
ORIGINAL ARTICLE

Dynamic selection approaches for multiple classifier systems

Paulo R. Cavalin • Robert Sabourin •

Ching Y. Suen

Received: 16 March 2011 / Accepted: 27 August 2011 / Published online: 17 September 2011

� Springer-Verlag London Limited 2011

Abstract In this paper we propose a new approach for

dynamic selection of ensembles of classifiers. Based on the

concept named multistage organizations, the main objec-

tive of which is to define a multi-layer fusion function

adapted to each recognition problem, we propose dynamic

multistage organization (DMO), which defines the best

multistage structure for each test sample. By extending Dos

Santos et al.’s approach, we propose two implementations

for DMO, namely DSAm and DSAc. While the former

considers a set of dynamic selection functions to generalize

a DMO structure, the latter considers contextual informa-

tion, represented by the output profiles computed from the

validation dataset, to conduct this task. The experimental

evaluation, considering both small and large datasets,

demonstrated that DSAc dominated DSAm on most prob-

lems, showing that the use of contextual information can

reach better performance than other existing methods. In

addition, the performance of DSAc can also be enhanced in

incremental learning. However, the most important obser-

vation, supported by additional experiments, is that

dynamic selection is generally preferred over static

approaches when the recognition problem presents a high

level of uncertainty.

Keywords Multiple classifier systems � Adaptive

system � Dynamic selection � Incremental learning �
Multistage organizations � Ensembles of classifiers

1 Introduction

Over the past decades, Multiple Classifier Systems have

emerged as a viable alternative to make pattern recognition

systems achieve lower and lower error rates. This kind of

system can be composed of either existing classifiers,

aiming at enhancing their individual performances, or

classifiers constructed by an automatic method, to which

we refer as ensembles of classifiers (EoCs). In both cases,

nonetheless, it is well-known that the set of classifiers must

contain members that are complementary and diverse

[1, 2], so that the combined classifiers outperform the best

member of the set.

The task of finding the aforementioned complementary

and diverse set of classifiers is not trivial. Actually, the

performance of the fusion function, which carries out the

combination of the decisions provided by the base classi-

fiers, may heavily depend on such a ‘‘good’’ set of classi-

fiers [3]. For example, it has been shown that the

performance of the majority voting function, which is a

widely used combination rule, significantly improves for

the case of negatively correlated classifiers [4, 5]. How-

ever, to construct an EoC with negatively correlated clas-

sifiers remains a very unlikely situation in real-world

classification problems, and their benefits remain out of

reach. If existing classifiers, to which we have no access to

P. R. Cavalin (&)

Universidade Federal do Tocantins (UFT), Quadra 109 Norte

Av. NS15 s/n Bl. II sala 21, 77001-090 Palmas, TO, Brazil

e-mail: cavalin@uft.edu.br

R. Sabourin

École de Technologie Supérieure (ETS), 1100 Notre-dame ouest,

Montréal, QC H3C-1K3, Canada

e-mail: robert.sabourin@etsmtl.ca

C. Y. Suen

Centre for Pattern, Recognition and Machine Intelligence

(CENPARMI), Concordia University, 1455 de Maisonneuve

Blvd West, Montréal, QC H3G-1M8, Canada

e-mail: suen@cse.concordia.ca

123

Neural Comput & Applic (2013) 22:673–688

DOI 10.1007/s00521-011-0737-9

change its parameters, are included in the pool, this task

may become even less evident.

One way to enhance the use of multiple classifiers, is to

define a fusion scheme that takes greater advantage of the

diversity presented by the base classifiers, even though

such a diversity is not so apparent at first. In other words,

we need to define a way to expand the limits of the com-

bination method, to better use the existing diversity of the

pool of classifiers. One interesting approach, named mul-

tistage organizations (MO), has been proposed in [5, 6] for

such an objective.

The main advantage of using MO relies on the ability to

construct a multistage structure, which represents the

fusion function, that is adapted to each recognition prob-

lem. Such an adaptation is achieved by defining the rela-

tionships between consecutive layers based on evidences

provided by the training data. Nevertheless, only a single

structure is created, in an ad-hoc fashion, for all the test

samples. Due to its static nature, the method might not be

able to handle all the difficulties presented by complex

recognition patterns, which supposedly has the same

drawback of static approaches to select classifiers.

To deal with those issues, we propose dynamic multi-

stage organizations (DMO), inspired by dynamic selection

of classifiers. The main idea consists of defining the mul-

tistage structure that best adapts to each test sample. In this

case, not only the fusion function adapts to each problem,

but also, to each test sample. Such a structure also takes

into account an automatic weighting approach, which

selects the best weight for each classifier output based on

the current test sample.

One approach that is closely related to the idea of DMO

is Dos Santos et al.’s (DSA) approach [7]. In this case, one

EoC is dynamically selected, from a pool of EoCs, by

means of evaluating only the outputs yielded by the

members of each ensemble. If we can, for example, select

more than one ensemble at a time, we can better generalize

the DMO concept, by implementing a two-stage DMO

structure. Given these standpoints, we propose two original

frameworks based on DSA.

The first framework, named DSAm, consists of validating

the DMO concept, in which we exploit the use of a set of

dynamic selection functions to create a DMO structure. In

this case, each function performs the selection of an EoC.

Note that the main advantage of this method lies on its

simplicity. In the second framework, namely DSAc, we use

contextual information to find the best DMO structure based

on problem-related knowledge. The evidences produced by

the validation set are taken into account in this case, whereas

the structure is defined by considering the most similar val-

idation samples using case-based reasoning. The architec-

ture of DSAc is not only easily adaptable to different

problems, but also is incremental-learning ready.

This work aims at accomplishing two main objectives

during the experimental evaluation. The first objective is to

evaluate both DSAc and DSAm against static methods, to

observe whether the proposed DMO concept can result in

better performance or not. In addition, we aim at evaluating

the conditions under which dynamic selection might out-

perform static selection. Given that in the literature

dynamic selection methods are generally compared to

static methods for recognizing a given problem, in a single

static condition in terms of recognition problem, the goal of

these experiments is to provide more insights related to

which conditions a dynamic selection approach might be

more preferable than a static one. The NIST-digits database

allows us to simulate these different conditions, as

explained later.

The remainder of this paper is organized as follows. In

Sect. 2, we describe static and dynamic selections, pro-

viding more details about Dos Santos et al.’s approach, to

support the content of the subsequent sections. In Sect. 3

we describe the proposed DMO concept with greater detail.

Both DSAc and DSAm are described in Sect. 4, and in Sect.

5, we present the experimental protocol and the results that

were obtained. Finally, in Sect. 6, we present conclusions

and point out the future work.

2 Background theory

In this section, we present an overview of dynamic selec-

tion methods (DS), in which we also describe Dos Santos

et al.’s approach (DSA) in detail.

2.1 Dynamic selection (DS)

Suppose a multiple classifier system is composed of a pool

of base classifiers, to which we refer as C. The goal of

dynamic selection is to find a subset of classifiers

C0i, where C0i � C; which is the best one, by considering

all local criteria, to classify the test sample xi,test. Note that,

in static selection, a single subset C0, where C0 � C; is

globally selected to recognize all test samples.

In the literature, dynamic selection is divided into

dynamic selection of classifiers (DSC), where only a single

classifier is selected for each test sample [8–10], and

dynamic selection of ensembles of classifiers (DSEoC),

where an EoC is selected for each test sample [7, 11, 12].

Usually, the main goal of the systems for both DSC and

DSEoC is to find the best subset of classifiers C0i to classify

xi,test. This best set is generally associated with the highest

level of competence, which is computed by means of, for

instance, K nearest neighbors [8], clustering [13], and

multiple training datasets [14]. In order to compute the

level of competence by using one of these methods, we

674 Neural Comput & Applic (2013) 22:673–688

123

must deal with the following issues: a robust feature set

must be defined for a desirable reliability, which is not

trivial; these approaches are very expensive in terms of

computational complexity; and it is not possible to use

some types of base classifiers, such as human experts or

HMMs, since they do not use feature vectors to conduct the

classification task. The KNORA algorithm [12], however,

is an example of an approach that tries to overcome some

of these issues. The only information this method requires

from the base classifiers is whether or not they correctly

classify a given validation sample. Nonetheless, KNORA

also depends on a very robust feature set to compute

similarity between validation samples and the test sample.

A more general approach, though, is Dos Santos et al.’s,

which dynamically selects EoCs, whose levels of compe-

tence are computed by using only the outputs of their

members, based on the extent of consensus. This property

makes it a very general approach in terms of base classifier

and feature set. However, many sources of knowledge

embedded in the structure of DSA have not been exploited

yet, for instance, the outputs produced by the base classi-

fiers. Thus, we believe the performance of this method can

be improved, resulting in an approach that is both robust

and general at the same time. For the sake of completeness,

in the remainder of this section we present this method in

greater detail.

2.2 Dos Santos et al.’s approach (DSA)

The overall architecture of DSA is depicted in Fig. 1. The

main objective of this method is to dynamically find the

best EoC, whose members are a subset of C ¼ fc1; c2; . . .;

cNg; to recognize the test sample xi,test. This task is per-

formed by considering only the recognition outputs Oi ¼
foi;1; . . .; oi;Ng computed from C. Each output corresponds

to a class from the set X ¼ fx1; . . .;xMg:
DSA is divided into two phases: the design phase and

the operational phase.

During the design phase, which is performed off-line, it

creates the architecture that supports the dynamic selection

of EoCs. In other words, the pool of EoCs C�
0 ¼

fC01; . . .;C0Wg where C0j � C; 1 � j � W ; is created during

this phase. Given that C*0 is a subset of all possible EoCs

C*, the main objective is to reduce the complexity for the

operational phase since |C*| is much larger than |C*0| and

the time needed to find the best EoCs in considering C*

would be impractical in most applications. The pool C*0 is

generated by a search algorithm, which is a genetic algo-

rithm in this work. Each individual is represented by a

binary vector of N positions, where each bit represents

whether or not a classifier is selected as a member of an

EoC. The fitness function, which has to be minimized, uses

the error rate on the optimization set Opt, by applying the

majority voting method on the EoCs assigned by each

individual. In order to avoid overfitting, each individual is

also evaluated on the validation set Val, and the best

solutions are saved into an archive whose size is W. The

archive is then used as C*0.

Throughout the operational phase, the dynamic selection

of the best EoC C00i is performed, which consists of a

member of the pool of EoCs C*0, to recognize the test

sample xi,test. After the outputs Oi of the set of base clas-

sifiers C are computed, we check which member of the

pool of EoCs C*0 is best to recognize xi,test. For each EoC,

we apply the dynamic selection function k to evaluate

whether it is the best ensemble or not. The best EoC is then

stored in C00i, the dynamically selected EoC. Finally, the

ensemble that was dynamically selected is used to compute

the class with the highest number of votes, which is the

final decision di.

Note that k can be related to one of the five functions

described in Sect. 4.1.1. In this work, k is computed by

taking into account the extent of consensus, as defined in

(2) [7].

3 Dynamic multistage organizations (DMO)

The main inspiration for dynamic multistage organiza-

tions is multistage organizations (MO). MO consists of

structuring classifiers into relevant multistage layers. The

outputs of the classifiers are reorganized into subsequent

levels, and these outputs are re-evaluated at each level.

By structuring classifiers in multi-steps, the main premise

is that the influence of individual errors on the final error

of the combined systems can be reduced, since the out-

puts are transformed to another space corresponding to

the fusion of some selected classifiers. Hence, given the

fact that both selection and fusion are conducted at the

same time, the diversity among the classifiers is better

exploited, and the limits of majority voting error are

widened.

The main advantage of MO is that the whole structure

can be defined for a given problem. For example, in [5] a

genetic algorithm is used to optimize the MO structure

given problem-related training data. Nonetheless, a single

structure is defined for all test samples, which, as a con-

sequence, might not cover the different difficulties pre-

sented by all test samples in a complex recognition

problem. To deal with this issue, we propose DMO,

inspired by dynamic selection of classifiers.

DMO basically consists of defining the best multistage

structure for each test sample. In this case, the relationships

between the outputs are dynamically defined, according to

the current test sample xi,test. It also takes into account a

Neural Comput & Applic (2013) 22:673–688 675

123

dynamic weighting approach for further improvements.

Note that, instead of using the same structure to recognize

all test samples, which might be suboptimal, we define the

structure that better models the relationships among the

base classifiers, according to the information provided by

xi,test. By doing so, we may enhance the overall perfor-

mance of the system not only by using a multi-stage

approach, but also by using a dynamic approach that better

fits the difficulties presented by each test sample.

In order to illustrate DMO, we use a synthetic recog-

nition example with five binary classifiers. In Fig. 2a, we

present a test sample, whose correct label is 1, being rec-

ognized by MO. Suppose this MO structure has been

considered optimal during the design phase. We can see,

though, that this structure does not correctly recognize this

test sample. However, as shown in Fig. 2b, by using a

DMO approach, we might be able to define a MO structure

specifically for this test sample, which can correctly com-

pute the correct class. In this case, given that an EoC that

provides the correct answer is selected twice (i.e. it has a

heavier weight) to compose the final layer, the correct

answer is successfully computed.

One existing method that partially implements the DMO

concept is Dos Santos et al.’s approach (see Sect. 2.2), as

depicted in Fig. 2c. In this case, one EoC is dynamically

selected, from a pool of EoCs, by means of evaluating only

the outputs yielded by the members of each ensemble. If

we can, for example, select more than one EoC at a time,

we can better generalize the DMO concept, by imple-

menting a two-stage DMO structure. For this reason, we

extend the architecture of DSA to implement DMO.

4 Extending Dos Santos et al.’s approach to implement

DMO

We propose two methods to extend Dos Santos et al.’s

approach to implement a dynamic multistage organization.

These methods, named DSAm and DSAc respectively, are

described in the following sections.

4.1 DSAm: introducing DMO and high-level decision

making

The first framework consists of adding two main extensions

to DSA. We refer to this framework as DSAm, since the use

of multiple dynamic selection functions has enabled the

implementation of the first extension.

The first extension consists of characterizing the main

DSA structure as dynamic multistage organizations.

Instead of selecting a single EoC, as in DSA, we now have

to select a set of EoCs. The main idea is to compose the

second layer of a DMO structure by using this set of EoCs.

To achieve this task, we adapt some components of the

operational phase. To recognize xi,test we select the set of

EoCs C�00i ¼ fC00i;1; . . .;C00iUg; as presented in Fig. 3.

Algorithm 1 describes each step of the proposed method.

Once the outputs of the base classifiers Oi are computed in

step 2, we evaluate each EoC individually. By considering

the set of functions K ¼ fk1; . . .; kUg; we evaluate each

member of C*0. The best EoCs, according to K; form the set

of dynamically selected EoCs Ci
*00. Note that

|Ci
*00| = U, since each kk selects an EoC, i.e. Ci,k

00. It is also

worth noting that an EoC may be selected more than once,

Fig. 1 Dos Santos et al.’s

approach (DSA). The pool of

classifiers is organized into

another pool of EoCs during the

design phase. During the

operational phase, the EoC,

which is dynamically selected

by k, produces the final decision

676 Neural Comput & Applic (2013) 22:673–688

123

which results in the automatic weighting approach dem-

onstrated in Fig. 2b. In this case all the functions described

in Sect. 4.1.1 are used to compose K; thus K ¼
fk1; k2; k3; k4; k5g and jKj ¼ 5: In the example presented in

Fig. 2b, in contrast, we consider jKj ¼ 3:

After Ci
*00, the set of dynamically selected EoCs, is

defined, the outputs of these EoCs O00i ¼ fo00i;1; . . .; o00i;Ug are

computed (step 16 of Algorithm 1). These outputs repre-

sent the majority voting class computed from each member

in Ci
*00. Then, O00i is submitted to the switch module. The

proposed switch mechanism represents the second exten-

sion to DSA. This mechanism, which is represented by

steps 18–22 in Algorithm 1, is explained in detail in the

following paragraphs.

Despite the expected improvements that a dynamic

multistage structure can bring to DSA, we have no guar-

antee that this complex structure is really better than the

pool of base classifiers. In some cases, for example, the

dynamically selected EoCs, i.e. Ci
*00, might provide low-

confidence results, yielding a tie or the answers below

some acceptable confidence level. Note that it is important

to detect these cases to avoid random decisions, and select

a better source of knowledge, that may be the base clas-

sifiers. For this reason, we propose a switch mechanism.

Fig. 2 a The sequence of stages

processed by multistage

organizations (MO), for an

example with five classifiers

with binary outputs. In this case,

each member of layer 2 always

provides one vote for the final

decision. b The same example

with dynamic multistage

organization (DMO), whereas a

member from layer 2 may

provide none, one, or more than

one vote. c The same example

using Dos Santos et al.’s

approach (DSA), where only a

single member of layer 2 gives a

vote. Class 1 is the right output

in this example

Fig. 3 An overview of the

DSAm approach. This method

uses the set of dynamic

selection functions K to

dynamically select a set of

EoCs, which results in a two-

layer DMO structure

Neural Comput & Applic (2013) 22:673–688 677

123

Here is the main idea of the switch. First, we employ the

concept of margin [15] (see 1, where v1i and v2i are,

respectively, the most voted and the second most voted

classes for xi,test) to identify whether or not the answers

provided by Ci
*00 are confident enough, as shown in step 18

of Algorithm 1. When the margin mi computed by the

outputs Ci
*00 is above the threshold h, e.g. mi [h, we

consider that the dynamically selected EoCs are reliable

enough and simply use the most voted class in considering

O00i as the final decision di (step 19). In contrast, when

mi B h, we switch to the pool of base classifiers and use

Oi, i.e. the outputs of C, to compute the most voted class

(step 21). This most voted class is used as the final decision

di. Note that one advantage of the switch mechanism is that

instead of relying on random guess, since in the case of a

tie we would have to randomly pick one class as the final

decision, we use another source of knowledge that is

embedded in the architecture of the system to compute

such a decision.

mi ¼ v1i � v2i ð1Þ

In the next section, we describe the dynamic selection

functions that are used in step 6 of Algorithm 1 to compute

the corresponding score of each kk.

4.1.1 Consensus-based dynamic selection functions

The five functions involved in this work, are computed by

taking into account the number of votes for each class in X;
provided by each candidate C0i. We aimed at using only

functions which can compute the level of competence of

each EoC based on the votes of the base classifiers. One

reason is to avoid the complexity of functions that compute

regions of competence based on evaluating distances

between xi,test and prototypes in the feature space, as in

[8, 11]. Another reason is to enable this approach to deal

with any category of base classifier that can output votes.

In this section we use the following notation: vk,j,i is the

number of votes for class xk provided by C0j given the test

sample xi,test, pj is the global performance of C0j, and pj,k is

the performance of C0j for class xk, both measured on the

validation set Val; mvj,i represents the majority voting class

provided by C0j given the sample xi,test, e.g. mvj,i = argmax

vk,j,i V k. The cardinality of C0j is represented by |C0j|.

4.1.1.1 k1: ambiguity-guided dynamic selection (ADS)

This function is presented in [7]. It selects the solution

whose outputs produce the lowest ambiguity, represented

by the number of classifiers in disagreement with the

majority voting class.

The ambiguity cj,i, given C0j and the test sample

xi,test, can be computed by the minimization of the

following equation:

cj;i ¼
Pk

1 vk;j;i8k 6¼ mvj;i

jC0jj
ð2Þ

4.1.1.2 k2: margin-based dynamic selection (MDS) This

function selects the solution with the highest margin [7].

The margin represents the difference between the majority

voting and the second highest number of votes. The main

idea is to select the solution that produces the largest dif-

ference in number of votes between the highest consensus

and the second highest.

The maximization of the following equation, given C0j
and the sample xi,test, allows us to dynamically select the

most competent candidate by using the margin lj,i:

lj;i ¼
vk;j;i � maxl6¼kvl;j;i

jC0jj
; where k ¼ mvj;i ð3Þ

4.1.1.3 k3: class-strength dynamic selection (CSDS) This

function weighs the selection of the best solution [7]. In

this case, the margin, as described in (3), is multiplied by

pj,k. The main idea is to select the candidate that provides

the best trade-off between the margin and the performance

for recognizing the class with the highest number of votes.

In considering the margin as lj,i and the class perfor-

mance as pj,k, the maximization of the following equation

Algorithm 1 DSAm. best_score(k) and score(k)j,i represent tempo-

rary variables to compute the best EoC, for each of the five functions

presented in Sect. 4.1.1

1: for each data point xi,test on Test do

2: Compute Oi ¼ fo1; . . .; oNg by considering C ¼ fc1; . . .; cNg
3: Initialize best_score(k), 8 kk in K

4: for each C0 j in C*0 do

5: for each kk in K do

6: Compute score(k)j,i by considering kk.

7: if score(k)j,i is better than best_score(k) then

8: C0 0i,k = C0j

9: best_score(k) = score(k)j,i

10: end if

11: end for

12: end for

13: for each kk in K do

14: o0 0i,k = most voted class from C0 0i,k

15: end for

16: Compute mi from O00i ¼ fo00 i;1; . . .; o00i;Ug # see (1)

17: # Switch mechanism

18: if mi [h then

19: di = most voted class from O0 0i

20: else

21: di = most voted class from C

22: end if

23: end for

678 Neural Comput & Applic (2013) 22:673–688

123

leads us to find the most competent C0j for xi,test by using

CSDS:

Hj;i ¼ lj;i � pj;k; where k ¼ mvj;i ð4Þ

4.1.1.4 k4: Pair of votes dynamic selection (PVDS) We

propose a new function aiming at selecting EoCs that

concentrate their decisions on only two classes. In this

case, both values for margin and consensus might be very

low, which is counter-intuitive according to other DSFs

such as ADS and MDS. However, we suppose that these

EoCs are likely to produce less random guesses and wrong

decisions, since they concentrate their decisions on reduced

boundaries, e.g. only two classes.

In order to implement this idea, we simply sum the

number of votes for the top-two classes, and maximize this

value. This is represented by gj,i. Given C0j and the sample

xi,test, gj,i can be computed by using the following equation:

gj;i ¼
vk;j;i þ maxl 6¼kvl;j;i

jC0jj
; where k ¼ mvj;i ð5Þ

4.1.1.5 k5: global-strength dynamic selection (GSDS)

This function is a modification of CSDS. In this case, we

consider the global performance pj of C0j to weigh the value

provided by the margin. The main supposition is that the

global performance is more robust than the performance to

recognize a specific class to indicate the most competent

solution.

Given pj, C0j, and xi,test, this function can be computed

by maximizing the following equation:

ij;i ¼ lj;i � pj ð6Þ

In the next section, we present the second method

proposed in this work, whose main goal is to replace these

dynamic selection functions by a context-based approach.

4.2 DSAc: enhancing dynamic selection by using

contextual information

Both DSA and DSAm dynamically select EoCs by con-

sidering dynamic selection functions based on the extent of

consensus. Despite that the extent of consensus is a well

studied concept in the literature [15], only the outputs of

the most voted and the second most voted classes are used

to select the ensemble. However, the information related to

the other classes is wasted, even though such information

could help this task. In order to overcome this drawback,

we propose DSAc, which is depicted in Fig. 4.

DSAc is inspired by both decision templates [16] and the

KNORA algorithm [12]. The main objective is to use the

validation database, transformed into output profiles, to

point out which EoCs are the most competent to recognize

the test sample xi,test. An output profile is computed by

transformation T in (7), where xi 2 <D; ~xi 2 Z
Nþ; and N is

the size of the pool of base classifiers C. Given that we

know which EoC correctly recognizes each validation

sample, a DMO structure is defined by computing which

validation samples are the ones most similar to the test

samples in considering the output profiles, and composing

the dynamically selected set of EoCs with the EoCs that

correctly classify these validation samples.

T : xi) ~xi; ð7Þ

In greater detail, this approach works as follows.

Consider the pool of EoCs C*0, generated during the

design phase. For each test sample xi,test, we compute the

best set of EoCs C*00

i, composed of members from C*0. Each

EoC from C*0 may appear several times in C*00

i, resulting in

an automatic weighting approach. This task is achieved by

considering the function f; which is depicted in Fig. 5.

Fig. 4 An overview of the

DSAc approach. This method

uses the knowledge provided by

Val (converted into the set of

output profiles Val0)

Neural Comput & Applic (2013) 22:673–688 679

123

Algorithm 2 describes this method in detail. The first

few steps represent the function f: First, in step 3 we apply

T on xi,test, resulting in ~xi;test: Next, as presented in step 4,

we compare ~xi;test to each output profile in Val0; which is a

database containing the output profiles of all validation

samples in Val0; ~xj;val 8xj;val 2 Val; computed in step 1. We

compare these samples in terms of similarity, and save the

degree of similarity between ~xi;test and ~xj;val in the variable

di,j. Note that we use the similarity measure presented

in (8) to compute di,j. The K most similar output profiles

~xj;val; e.g. the validation samples related to the highest

values of di,j, are stored in Wi: Next, as shown in steps 7 to

11, for each sample in Wi and each member of the pool of

EoCs C*0, we compute if the EoC provides the correct

recognition result for this sample. In the case of a positive

answer, this EoC is included in C*00

i, worth noting that an

EoC appears in C*00

i as many times as the number of

samples that it correctly recognizes. Finally, Ci
* is sub-

mitted to the switch mechanism DSAc.

Steps 15–19 in Algorithm 2 represent the switch module

in Fig. 4, which corresponds to the previously mentioned

switch mechanism. Similar to DSAm, it is computeed

whether the margin mi, in considering the dynamically

selected EoCs Ci
*, is above the threshold h or not. If

mi [h, then we use the most voted class indicated by Ci
*00

(step 16). Otherwise, we use the label of the most similar

validation sample from Wi (step 18). The main goal of this

scheme is to use contextual information also in the switch

mechanism to avoid random decisions.

In order to compute the similarity of output profiles to

perform step 4 in Algorithm 2, we use the template

matching measure. In considering two output profiles, this

measure computes how many classifiers will provide

exactly the same output. We can implement this measure

by maximizing (8), which depends on (9).

di;j ¼
PN

k¼1 ai;j;k

N
ð8Þ

ai;j;k ¼
1; if ~xi;test;k ¼ ~xj;val;k

0; otherwise

�

ð9Þ

4.3 DSAc for incremental learning

One by-product of this approach is the ability to adapt to

knowledge acquired over time. Such a task is realized

by simply adding more data to Val, and computing the

corresponding output profiles for Val0. In this case, we can

conduct incremental learning without the need to change

the parameters the base classifiers. As a consequence, this

system can be used with virtually any type of base

classifier.

The computation time of the operational phase of

DSAc, however, depends heavily on the size of Val. Also,

the application of this approach in an incremental scenario

Fig. 5 DSF f: For each test

sample, we find K validation

samples with the most similar

output profiles, to form the set

wi. The EoCs that correctly

classify the validation samples

in Wi are used to compose the

set C*0’, which is then used to

compute the final decision of

DSAc

Algorithm 2 DSAc

1: Compute Val0 using transformation T on all samples in Val

2: for each data point xi,test in Test do

3: Compute Oi ¼ fo1; . . .; oNg by considering C ¼
fc1; . . .; cNg; and use transformation T

to compute ~xi;test

4: Find the K ~xj;val most similar to ~xi;test and put into Wi

5: C�
00

i ¼ ;
6: for each ~xj;val in Wi do

7: for each C0k in C*0 do

8: if C0k correctly recognizes xj,val then

9: Insert C0k into Ci
* (re-insert another instance if C0k is

already in the pool)

10: end if

11: end for

12: end for

13: Compute mi from O0 0i

14: # Switch mechanism

15: if mi [h then

16: di = most voted class from O0 0i

17: else

18: di = the label of the most similar ~xj;val from Wi

19: end if

20: end for

680 Neural Comput & Applic (2013) 22:673–688

123

can slow down very significantly the operational phase

since the larger the size of Val, the slower is the recogni-

tion module. Nevertheless, if we control the inclusion of

new samples in Val by only injecting those that provide

really useful information, we might reduce very signifi-

cantly the increase of complexity resulting from incre-

mental learning. For this reason, we present a control

mechanism to avoid continuously appending new samples

to Val during incremental learning. This mechanism works

as follows.

The control mechanism selects samples, to compose

Val, only when they are below a threshold #; in consid-

ering the margin of the base classifiers, e.g. mi\#: Note

that mi is defined in Eq. 1. In this case, we suppose that

only the samples that possess uncommon output profiles

are appended to Val, since the contrary is likely to result in

the addition of redundant samples. As a consequence, Val

will only acquire new samples if uncommon samples are

observed.

5 Experiments

In this section we present a series of experiments with the

following objectives. First, the main goal is to compare the

performance of the proposed approaches, i.e. DSAm and

DSAc, against existing methods. By comparing them

against DSA, which provides the baseline architecture for

the proposed methods, we aim at observing the impact of

the proposed enhancements. By conducting the same

comparisons against state-of-the-art static methods, on the

other hand, we can observe the advantages of dynamic

methods over static ones.

The aforementioned static methods are the followings:

• All features: the original classifier with full represen-

tation space (all original features);

• Best from C: the best base classifier from C;

• MV all C: fusion of all base classifiers in C by majority

voting (MV);

• DT all C: fusion of all base classifiers in C using

decision templates (DT), by considering template

matching. The decision templates are computed by

using Val0.
• Best from C*0: the best EoC from C*0;

All methods are evaluated using seven datasets, divided

into two large and five small ones. The small datasets

represent problems with a different number of features,

generally with a small amount of samples. The datasets

considered as small are: the DNA and Satimage datasets

provided by Project Stalog on http://www.niaad.liacc.up.

pt/old/stalog; Feltwell dataset, which is a multisensor

remote-sensing dataset [17]; Ship, which is composed of

forward-looking infra-red (FLIR) ship images [18]; and

Texture, available in the UCI Machine Learning Reposi-

tory. These databases, due to their sizes, are divided into

ten folds, each time seven folds are used for training, one

for optimization, one for validation, and the other one for

testing. This process is repeated ten times for each repli-

cation, whereas each time a different set of samples was

used.

The large datasets represent two handwriting recogni-

tion problems, e.g. the recognition of isolated digits and

uppercase letters, extracted from the NIST-SD19 database.

Two different test sets are used to evaluate digit recogni-

tion: NIST-digits-test1 and NIST-digits-test2. For both

digits and letters, the original feature set is composed of

132 features, extracted from concavities and contours [19].

Table 1 presents a detailed description of each database.

Given the large amount of training samples available in

the NIST-digits database (in addition to the training sam-

ples described in Table 1, there are 185,000 additional

training samples), and the use of a well studied feature

set, we can reduce the size of the training set to increase

the level of uncertainty of the recognition problem, and

Table 1 Experimental setup

Problem NC Train Opt Val Test NF NE VM

DNA 3 2,232 318 318 318 180 45 KF

Feltwell 5 7,662 1,094 1,094 1,094 15 8 KF

Satimage 6 4,506 643 643 643 36 18 KF

Ship 8 1,780 255 255 255 11 6 KF

Texture 11 3,850 550 550 550 40 20 KF

Digits 10 5,000 10,000 10,000 t1 60,089 132 32 HO

t2 58,646

Letters 26 43,160 3,980 7,960 12,092 132 32 HO

NC number of classes; Train, Opt, Val, and Test: number of samples in these respective sets; NF number of features, NE number of features in

the ensemble, after applying the RSS method, VM validation method, KF k-fold validation, HO hold-out validation. Each dataset of the methods

using KF had ten different re-samplings, with no overlapping among the sets

Neural Comput & Applic (2013) 22:673–688 681

123

http://www.niaad.liacc.up.pt/old/stalog
http://www.niaad.liacc.up.pt/old/stalog

simulate different conditions of uncertainty (or confusion,

which is a term used interchangeably with uncertainty

hereafter). Consequently, this database does not only allow

for simulating an incremental learning scenario, but also

for evaluating how an approach can behave at different

degrees of confusion. For this reason, in this section, we

also aim at answering the following questions:

1. How can DSAc behave in an incremental learning

scenario, by just appending new samples to Val?

2. How dynamic selection, represented by DSAc, per-

forms against static selection when the size of Val

ranges from small (high level of uncertainty) to high

(low level of uncertainty)?

For all experiments, the following parameters were

considered. For each dataset, 100 base classifiers, with a

pre-defined number of features, are generated from the

baseline feature set, based on the random subspaces (RSS)

ensemble generation method [20]. The base classifiers can

be considered weak classifiers in two aspects. First, the two

different types of classifiers, e.g. k-nearest neighbors

classifiers with k = 1 (1NN), and C4.5 decision tree

(DTree) classifiers, can be considered very weak for many

problems. Second, the reduced number of features used by

the RSS method (see Table 1 for the number of features

used for each problem) greatly contributes to weaken the

performance of the classifiers.

To generate the pool of EoCs, a genetic algorithm (GA)

is used, in an off-line fashion, to find an archive with the 25

best solutions on Val, representing C*0, guided by the

optimization set Opt. The following parameters were used

in this work: population size: 128; number of genera-

tions: 1,000; probability of crossover: 0.8; probability of

mutation: 0.01; one-point crossover and bit-flip mutation

[7]. The experiments are replicated 30 times, where in each

replication the archive provided by GA is generally dif-

ferent. The results represent the mean error rates over the

30 replications. For each of the sets using k-fold validation,

each replication represents the mean over the ten re-sam-

plings of each dataset.

For the large datasets, we also evaluated the method

known as Bagging to generate the base classifiers. We used

the same scheme employed in [7], where 100 DTree

classifiers were generated by dividing the training set into

100 subsets of equal size, where the samples for each set

were randomly chosen, with no overlapping among the

sets. DTree is used as the base classifier given that Bagging

works better with unstable classifiers.

The results are statistically validated by the Kruskal-

Wallis nonparametric statistical test. We test the equality

among the mean values, using a confidence level of 95%.

Dunn-Sidak correction is applied to critical values.

5.1 Results and discussion

The results from the evaluation of small datasets are pre-

sented in Tables 2 and 3, for 1NN and DTrees, respec-

tively. Results from the evaluation of large datasets are

presented in Table 4. In all tables, we present only the error

rates of DSAc with K = 30. The impact of K will described

later.

For both DSAm and DSAc, h = 0, since this was the

best value after preliminary evaluations as shown in Fig. 6.

As demonstrated, the switch works very well as a tie-

breaking mechanism for both approaches. It is worth noting

that when we increase the value of h, the final error rates

Table 2 Error rates on small datasets using 1NN classifiers

Method Dna Felt Sat Ship Text

Static selection

Oracle C 0.03 (-) 0.67 (-) 0.36 (-) 0.28 (-) 0.04 (-)

All features 26.30 (-) 12.35 (-) 9.84 (-) 11.24 (-) 1.13 (-)

Best from C 23.10 (-) 9.46 (-) 8.95 (-) 10.26 (-) 0.62 (-)

MV all C 6.87 (-) 10.44 (-) 8.59 (-) 9.94 (-) 1.11 (-)

Best from C*0 9.14 (1.60) 9.37 (2.09) 8.19 (2.89) 9.41 (1.66) 0.71 (1.74)

DT C 8.53 (-) 14.76 (-) 8.97 (-) 10.03 (-) 4.56 (-)

Dynamic selection

Oracle C*0 1.12 (0.86) 6.06 (2.46) 3.98 (0.83) 3.92 (1.40) 0.40 (0.24)

DSA 10.47 (3.17) 10.76 (4.90) 9.17 (0.99) 11.21 (3.48) 1.03 (0.34)

*DSAm 5.57 (1.33) 9.35 (4.62) 7.61 (0.87) 8.80 (2.30) 0.93 (0.37)

*DSAc 5:46 (0.26) 8:93 (0.30) 7:42 (0.31) 8:10 (0.38) 0:56 (0.10)

Results in bold present the best approach among static MO, DSA, DT, and the proposed DSAm and DSAc, with K set to 30. Underlined results

represent the statistically-significant best method. Highlighted by * are the proposed approaches. Between parentheses is the standard deviation

of each approach (910-2)

682 Neural Comput & Applic (2013) 22:673–688

123

also increase. This fact suggests that by relying more on the

decisions provided by the main structure of either DSAm or

DSAc (note the higher the value of h, the more often the

switch is used), and only using the base classifiers when a

tie occurs, the final approach is more reliable.

The error rates resulting from the evaluation of small

databases show that both DSAm and DSAc are very

promising for problems presenting a high level of confu-

sion. The only database for which neither of the proposed

methods resulted in the lowest error rates was the Feltwell

database, using DTree as base classifiers. On all the other

databases, DSAc achieved the lowest recognition rates.

For the large databases, DSAc yielded the lowest error

rates on all databases. DSAm, in contrast, has performed

poorly compared to other static methods. Note that DSAc

uses the validation dataset to compute the DMO structure,

and given the larger amount of training samples compared

to the small datasets, we believe that this approach has

been able to take better advantage of the lower level of

uncertainty of large problems, so that it reaches the best

performance in this evaluation. Given the better perfor-

mance of DSAc over DSAm, hereafter, we pursue the

experimental evaluation by considering only the former for

the sake of simplicity.

Table 3 Error rates on small datasets using DTree classifiers

Method Dna Felt Sat Ship Text

Static selection

Oracle C 0.03 (-) 0.60 (-) 0.22 (-) 0.24 (-) 0.02 (-)

All features 6.85 (-) 16.81 (-) 4.17 (-) 10.92 (-) 7.56 (-)

Best from C 11.33 (-) 11.86 (-) 11.83 (-) 10.45 (-) 6.07 (-)

MV all C 5.05 (-) 11.86 (-) 8.64 (-) 6.80 (-) 2.56 (-)

Best from C*0 5.71 (1.30) 10:22 (2.11) 8.35 (1.01) 7.02 (1.59) 2.04 (2.60)

DT C 4.53 (-) 13.93 (-) 8.96 (-) 7.74 (-) 1.34 (-)

Dynamic selection

Oracle C*0 1.07 (0.92) 5.82 (3.94) 3.78 (0.78) 3.18 (1.76) 0.81 (0.24)

DSA 7.55 (2.47) 12.52 (5.28) 10.29 (2.16) 10.16 (4.38) 2.42 (0.82)

*DSAm 4.07 (1.07) 10.77 (4.82) 7.42 (0.76) 5.89 (1.82) 2.13 (0.78)

*DSAc 3:05 (0.34) 10.32 (0.41) 7:11 (0.30) 5:52 (0.45) 1:11 ð0:17Þ

Results in bold present the best approach among static MO, DSA, DT, and the proposed DSAm and DSAc, with K set to 30. Underlined results

represent the statistically-significant best method. Highlighted by * are the proposed approaches. Between parentheses is the standard deviation

of each approach (910-2)

Table 4 The same evaluations in error rates as in Table 2, but considering both 1NN and DTrees with large datasets

Classifier

method

1NN—RSS DTree—RSS DTree—Bagging

Digits Letters Digits Letters Digits Letters

Test1 Test2 Test1 Test2 Test1 Test2

Static selection

Oracle C 0.05 (-) 0.17 (-) 0.18 (-) 0.01 (-) 0.04 (-) 0.04 (-) 0.24 (-) 0.63 (-) 0.29 (-)

All features 6.66 (-) 9.76 (-) 7.82 (-) 11.07 (-) 18.20 (-) 13.50 (-) 6.66 (-) 9.76 (-) 7.82 (-)

Best from C 7.52 (-) 13.99 (-) 14.47 (-) 10.30 (-) 19.18 (-) 17.13 (-) 9.70 (-) 16.62 (-) 14.31 (-)

MV all C 3.72 (-) 8.10 (-) 6.60 (-) 2.92 (-) 6.67 (-) 6.06 (-) 5.65 (-) 10.99 (-) 7.63 (-)

Best from C*0 3.60 (1.95) 7.77 (2.78) 6.56 (2.59) 2.98 (2.23) 6.77 (1.05) 6.21 (2.79) 5.31 (0.06) 10.28 (0.03) 7.62 (0.02)

DT C 2.55 (-) 5.74 (-) 4.95 (-) 2.00 (-) 5.00 (-) 4.64 (-) 3.65 (-) 7.65 (-) 6.49 (-)

Dynamic selection

Oracle C*0 1.97 (0.14) 4.59 (0.37) 3.87 (2.10) 1.87 (1.01) 4.39 (2.08) 4.53 (1.57) 3.72 (0.04) 7.42 (0.02) 4.68 (0.01)

DSA 3.61 (0.28) 7.87 (0.41) 6.43 (0.69) 2.87 (0.24) 6.61 (0.54) 6.06 (0.64) 5.33 (0.05) 10.45 (0.06) 7.11 (0.03)

*DSAm 3.45 (0.22) 7.53 (0.40) 6.12 (0.66) 2.72 (0.42) 6.26 (0.76) 5.83 (0.61) 5.10 (0.08) 9.96 (0.05) 7.23 (0.04)

*DSAc 2.37 (0.14) 5.34(0.21) 4.62 (0.41) 1.76 (0.14) 4.36 (0.20) 4.20 (0.22) 2.98 (0.04) 6.17 (0.03) 5.58 (0.05)

The standard deviation in this case was multiplied by 10-3. In addition, we present the evaluation of DTree classifiers created by bagging

Neural Comput & Applic (2013) 22:673–688 683

123

In order to provide a broader overview of the perfor-

mance of DSAc, we show the impact of the value of K, in

a range between 1 and 30. Such an evaluation is pre-

sented in Figs. 7 and 8 for small problems, with 1NN and

DTrees, respectively. In Figs. 9 and 10, we present the

same evaluation in large problems, with 1NN and DTrees,

respectively. We observe that the best value for this

parameter is problem-dependent. Databases that generate

higher error rates, such as Feltwell, require high K values,

and databases with very low error rates, such as Texture,

require very low K values. Consequently, even though by

setting K = 30 DSAc is able to perform well, this value

could be adapted to either improve performance or reduce

complexity.

Even though the main goal of this paper was to improve

the performance of fusion functions, in Table 5 we present

a summary of the results presented by DSAc against the

best results reported in the literature for the same databases

evaluated in this work. This table can provide us an idea to

what level of performance a multiple classifier system,

using weak classifiers, can attain by using a very robust

combination approach.

In considering small databases, DSAc has been able to

outperform the best results thus far published in the liter-

ature, on all databases. It is worth noting that none of the

methods presented in Table 5 uses exactly the same

experimental protocol, so this comparison is not as accurate

as for large databases. However, the use of data from the

same database provides a good idea on the difference in

performance among the different methods.

For large databases, the error rates presented by DSAc

are slightly higher than the lowest error rates reported in

the literature. However, the best results so far have been

achieved by using strong classifiers, such as Support

Vector Machines (SVM) [22] and Multilayer Perceptron

Fig. 6 Evaluation of the parameter h for the switch mechanism

Fig. 7 Evaluation of DSAc on small datasets with 1NN classifiers,

K varying from 1 to 30

Fig. 8 Evaluation of DSAc on small datasets with DTree classifiers,

K varying from 1 to 10

Fig. 9 Evaluation of DSAc on large datasets with 1NN classifiers,

K varying from 1 to 5

684 Neural Comput & Applic (2013) 22:673–688

123

(MLP) Neural Networks [23], which generally deal very

well with large training sets. In this paper, we limited the

scope of the work to consider only weak classifiers and

small training datasets in order to better observe the

behavior of combination approach in conditions that might

generate a high level of confusion for the base classifiers.

The results from the literature, in contrast, might have dealt

with lower levels of confusion due to the much larger

amount of samples used for training.

As a consequence, the remainder of this section aims

at comparing the performance of DSAc against MLP and

SVM, which are state-of-the-art static approaches, at the

same conditions. First, we evaluate what level of per-

formance DSAc can reach if we incrementally learn the

information provided by the remaining training samples

in the NIST-digits database. Next, we retrain MLPs and

SVMs at different levels of uncertainty, which are

achieved by downsizing the NIST-digits database, and

compare their results against the ones produced by

DSAc.

5.1.1 Evaluation of DSAc in an incremental learning

scenario

In this section, we evaluate the impact of increasing the

size of Val to improve the overall performance of DSAc, by

simulating an incremental scenario. Such a simulation

consists of gradually adding new samples to Val, as pre-

viously discussed in Sect. 4.2. We take advantage of the

large set of digits available in the NIST SD19 database, by

increasing the size of Val from 10,000 to 180,000 samples.

Those are the remaining samples in the hsf_{1-3} series of

the database.

The results of these experiments are shown in Fig. 11,

considering both 1NN and DTrees with RSS, and both

NIST-digits-test1 and NIST-digits-test2. Note that these

evaluations do not only aim at evaluating the behavior of

the approach in the incremental scenario, but also aim at

comparing the final results against the literature, since the

best results thus far consider methods that used all samples

from this database. As a consequence, in the following

paragraphs we discuss the first topic, while the second topic

is discussed afterwards.

Generally, the impact of the size of Val is more signi-

ficant when the size of Val is relatively small, and it tends

to gradually converge with larger validation sets. Never-

theless, with any increase in Val we can observe some

improvement. This fact shows that the approach can

incrementally acquire knowledge by only increasing the

size of this set, so that it can be a generic approach for

incremental learning. This allows us to use a heterogeneous

pool of classifiers in the incremental learning process.

Figure 12 plots the results of the evaluation of different

values for # using the control mechanism described in Sect.

4.2. Compared to the performance of the system using all

180,000, we see that the control mechanism is able not only

to maintain the performance of the system, but also

to reduce the final error rates. With # ¼ 40; the final

error rates are reduced to about 1.1%. In addition, we

Fig. 10 Evaluation of DSAc on large datasets with DTree classifiers,

K varying from 1 to 5

Table 5 Error analysis, in

which we compare the results of

the proposed method DSAc with

the best results published in the

literature

The second column represents

the average over 30 replications

Database Proposed method Literature

Average (variance) Best result Method Result

DNA 3.05 (0.12) 2.88 EoC?DS [7] 4.59

Feltwell 8.85 (0.12) 8.72 EoC?DS [7] 11.50

Satimage 6.89 (0.11) 6.78 EoC?DS [7] 8.64

Ship 5.51 (0.27) 5.32 EoC [21] 5.68

Texture 0.56 (0.01) 0.52 EoC?DS [8] 0.66

NIST-digits-test1 1.76 (0.02) 1.08 Single classifier [22] 0.63

NIST-digits-test2 3.31 (0.04) 3.28 EoC?SS [23] 2.33

NIST-letters 3.89 (0.06) 3.87 SC [22] 3.18

Neural Comput & Applic (2013) 22:673–688 685

123

demonstrate in Fig. 13 this mechanism on the size of Val.

The best approach, represented by # ¼ 40; used only

25,948 samples in Val. Comparing with the use of all

180,000 samples, we can reach better results by using only

around 15% of this set and drastically reduce the search

space of DSAc for recognition.

The final results can be summarized as follows. With

1NN, the error rates have been reduced from about 2.55%

to about 1.78% on NIST-digits-test1, and from about 5.9%

to about 4.2% on NIST-digits-test2. With DTrees, the error

rates decreased from about 1.75% to about 1.1% on NIST-

digits-test1, and from about 4.6% to about 3.31% on NIST-

digits-test2. Note that on NIST-digits-test1, the best results

reported in the literature are around 0.63% [22], using 132

features, 195,000 samples for training, and MLP as clas-

sifier. In this work we could get very close (only 0.47%

below) to these results by using weak classifiers, trained

with only 10,000 samples, of which the range of individual

error rates is, for example with 1NN, between 15.92 and

7.53%. Even though in the end we have used the same

number of samples to get these results, we have shown that

our approach is able to improve weak classifiers to a level

which is comparable to the best classification methods in

the literature, without changing their parameters.

5.1.2 Evaluation of DSAc against MLP and SVM at varied

conditions

As demonstrated in the previous section, by using all the

training samples provided by NIST-digits, DSAc can attain

a level of performance that is close to state-of-the-art

classifiers such as MLP and SVM, consisting of static

approaches. However, the higher complexity of DSAc, in

both the design and operational phases, might be a barrier

for its application in the real world. For this reason, the

main goal of this section is to compare the proposed

method, which is a dynamic approach, against MLP and

SVM, which are static approaches, under various condi-

tions created by downsizing the NIST-digits database. The

idea is to observe under which condition dynamic selection

might be worth the higher complexity. As we previously

mentioned, such a downsizing allows for increasing the

level of uncertainty of the problem by simply reducing its

training set, since the empirical lower-bound of the NIST-

digits database is known.

By using a setup similar to that described in the previous

section, the training database was reduced to these sizes:

5,000, 10,000, 15,000, 20,000, and 25,000. However, for

Fig. 11 Incremental evaluation of DSAc, with K = 30, using vali-

dation set sizes from 10,000 to 180,000, on both NIST-digits-test1 and

NIST-digits-test2

Fig. 12 Incremental evaluation of DSAc (K = 30) with DTree

classifiers on NIST-digits-test1 using a control mechanism

Fig. 13 Size of the validation set for the evaluation presented in

Fig. 12

686 Neural Comput & Applic (2013) 22:673–688

123

each training set, we did 15 different resamplings so that

we could conduct 15 replications for each size of the

training set. The parameters for both SVM and MLP were

set to the same as reported in [24], which were found as the

best parameters for this database. Note that for DSAc we

conduct the incremental learning of Val. For MLP and

SVM, in contrast, batch learning is considered, since for

each training set size, we retrain the classifiers. In addition,

it is worth noting that Val and Opt are merged together to

define a single set of samples, which is used as hold-out

validation set by MLP and SVM.

The main results are presented in Fig. 14, for NIST-

digits-test1, and Fig. 15 NIST-digits-test2. The most

remarkable observation lies in the experiments using

only 5,000 samples for training. In this case, DSAc was

significantly superior to both MLP and SVM, showing

that the proposed approach can deal better with a high

level of uncertainty under these conditions. However,

this gap becomes narrower and narrower as we increase

the size of the training set, e.g. when we decrease the

level of confusion. As a result, the main observation

from these experiments is that dynamic selection, despite

generally presenting higher complexity than static

selection, may be the most recommended approach to

attain high performance when the level of confusion of

the recognition problem is high. When the level of

confusion is low, on the other hand, a static approach

may work very well without all the complexity brought

by dynamic selection.

6 Conclusion and future work

In this paper we first proposed dynamic multistage orga-

nizations to enhance classifier fusion. Based on Dos Santos

et al.’s approach (DSA), we first implemented DSAm to

validate these concepts by using multiple dynamic selec-

tion functions. Next, we extended DSAm to use the

knowledge provided by the output profiles of validation

samples to create DMO, resulting in DSAc.

Experiments conducted on both small and large dat-

abases have confirmed that the proposed DMO concept

looks really promising in improving the use of multiple

classifiers, since the proposed enhancements have been

effective in improving DSA. We also observed a significant

improvement in performance of DSAc over DSAm, due to

the use of contextual information. The use of simulated

incremental learning scenario showed that we can improve

the performance of DSAc by only increasing the size of the

validation set, without changing the parameters of the base

classifiers. Although other classification approaches such

as SVMs and MLPs can present better performances than

DSAc when large training sets are available, we demon-

strated that the proposed approach results in better per-

formance when one can use only small training databases,

e.g. when the level of confusion for recognition is high.

As future work, many directions can be followed. The

most important, in our opinion, is to better investigate the

observation that DSAc is better suited to problems pre-

senting a high level of uncertainty. We can evaluate, for

example, the current system on other recognition problems.

We can, as well, implement the system with other base

classifiers and different methods to generate the pool of

base classifiers, to evaluate whether the system maintains

the same behavior with a different baseline architecture or

Fig. 14 Evaluation of different sizes of the training set for NIST-

digits, using NIST-digits-test1. These experiments were replicated 15

times by resampling the training set each time (a single replication for

180,000 samples, which corresponds to the entire dataset). Note that

the experiments are grouped by approach, e.g. DSAc, MLP, and

SVM, respectively, and for each approach, we evaluated training sets

with 5,000, 10,000, 15,000, 20,000, 25,000, and 180,000 samples,

respectively

Fig. 15 The same evaluations as in Fig. 14, but using NIST-digits-
test2

Neural Comput & Applic (2013) 22:673–688 687

123

not. In addition, reducing the complexity of DSAc is a key

point to better justify its deployment in real-life systems. In

this work we simply performed a flat search on Val, but

other more time-efficient methods can be investigated, for

instance some ideas proposed to reduce the complexity of

1NN classifiers [25] to conduct the search for the most

similar samples.

Acknowledgments The authors would like to acknowledge the

CAPES-Brazil and NSERC-Canada for the financial support.

References

1. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation

methods: a survey and categorization. Inf Fusion 6(1):5–20

2. Dos Santos EM, Sabourin R, Maupin P (2006) Single and multi-

objective genetic algorithms for the selection of ensemble of

classifiers. In: Proceedings of international joint conference on

neural networks, 2006, Vancouver, Canada, pp 3070–3077

3. Shipp CA, Kuncheva LI (2002) Relationships between combi-

nation methods and measures of diversity in combining classifi-

ers. Inf Fusion 3(2):1351–48

4. Kuncheva LI, Whitaker CJ, Shipp C, Duin R (2003) Limits on the

majority vote accuracy in classifier fusion. Pattern Anal Appl

6(1):22–31

5. Ruta D, Gabrys B (2002) A theoretical analysis of the limits of

majority voting errors for multiple classifier systems. Pattern

Anal Appl 5:333–350

6. Ruta D, Gabrys B (2005) Classifier selection for majority voting.

Inf Fusion 1:63–81

7. Dos Santos EM, Sabourin R, Maupin P (2008) A dynamic

overproduce-and-choose strategy for the selection of classifier

ensembles. Pattern Recognit 41:2993–3009

8. Woods K, Kegelmeyer JWP, Bowyer K (1997) Combination of

multiple classifiers using local accuracy estimates. IEEE Trans

Pattern Anal Mach Intell 19(4):405–410

9. Giacinto G, Roli F (2001) Dynamic classifier selection based on

multiple classifier behaviour. Pattern Recognit 34:1879–1881

10. Zhu X, Wu X, Yang Y (2004) Dynamic classifier selection for

effective mining from noisy data streams. In: Proceedings of the

4th IEEE international conference on data mining, IEEE Com-

puter Society, Washington, DC, USA, 2004, pp 305–312

11. Soares RGF, Santana A, Canuto AMP, de Souto MCP (2006)

Using accuracy and diversity to select classifiers to build

ensembles. In: Proceedings of the 2006 international joint con-

ference on neural networks, Vancouver, Canada, 2006,

pp 1310–1316

12. Ko AH, Sabourin R, Britto J (2008) From dynamic classifier

selection to dynamic ensemble selection. Pattern Recognit

41(5):1718–1731

13. Kuncheva LI (2000) Cluster-and-selection model for classifier

combination. In: Proceedings of international conference on

knowledge based intelligent engineering systems and allied

technologies, Brighton, UK, 2000, pp 185–188

14. Singh S, Singh M (2005) A dynamic classifier selection and

combination approach to image region labelling. Signal Process

Image Commun 20(3):219–231

15. Hansen LK, Liisberg C, Salamon P (1997) The error-reject

tradeoff. Open Syst Inf Dyn 4(2):159–184

16. Kuncheva LI, Bezder JC, Duin RPW (2001) Decision templates

for multiple classifier fusion: an experimental comparison.

Pattern Recognit 34:299–314

17. Serpico SB, Bruzzone L, Roli F (1996) An experimental com-

parison of neural and statistical non-parametric algorithms for

supervised classification of remote-sensing images. Pattern

Recognit Lett 17(3):1331–1341

18. Park Y, Sklansky J (1990) Automated design of linear tree

classifiers. Pattern Recognit 23(12):1393–1412

19. Oliveira LES, Sabourin R, Bortolozzi F, Suen CY (2002) Auto-

matic recognition of handwritten numeral strings: a recognition

and verification strategy. IEEE Trans Pattern Anal Mach Intell

24(11):1438–1454

20. Ho T (1998) The random subspace method for construction

decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–

844

21. Rheaume F, Jousselme A-L, Grenier D, Bosse E, Valin P (2002)

New initial basic probability assignments for multiple classifiers.

In: Kadar I (eds) Society of photo-optical instrumentation engi-

neers (SPIE) conference series, vol 4729, pp 319–328

22. Milgram J, Cheriet M, Sabourin R (2006) One against one’’ or

‘‘One against all’’: which one is better for handwriting recogni-

tion with SVMs? In: Proceedings of 10th international workshop

on frontiers in handwriting recognition, La Baule, France, 2006

23. Radtke P (2006) Classification systems optimization with multi-

objective evolutionary algorithms, Ph.D. thesis, École de Tech-

nologie Supérieure (ETS), Montreal, Canada

24. Milgram J (2007) Contribution à l’intégration des machines à

vecteurs de support au sein de systèmes de reconnaissance de

formes: application à la lecture automatique de l’écriture

manuscrite (in french), Ph.D. thesis, École de Technologie

Supérieure

25. Cui B, Ooi BC, Su J, Tan K-L (2003) Contorting high dimen-

sional data for efficient main memory knn processing. In: Pro-

ceedings of the 2003 ACM SIGMOD international conference on

management of data, San Diego, USA, 2003, pp 479–490

688 Neural Comput & Applic (2013) 22:673–688

123

	Dynamic selection approaches for multiple classifier systems
	Abstract
	Introduction
	Background theory
	Dynamic selection (DS)
	Dos Santos et al.’s approach (DSA)

	Dynamic multistage organizations (DMO)
	Extending Dos Santos et al.’s approach to implement DMO
	DSAm: introducing DMO and high-level decision making
	Consensus-based dynamic selection functions
	 lambda 1: ambiguity-guided dynamic selection (ADS)
	 lambda 2: margin-based dynamic selection (MDS)
	 lambda 3: class-strength dynamic selection (CSDS)
	 lambda 4: Pair of votes dynamic selection (PVDS)
	 lambda 5: global-strength dynamic selection (GSDS)

	DSAc: enhancing dynamic selection by using contextual information
	DSAc for incremental learning

	Experiments
	Results and discussion
	Evaluation of DSAc in an incremental learning scenario
	Evaluation of DSAc against MLP and SVM at varied conditions

	Conclusion and future work
	Acknowledgments
	References

