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Abstract—This paper presents a new technique that dy-
namically estimates and updates the coefficients of a digital
predistorter (DPD) for power amplifier (PA) linearization. The
proposed technique is dynamic in the sense of estimating, at every
iteration of the coefficient’s update, only the minimum necessary
parameters according to a criterion based on the residual
estimation error. At the first step, the original basis functions
defining the DPD in the forward path are orthonormalized for
DPD adaptation in the feedback path by means of a precalculated
principal components analysis (PCA) transformation. The ro-
bustness and reliability of the precalculated PCA transformation
(i.e., PCA transformation matrix obtained off-line and only once)
is tested and verified. Then, at the second step, a properly
modified partial least squares (PLS) method, named dynamic
partial least squares (DPLS), is applied to obtain the minimum
and most relevant transformed components required for updating
the coefficients of the DPD linearizer. The combination of the
PCA transformation with the DPLS extraction of components
is equivalent to a canonical correlation analysis (CCA) updating
solution, which is optimum in the sense of generating components
with maximum correlation (instead of maximum covariance as
in the case of the DPLS extraction alone). The proposed dynamic
extraction technique is evaluated and compared in terms of
computational cost and performance with the commonly used
QR decomposition approach for solving the least squares (LS)
problem. Experimental results show that the proposed method
(i.e., combining PCA with DPLS) drastically reduces the amount
of DPD coefficients to be estimated while maintaining the same
linearization performance.

Index Terms—Canonical correlation analysis, digital predis-
tortion, model order reduction, partial least squares, power
amplifier, principal component analysis.

I. INTRODUCTION

D IGITAL predistortion (DPD) linearization can overcome

or at least mitigate the efficiency versus linearity trade-

off in power amplifiers (PAs). In order to avoid wasting ex-

cessive power resources when handling high peak-to-average
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power ratio (PAPR) signals, high efficient amplification archi-

tectures based on dynamic load or dynamic supply modulation

have been adopted. Some of the most popular solutions

proposed in literature (and also adopted by the industry in

some cases) include: envelope tracking PAs [1], Doherty PAs

[2], load modulated balanced amplifiers (LMBA) [3] and

LINC or outphasing PAs [4]. In either case, these highly effi-

cient topologies require the use of linearization techniques to

guarantee the linearity levels specified in the communications

standards.

Unlike in macro base stations, where the DC power con-

sumption in the transmitter chain is dominated by the PA,

when targeting the linearization of small cells (or even hand-

sets) the computational complexity and DC consumption of

the digital signal processing and data conversion stages are

critical. In addition, to linearize highly efficient amplification

architectures based on dynamic supply or dynamic load mod-

ulation, the DPD behavioral model requires a huge number of

parameters [5]. This can cause an ill-conditioned least squares

(LS) estimation and at the same time increases the computa-

tional complexity of the overall DPD system. Consequently, a

lot of effort has been made to reduce the number of parameters

of the DPD [6]–[9].

As depicted in Fig. 1, the DPD linearization system can

be divided into two subsystems: a forward path subsystem

operating in real-time, where the input signal is conveniently

predistorted; and a feedback or observation path subsystem,

where the coefficients characterizing the nonlinear DPD func-

tion in the forward path are estimated and updated in a more

relaxed time scale. When targeting an implementation in a

digital signal processing platform, for example, a system-on-

chip (SoC) FPGA device, the DPD function in the forward

path can be implemented in a programmable logic (PL) unit.

For example, by following a LUT approach as in [10], [11], or

by considering a polynomial approach using the Horner’s rule

as in [12], or by combining both complex multipliers/adders

and memory as in [13]. Therefore, the DPD function in the

forward path should be designed as simple as possible (i.e.,

including the minimum and most relevant basis functions)

to save as many hardware logic resources and memory as

possible. On the other hand, the adaptation of the DPD

coefficients can be carried out in a processing system (PS)

in a much slower time scale than in the forward path (i.e., not

in real time).

Dimensionality reduction techniques can be classified into
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Fig. 1. Block diagram of a closed-loop DPD system following a direct
learning approach.

two main groups: a) feature selection techniques such as,

LASSO [14], Ridge regression [15], the sparse Bayesian learn-

ing algorithm [16] or the orthogonal matching pursuit (OMP)

[17], that select the most relevant variables from a random

set of original variables; and b) feature extraction techniques,

such as, principal component analysis (PCA) [6], partial least

squares (PLS) [18] or canonical correlation analysis (CCA)

[19], that create a reduced set of new variables that are linear

or nonlinear combinations of the original variables.

Some of the aforementioned feature extraction techniques

have been proposed by the authors in [20]–[22] as an alterna-

tive to one of the most commonly used solutions based on QR

factorization combined with recursive least squares (QR-RLS)

[23]. The objective of using these techniques is not only to

ensure a proper well-conditioned estimation, but also a reduc-

tion in the number of parameters required in the identification

or adaptation process. However, unlike with feature selection

techniques, with feature extraction techniques, the number of

coefficients of the DPD function in the forward path is not

reduced. For that reason, in [22] the authors proposed the

combination of an off-line OMP search for reducing the DPD

basis in the forward path with PLS extraction in the adaptation

(or observation) path. In comparison to PCA [20], where the

new basis of components with maximal variance are obtained

taking into account only the input data, with PLS the new basis

of components show maximal covariance in relation to the

signal to be estimated and thus, the reduction capabilities using

PLS are significantly better than using PCA, as discussed in

[22]. In [24], the authors extended the reduction capabilities by

presenting a dynamic adaptation approach based on PLS where

the basis of new components used in the DPD estimation

is dynamically adjusted and thus, at every iteration of the

adaptation process, only the minimum number of required

components are used to minimize the linearization error.

In this paper, the authors go a step further by proposing

a new approach to dynamically estimate and update the

coefficients of the DPD that not only shows better dimension-

ality reduction capabilities than previous published solutions

in [20], [22], [24], but also introduces less computational

complexity than QR-LS (i.e., any method based on a QR

decomposition with a fixed number of coefficients used to

solve the LS problem, such as Matlab’s mldivide or backslash)

thanks to the inherent dimensionality reduction introduced by

the proposed algorithm.

The proposed DPD adaptation technique is based on the

combination of PCA with dynamic PLS (PCA-DPLS), which

is equivalent to the CCA, but with significantly lower computa-

tional cost. Like in CCA, the proposed PCA-DPLS technique

creates a new basis with maximal correlation in relation to

the signal to be estimated, which makes it more suitable for

reducing the number of components. Therefore, in the PCA-

DPLS technique, first, the original basis functions defining the

DPD in the forward path are orthonormalized by means of

a precalculated PCA transformation matrix (obtained off-line

and only once). Second, a modified dynamic PLS method is

applied to obtain the minimum and most relevant transformed

components required for updating the coefficients of the DPD

linearizer.

The remainder of this paper is organized as follows. Section

II presents an overview on the feature extraction techniques

required to describe the proposed dynamic DPD adaptation

approach. Section III describes in detail the proposed joint

PCA-DPLS approach. Section IV describes the experimental

test bench and shows experimental results proving the advan-

tages of the PCA-DPLS technique to dynamically update the

coefficients of the DPD. Finally, the conclusion is given in

Section V.

II. DIMENSIONALITY REDUCTION BASED ON LINEAR

TRANSFORMATIONS

A. Forward Path DPD

Following the same notation shown in the block diagram in

Fig. 1, in the forward path, the input-output relationship at the

DPD block can be described in a matrix notation as

x = u−Uw (1)

where x = (x[0], · · · , x[n], · · · , x[N − 1])T and u =
(u[0], · · · , u[n], · · · , u[N − 1])T , with n = 0, · · · , N − 1, are

the predistorted and input N × 1 signal vectors, respectively.

Moreover, w =
(
w1[n], · · · , wi[n], · · · , wM [n]

)T

is a vector

of coefficients at time n with dimensions M × 1, with M

being the order of the model or the number of original basis

functions describing a particular behavioral model. The N×M
data matrix is defined as

U = (ϕu[0], · · · ,ϕu[n], · · · ,ϕu[N − 1])T (2)

where ϕu
T [n] =

(
φu
1 [n], · · · , φ

u
i [n], · · · , φ

u
M [n]

)
is the vec-

tor containing the specific basis functions φu
i [n] (with i =

1, · · · ,M ) at time n. The general definition in (2) can be

particularized for any DPD behavioral model. In this paper, we

have considered the generalized memory polynomial (GMP)

behavioral model proposed in [25], for linearization purposes.

The number of parameters of the GMP model will be discussed

in Section IV.

B. Principal Component Analysis

The PCA theory is used to generate a new basis set of

orthogonal components that are the linear combinations of the

original basis functions contained in the N × M matrix U

through the M×M transformation matrix RPCA that contains
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the eigenvectors of the covariance matrix of U (i.e., cov(U) ≈
UHU ),

Ũ = URPCA (3)

The N × M transformed matrix Ũ contains the principal

components (i.e., linear combinations of the original basis

functions) oriented to capture the maximum variance in the

data. Since the components in the new transformed basis

Ũ are orthogonal among them and are sorted according to

their relevance (i.e., more relevant components show higher

eigenvalue), it is be possible to apply some model order

reduction by simply removing the components with smaller

eigenvalue [6].

The computational cost of extracting the PCA transforma-

tion matrix is not negligible, as it will be further discussed in

subsection III-B. However, since it only relies on the statistical

properties of the input data, it is possible to pre-calculate it

off-line, only once, and then use it for linearization purposes

considering different input data sets without loss of generality,

as long as the input data statistics do not change, or the

signal power levels are not altered significantly. In order to

validate the reliability and robustness of using a precalculated

PCA transformation matrix, we performed a DPD lineariza-

tion considering a transformation matrix RPCA calculated

taking into account a specific set of data. Fig. 2 shows the

linearization performance in terms of normalized mean square

error (NMSE) and adjacent channel power ratio (ACPR),

when applying a precalculated PCA transformation matrix

RPCA to generate the transformed matrix Ũ of orthogonal

components considering several input data sets, all different

(same modulation and bandwidth, but different PAPR) from

the one used for obtaining the transformation matrix.

Therefore, after checking that there was no loss in lin-

earization performance, it is fair to say that, as long as

the characteristics of the transmitted signal do not change,

the PCA precalculated transformation matrix is reliable and

robust enough to be used for DPD purposes. It is robust

against the different PAPR values produced when random

data is modulated for a given modulation and signal band-

width configuration. However, the recalculation of the PCA

transformation matrix is necessary when the characteristics

of the transmitted signal, mainly in terms of bandwidth or

power operation conditions, change significantly. When this

happens, the required basis functions in matrix U that char-

acterize the PA nonlinear and dynamic behavior may change,

and consequently, the PCA transformation matrix should be

recalculated. As an alternative to the off-line calculation of

the PCA transformation matrix, the adaptive PCA (APCA)

method could be included as part of the online (not real-time)

processing, as proposed in [21].

C. Canonical Correlation Analysis and Partial Least Squares

CCA and PLS [26] are well-known techniques for feature

extraction from a set of variables or basis functions. Covari-

ance and correlation are two different statistical measures for

quantifying how the variables are related. The main difference

between the CCA and the PLS techniques is that CCA creates
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Fig. 2. NMSE and ACPR vs. iteration proving the PCA robustness in DPD
linearization.

new components that maximize the correlation factor ρCCA,

defined as

ρCCA =
〈Upi,y〉

||Upi||2||y||2
; (4)

while PLS maximizes the covariance factor ρPLS , defined as

ρPLS =
〈Upi,y〉

||pi||2||y||2
(5)

with 〈·, ·〉 being the inner product and ||·||2 being the Euclidean

norm. Particularizing to our DPD problem, we consider that

one set of variables is composed by the DPD basis functions

in matrix U , and the other one by the signal to be estimated

(in case of PA modeling) or to be linearized (in case of

DPD linearization), i.e., the vector signal y. In essence, CCA

finds the directions (or components) of maximum correlation

while PLS finds the directions of maximum covariance. The

objective is to find the M × 1 vector of coefficients pi,

necessary for creating a new component Upi maximally

related to y in terms of maximal correlation (in the case of

CCA) or maximal covariance (in the case of PLS). Therefore,

in the case of CCA the target can be mathematically defined

as

max
pi

{ρCCA} = max
pi

{
〈Upi,y〉

||Upi||2||y||2

}
(6)

whereas, in the case of PLS, the target can be defined as

follows,

max
pi

{ρPLS} = max
pi

{
〈Upi,y〉

||pi||2||y||2

}
(7)

Note that if the matrix U is unitary (i.e., UHU = I), then

CCA becomes PLS

ρCCA =
〈Upi,y〉

||Upi||2||y||2
=

〈Upi,y〉√(
pH
i UHUpi

)
||y||2

(8)

=
〈Upi,y〉

||pi||2||y||2
= ρPLS

For those familiar with the conjugate gradient (CG) method,

it is worth to mention that the CG is similar to the PLS

algorithm. However, while the purpose of using PLS is to

create a new transformed basis that presents maximum co-

variance with the signal to be estimated, the purpose of CG

is to perform an iterative search of a set of coefficients that

converges to the solution that minimizes a specific quadratic
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function. As detailed in [27], despite the fact that PLS and CG

may have different original goals, both solutions are obtained

by equivalent algorithmic procedures.

In the following subsection we will use the precalculated

PCA transformation matrix to convert the original data matrix

containing the DPD basis functions into a unitary transformed

matrix. This way we will be able to maximize the correlation

factor as in the CCA but using PLS.

III. DPD COEFFICIENTS ADAPTATION BASED ON PCA

AND DYNAMIC PLS

A. The PCA-DPLS Approach for DPD Linearization

Following a closed-loop direct learning approach [28] as

shown in Fig. 1, the DPD coefficients are iteratively updated

as follows

wi+1 = wi +∆w (9)

with wi being the M × 1 vector of coefficients of the DPD

model at the ith iteration. The LS solution for ∆w is

∆w = µ(UHU)−1UHe (10)

where µ is a learning-rate parameter. The linearization error

vector e is defined as e =
y

G0
− u, where G0 is the desired

PA linear gain, the N×1 vectors y and u are the PA output and

input signals, respectively; and U , defined in (2), is the N×M
data matrix that contains the M basis functions describing the

DPD behavioral model.

In the first approach, in order to reduce the number of coef-

ficients in the DPD forward path, the OMP greedy algorithm

is applied to select the most relevant basis functions of U .

Then, in order reduce the number of required DPD parameters

in the adaptation path while keeping the same linearization

performance, we propose our PCA-DPLS technique as a lower

complexity alternative to QR decomposition combined with

LS (QR-LS).

The proposed PCA-DPLS technique is described in the

following. First, in an off-line process, we calculate the M×M
PCA transformation matrix RPCA, that transforms the original

DPD basis U into an orthogonal subspace Ũ , as described in

(3). Then, each column of the transformed basis is normalized

as follows,

Û = ŨT norm = URPCAT norm = UR (11)

with T norm being a M×M diagonal matrix composed by the

norm of each of the columns of Ũ . It is worth to mention that,

like with RPCA, T norm is also calculated off-line and only

once. Therefore, after PCA transformation and normalization,

the resulting transformed matrix Û is unitary.

After this off-line process where we pre-calculate the trans-

formation matrix R, a dynamic PLS approach, which is an

upgraded version of the DOTM algorithm presented in [24],

is employed to allow dynamic basis selection for the DPD

adaptation. The proposed PCA-DPLS approach is described in

Algorithm 1. Notice that at every iteration of the adaptation,

R is fixed, while U and e are updated with the new input

data.

Algorithm 1 PCA-DPLS Calculation

1: procedure PCA-DPLS(U ,R, e, µ, δ1, δ2)

2: initialization:

3: d = µe; V (0) = {}; P (0) = {}; wpls
(0) = {};

4: j = 0; Eth1 = δ1||d||
2
2; Eth2 = δ2||d||

2
2;

5: r1 = (UR)
H
d = RH(UHd);

6: repeat

7: j = j + 1;

8: pj =
rj

||U(Rrj)||2
;

9: P (j) ← P (j−1) ⋃pj ;

10: vj = RHUHURpj ;

11: for repeat = 1 to 2 do

12: for i = 1 to j − 1 do

13: vi = V (:, i);

14: vj = vj − (vH
i vj)vi;

15: end for

16: end for

17: vj =
vj

||vj ||2
;

18: rj = rj − vj(v
H
j rj);

19: V (j) ← V (j−1) ⋃vj ;

20: rj+1 = rj − V (j)((V (j))Hrj);

21: x̂j = U(Rpj);

22: wplsj = x̂
H
j d;

23: wpls
(j) ← wpls

(j−1)
⋃
wplsj

;

24: Ej = ||wpls
(j)||22;

25: until (|wpls1|
2 < Eth1) OR (Ej > Eth2) OR (j ==

dimension(U))

26: ∆ ̂̂w = wpls;

27: Return P ,∆ ̂̂w
28: end procedure

With the PCA-DPLS Algorithm, at every iteration of DPD

update process we obtain a new PLS transformed matrix P

with the minimum necessary number of new components.

The criteria to decide the minimum required number of

components will be described in the following and is based on

the thresholds Eth1 and Eth2, defined as a percentage δ1 and

δ2 of the energy of the error signal e. The transformed basis

matrix Û obtained from (11) is one more time transformed

through the M × L (where L is variable and may change at

every update iteration) transformation matrix P as follows

̂̂
U = ÛP = URP (12)

The new transformed matrix
̂̂
U presents orthonormal com-

ponents and is N × L dimensional, where the number of

components L is variable as it depends on the dimensions

of the transformation matrix P .
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Fig. 3. Flowchart of the DPD estimation/adaptation using the PCA-DPLS technique.

If the PCA transformation matrix RPCA is perfectly orthog-

onal and the normalization matrix T norm is perfectly diagonal,

then the resulting transformed data matrix Û is unitary. In this

case, the combination of PCA and dynamic PLS is equivalent

to CCA (as justified in Subsection II-C). Therefore, after the

PCA-DPLS transformation, the new orthonormal components

(i.e., columns) of the matrix
̂̂
U appear sorted according to

their contribution to maximize the correlation factor between

the new components and the error signal e. Having a sorted

set of orthonormal components ensures that by selecting the

first components we get the most relevant ones in terms of

correlation.

However, if the resulting transformed data matrix Û is

not perfectly unitary, then some degradation in the sorting of

the new orthonormal components will exist. In the estimation

procedure, this degradation effect is detected and solved by in-

troducing two thresholds in the coefficients extraction process.

These two thresholds are set for the purpose of detecting any

degradation and decide how many relevant or good coefficients

should be calculated, making the DPD estimation more robust

and less likely to drift.

• The first threshold, Eth1, is determined as a percentage δ1
of the energy (sum of squares) of the error to be estimated

e. The energy of the first coefficient is calculated and

compared to the threshold Eth1. If the first coefficient is

not good enough to estimate the error, the threshold is not

achieved. In this case, the updating process is stopped and

no more coefficients are calculated. This can be decided

relying on the fact that the coefficients are sorted. If the

first coefficient is good enough to estimate the error, then

the threshold is met and more coefficients are calculated

until the second threshold is reached.

• The second threshold Eth2 is determined as a percentage

δ2 of the energy of the error e. The energy of all

the calculated coefficients (sum of squares) is evaluated

and compared to the threshold Eth2. The PCA-DPLS

algorithm will continue estimating coefficients until the

threshold Eth2 is met.

The key advantage of the PCA-DPLS approach proposed

in this paper with respect to the DPLS approach (i.e., the

DOTM algorithm) presented in [24] is that the orthonormal

components of the transformed matrix
̂̂
U are sorted. Taking

advantage of this property, we can select the least number of

required coefficients to achieve the given thresholds (Eth1 and

Eth2). Whereas in the DPLS approach in [24], since the new

components are not properly sorted, it is necessary to estimate

more coefficients to reach the same threshold Eth2.

Taking into account the orthonormal property of the trans-

formed matrix
̂̂
U (i.e.,

̂̂
U

H ̂̂
U = I), the update of the

transformed DPD coefficients is simplified with respect to (10)

as

∆ ̂̂w = µ
̂̂
U

H

e (13)

Finally, the original ∆w can be found by applying the

corresponding anti-transformations

∆w = R∆ŵ = RP∆ ̂̂w (14)

To sum up, Fig. 3 schematically describes the proposed

PCA-DPLS approach for DPD estimation/adaptation.

B. Computational Complexity

In order to estimate the computational cost of the proposed

PCA-DPLS adaptation algorithm, we compare it to both the

QR decomposition using Givens rotation and the CCA. Both

approaches have a computational complexity of O(NM2) as

explained in [29], [30]. The order of magnitude of the com-

putational cost of the PLS reported in [29], [31] is O(NML),
where N is the number of samples, M is the number of basis

functions (and thus coefficients) in the forward path and L is

the number of PLS components that have been dynamically

selected (at every iteration of the DPD update) to carry out

the DPD coefficient’s update.

Despite the fact that the PCA transformation matrix is

calculated off-line only once, the computational complexity

of the PCA algorithm is analyzed in the following. The
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PCA algorithm comprises two main steps: (i) calculating the

covariance matrix, with computational cost O(NM2); and

(ii) generating the eigenvalue decomposition of the covariance

matrix, with computational cost O(M3). Thus, the total com-

putational cost of PCA is O(NM2 +M3) [32].

In addition, the proposed PCA-DPLS adaptation approach

requires applying two anti-transformations (as defined in (14)

or shown in the flowchart in Fig. 3), where the computational

cost of each of them is O(ML) and O(M2), respectively.

Hence, assuming that there is no computational complexity

associated to the calculation of the PCA transformation matrix

(since it is pre-calculated off-line only once), the compu-

tational complexity of the proposed PCA-DPLS algorithm

is approximately O(NML + M2 + ML). Consequently, if

L ≪ M , the proposed PCA-DPLS approach will introduce

significantly less computational complexity than the QR-LS

and the CCA techniques. This computational complexity trend

will be further analyzed in section IV. A comparison of our

PCA-DPLS adaptation algorithm with Matlab’s backslash (see

Fig. 7) in terms of tic-toc computational time will support

the idea that when L ≪ M , the PCA-DPLS can be more

computationally efficient than the QR-LS, since QR-LS always

computes M coefficients.

IV. EXPERIMENTAL TESTBENCH AND RESULTS

The dynamic DPD parameter update scheme using the PCA-

DPLS method has been experimentally evaluated considering

the complex waveform scenario and the test setup detailed in

[20]. Four 20-MHz bandwidth and 64-QAM modulated fast-

convolution filter bank multi-carrier (FC-FBCM) signals, each

with different sub-carrier group deactivation configurations,

have been carrier aggregated. The overall test signals feature

80 MHz bandwidth and around 13 dB PAPR. Considering a

DPD expansion factor by three, the DPD baseband waveform

length is of 737280 samples.

The Matlab-controlled digital linearization test bench is

shown in Fig. 4. For signal generation and data capture

we used commercial boards from Texas Instruments (TI)

(i.e., TI TSW1400EVM and TSW30H84EVM at Tx side

and TI ADC32RF45EVM and TSW14J56EVM at Rx side).

The device under test was a class-J PA based on the Cree

CGH35030F GaN HEMT operated at the RF frequency of

875 MHz and delivering 28 dBm of mean output power.

In order to prove the advantages of the proposed PCA-DPLS

approach for DPD coefficient estimation/adaptation, we have

compared it with the following techniques: the dynamic PLS

(DOTM algorithm) introduced in [24], the CCA and the QR-

LS. The comparison is established in terms of linearization

performance by evaluating the NMSE and the ACPR after

DPD linearization, the minimum number of required coeffi-

cients in the adaptation DPD subsystem to meet the linearity

specifications and the computational running time according

to Matlab’s tic-toc measurements.

The original basis functions were generated by using the

GMP behavioral model with 322 coefficients. By applying

the OMP feature selection algorithm, we cut the number of

required coefficients in the forward path down to 100. The

TABLE I
DPD PERFORMANCE COMPARISON.

Configuration No. of Coeff. NMSE ACPR EVM

80 MHz FC-FBMC (max/min) [dB] [dBc] [%]

No DPD - -18.6 -36.35 5.73

QR-LS 100/100 -40.39 -49.08 1.17

DPLS (DOTM) 100/1 -39.77 -49.27 1.19

CCA 1/1 -40.73 -49.34 1.16

PCA-DPLS 10/1 -40.35 -49.33 1.17

validity of the proposed PCA-DPLS method is universal, i.e.,

it does not depend on a specific PA. However, if we had used a

different PA, the basis functions in matrix U describing the PA

behavior under certain operating conditions (signal bandwidth,

level of PA saturation) would have changed.

Fig. 5 and Fig. 6 show the NMSE and ACPR evolution

when considering different adaptation methods and taking into

account different number of components (and thus coeffi-

cients) for the DPD estimation/update. All the DPD techniques

under comparison (i.e., the proposed PCA-DPLS, the DPLS

based on the DOTM algorithm, the CCA and the QR-LS)

converge to around -40 dB of NMSE after 5 iterations and

-48 dBc of ACPR after approximately 10 iterations (see

Table I). However, as shown in Fig. 5 and Fig. 6, whereas

the QR-LS needs a fixed amount of coefficients (up to 100

coefficients) for each iteration of the DPD update, both DPLS

(DOTM algorithm) and PCA-DPLS dynamically select the

minimum necessary components to reach the targeted linearity

levels. Finally, with the CCA technique, only 1 coefficient

at every DPD adaptation iteration was necessary to meet

the linearity specifications. As shown in Table I, the main

difference between PCA-DPLS and DPLS is that, by including

the PCA transformation, the dynamic selection of coefficients

with PCA-DPLS is more efficient (i.e., the same performance

is reached with less coefficients). Therefore, unlike in DPLS

where the algorithm dynamically selects among, for example,

100, 54, 27, 7 and 1 coefficient(s) depending on the iteration as

shown in Fig. 5 and Fig. 6, with PCA-DPLS, most of the times

only 1 coefficient is necessary and only when the transformed

matrix Û is not perfectly unitary, the algorithm selects more

coefficients (e.g., up to 10). Fig. 7 shows both the unlinearized

spectrum and the linearized spectrum when considering 100

coefficients in the DPD forward path and 1 coefficient in the

feedback path with PCA-DPLS adaptation.

As explained in Subsection III-A, after the PCA-DPLS

transformation, the new orthonormal components of the matrix
̂̂
U (and also the coefficients) appear sorted according to their

contribution to maximize the correlation factor between the

new components and the error signal e. This is the key

advantage of the proposed PCA-DPLS with respect to DPLS.

Fig. 8 depicts the magnitude of the DPD coefficients when

applying DPLS (Fig. 8-top) and PCA-DPLS (Fig. 8-bottom).

Although in both cases the general trend shows that the

magnitude of the coefficients decreases, in the case of PCA-

DPLS the sorting is more accurate, i.e., close to monotonically

decreasing, which allows avoiding the estimation of several
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Fig. 4. (a) Block diagram of the DPD linearization test bench used for experimental validation including a picture of the PA used; (b) Picture of the
overall Matlab-controlled digital linearization platform including the laboratory instrumentation used. ADC: analog-to-digital converter, CH: channel, DAC:
digital-to-analog converter, Vdd: drain-to-drain voltage, Vds: drain-to-source voltage, Vgs: gate-to-source voltage, IQ MOD: in-phase and quadrature-phase
modulator, LO: local oscillator. Adapted from [20].
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unnecessary coefficients in comparison to DPLS.

The advantage of the PCA-DPLS technique is also validated

in terms of the Matlab’s tic-toc processing time. Taking as a

reference the processing time (tic-toc) of Matlab’s backslash

operation (”\”) with 100 coefficients, Fig. 9 shows the relative

factors of the processing time when considering PCA-DPLS

using 1, 10 and 100 coefficients. It can be seen that, when

considering the same number of estimated coefficients (i.e.,

100 coefficients), the Matlab’s backslash operation is around

2 times faster than the proposed PCA-DPLS. However, the

proposed PCA-DPLS will significantly reduce the number of

computed coefficients in the DPD adaptation subsystem while

still achieving the same linearity levels than QR-LS. Therefore,

by significantly reducing the number of coefficients, for exam-

ple, down to 10 coefficients, the PCA-DPLS processing time is

only one third that of Matlab’s backslash operation. Moreover,
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in the case of using only 1 coefficient (which happens with

high probability since PCA-DPLS is equivalent to CCA when

no significant degradation occurs), the PCA-DPLS running

time is five times faster than Matlab’s backslash operation.

V. CONCLUSION

In this paper we proposed a new technique for dynamically

estimating and updating the DPD coefficients based on the

combination of the PCA transformation with the PLS ex-

traction of components. The proposed PCA-DPLS approach

significantly improves the model order reduction capabilities

of the DPLS technique (DOTM) proposed by the authors in

[24] and is equivalent to a CCA updating solution, which is

optimal in the sense of generating components with maximum

correlation. The PCA-DPLS method allows to update as many

coefficients as necessary for achieving the required linearity,

and to stop this update when it detects that the DPD basis is not

able to estimate and minimize the remaining nonlinear error.

This allows to reduce the computational cost and to overcome

ill-conditioning problems in comparison to other methods that

use a fixed number of coefficients when solving the required

LS estimation in the DPD adaptation loop. The proposed

dynamic adaptation technique has been tested and compared

in terms of linearization performance and computational cost

with the commonly used QR decomposition approach for

solving the LS problem. Experimental results show that the

proposed PCA-DPLS method drastically reduces the amount

of DPD coefficients required in the DPD adaptation subsystem

while maintaining the same linearization performance, which

ultimately impacts the computational cost and running time.
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[24] Q. A. Pham, D. López-Bueno, G. Montoro, and P. L. Gilabert, “Dynamic

selection and update of digital predistorter coefficients for power am-
plifier linearization,” in Proc. 2019 IEEE Topical Conf. on RF/Microw.

Power Amplifiers for Radio and Wireless Appl. (PAWR), Jan. 2019, pp.
1–4.

[25] D. R. Morgan, Z. Ma et al., “A Generalized Memory Polynomial Model
for Digital Predistortion of RF Power Amplifiers,” IEEE Trans. on Signal

Processing, vol. 54, no. 10, pp. 3852–3860, Oct. 2006.
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