\rho) -(1-\gamma)\frac{k+1-\sigma}{\sigma-1}n$$

BGP solution

• On BGP:

$$\frac{\dot{a}_t}{a_t} = \frac{\dot{w}_t}{w_t} = \frac{\dot{c}_t}{c_t} = q$$

• Household utility maximization implies Euler equation:

$$q = \gamma(r - \rho)$$

• Free entry requires:

$$q = kg + r - rac{\sigma - 1}{k + 1 - \sigma} rac{\lambda^k}{f_e} \left(f + J f_x \tilde{\phi}^{-k}
ight)$$

• Labor market clearing:

$$L_t = \frac{k\sigma + 1 - \sigma}{k + 1 - \sigma} M_t f \left[1 + J\tau^{-k} \left(\frac{f}{f_x} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right] + R_t f_{\epsilon}$$

Welfare

Household welfare on BGP:

$$U = \frac{\gamma}{\gamma - 1} \left[\frac{\gamma c_0^{\frac{\gamma - 1}{\gamma}}}{(1 - \gamma)q + \gamma(\rho - n)} - \frac{1}{\rho - n} \right]$$

Initial consumption:

$$C_{0} = A_{1}f^{-\frac{k+1-\sigma}{k(\sigma-1)}}\left[1+J\tau^{-k}\left(\frac{f}{f_{x}}\right)^{\frac{k+1-\sigma}{\sigma-1}}\right]^{\frac{1}{k}}$$

$$*\left[1+\frac{\sigma-1}{k\sigma+1-\sigma}\frac{n+gk}{n+gk+\frac{1-\gamma}{\gamma}q+\rho-n}\right]^{-\frac{k\sigma+1-\sigma}{k(\sigma-1)}}$$

$$A_{1} \equiv (\sigma-1)\left(\frac{k}{k+1-\sigma}\right)^{\frac{\sigma}{\sigma-1}}\left(\frac{k+1-\sigma}{k\sigma+1-\sigma}\right)^{\frac{k\sigma+1-\sigma}{k(\sigma-1)}}\hat{\theta}_{0}^{*}\hat{M}_{0}^{\frac{1}{k}}L_{0}^{\frac{k+1-\sigma}{k(\sigma-1)}}$$

Thomas Sampson (LSE)

• Firm creation rate:

$$NF = \lambda^k \frac{R_t}{M_t}$$
$$= n + gk$$

• Fixed costs:

$$\frac{\lambda^{k} f}{f_{e}} = \frac{k+1-\sigma}{\gamma k(\sigma-1)} (1-IPR) \left\{ [1+\gamma(k-1)] (NF-n) + \frac{k(1-\gamma)}{\sigma-1} n + \gamma k\rho \right\}$$

Outcome		Value
Growth rate - trade	q	0.0156
Growth rate - autarky	q ^A	0.0141
Growth (trade vs. autarky)	q/q [^]	1.107
Consumption level (trade vs. autarky)	c_0 / c_0^{A}	1.010
Static gains from trade	z ^s	1.011
Dynamic gains from trade	z ^d	1.025
Total gains from trade	Z	1.036
Gains from trade (total vs. static)	(z-1)/(z ^s -1)	3.2

Table 2: Calibration results

• To ensure *g* > 0 assume:

$$\frac{1 > \gamma}{\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^{k} f}{f_{e}} > \rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1}}$$

• To ensure transversality condition holds assume:

$$\frac{\sigma-1}{k+1-\sigma}\frac{\lambda^k f}{f_e} > n$$

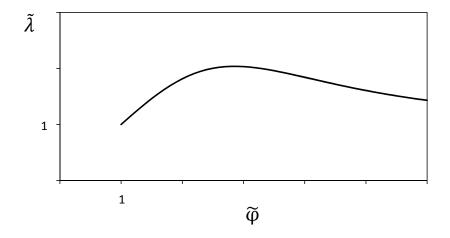
International knowledge spillovers

- Suppose entrants learn from both domestic and foreign firms
- Let xt be average productivity of all firms that sell in the domestic market
- Only difference from baseline model is:

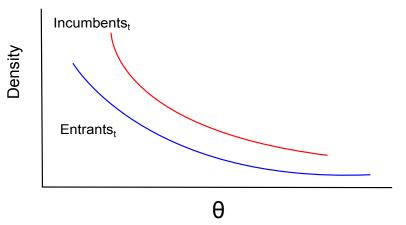
$$\lambda = \frac{k}{k-1}\psi_{\min}\tilde{\lambda}$$
 where $\tilde{\lambda} \equiv \frac{1+J\tilde{\phi}^{1-k}}{1+J\tilde{\phi}^{-k}}$

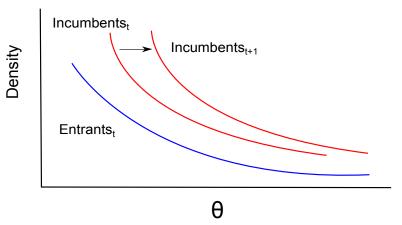
- Trade increases λ because exporters are on average more productive than domestic firms
- Increase in strength of knowledge spillovers is a second channel through which trade raises dynamic selection rate and generates dynamic gains

Trade & knowledge spillovers



- Let *F* be a differentiable cumulative distribution function with bounded support [ψ_{min}, ψ_{max}]
- Assume $x_t = x \theta_t^*$ where $x \psi_{\min} \leq 1$ and $x \psi_{\max} > 1$
- Assume initial productivity distribution $G_0(\theta)$ is bounded above
- Productivity growth results from increases in both the lower and upper bounds of the productivity distribution





- Provided the transversality condition is satisfied and the dynamic selection rate is positive then:
 - There exists a unique BGP on which the stationary relative productivity distribution satisfies:

$$\phi H'(\phi) = \frac{n}{g} \left[H(\phi) - \frac{F\left(\frac{\phi}{x}\right) - F\left(\frac{1}{x}\right)}{1 - F\left(\frac{1}{x}\right)} \right] + H'(1) \frac{1 - F\left(\frac{\phi}{x}\right)}{1 - F\left(\frac{1}{x}\right)}$$

Sufficient conditions that ensure trade liberalization raises growth are:

$$\rho + \frac{1-\gamma}{\gamma} \frac{n}{\sigma-1} > 0, \quad (\sigma-1) + \frac{1-\gamma}{\gamma} > 0$$

Firm productivity dynamics

- Dynamic selection effect of trade robust to allowing for general firm level productivity dynamics
- Assume entrants draw both φ and a set of productivity growth rates ζ_t from a stationary joint distribution:

$$\frac{\dot{\theta}_t}{\theta_t} = \zeta_t \Rightarrow \frac{\dot{\phi}_t}{\phi_t} = \zeta_t - g$$

- Allows for firm level productivity dynamics that are conditional on firm size
- Assume there exists a BGP with a positive dynamic selection rate
- γ ≤ 1 is a sufficient, but not necessary, condition for trade integration to increase growth

Technology diffusion to incumbents

- Assume productivity of all incumbents grows at rate g
- Firm's relative productivity is constant as technology diffusion raises the productivity of both entrants and incumbents
- Assume F Pareto, transversality condition satisfied and positive dynamic selection rate
- There exists a unique BGP on which the relative productivity distribution is Pareto and the growth rate is:

$$q = \frac{\gamma}{1-\gamma} \left[\frac{\sigma-1}{k+1-\sigma} \frac{\lambda^k f}{f_e} \left(1 + J\tau^{-k} \left(\frac{f}{f_x} \right)^{\frac{k+1-\sigma}{\sigma-1}} \right) - \rho \right]$$

- γ < 1 is a necessary and sufficient condition to ensure trade integration raises growth and generates dynamic gains
- If $\gamma \ge 1$ no BGP exists

• To ensure *g* > 0 assume:

$$\frac{1 > \gamma}{\frac{\sigma - 1}{k + 1 - \sigma} \frac{\lambda^{k} f}{f_{e}} > \rho + \frac{1 - \gamma}{\gamma} \frac{n}{\sigma - 1}}$$

• To ensure transversality condition holds assume:

$$\frac{\sigma-1}{k+1-\sigma}\frac{\lambda^k f}{f_e} > n$$

Small open economy

- Perfect competition
- Homogeneous output sold at higher price in foreign markets
- Decreasing returns to scale in R&D
 - Flow of entrants $\Psi(R_t, M_t)$ where Ψ homogeneous of degree one
 - Could interpret as congestion in technology adoption process

In both cases:

- Trade increases growth
- Gains from trade can be decomposed into static and dynamic components
- Dynamic gains from trade increase welfare relative to a static steady state version of the model