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ABSTRACT

Much prior work has shown that the performance enabled by garba-
ge collection (GC) systems is highly dependent upon the behavior
of the application as well as on the available resources. That is,
no single GC enables the best performance for all programs and all
heap sizes. To address this limitation, we present the design, imple-
mentation, and empirical evaluation of a novel Java Virtual Machine
(JVM) extension that facilitates dynamic switching between a num-
ber of very different and popular garbage collectors. We also show
how to exploit this functionality using annotation-guided GC selec-
tion and evaluate the system using a large number of benchmarks.
In addition, we implement and evaluate a simple heuristic to in-
vestigate the efficacy of switching automatically. Our results show
that, on average, our annotation-guided system introduces less than
4% overhead and improves performance by 24% over the worst-
performing GC (across heap sizes) and by 7% over always using
the popular Generational/Mark-Sweep hybrid.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Experimentation, Algorithms

Keywords

Application-specific collection, dynamic selection, hot-swapping,
annotation, virtual machine, Java

1. INTRODUCTION

Garbage collection is a mechanism for automatic reclamation of
dynamically allocated memory. It simplifies the program devel-
opment cycle by eliminating the burden of explicit memory de-
allocation. However, garbage collection imposes a performance
overhead since it must identify and reuse memory that is no longer
accessible by the program, while the program is executing.
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The performance of heap allocation and collection techniques has
been the focus of much recent research [11, 12, 10, 18, 1, 14, 41,
5, 19]. The goal of most of this prior work has been to provide
general-purpose mechanisms that enable high-performance execu-
tion across all applications. However, other prior research [4, 16,
42, 36] has shown that the efficacy of a memory management sys-
tem (the allocator and the garbage collector) is dependent upon ap-
plication behavior and available resources. That is, no single collec-
tion system enables the best performance for all applications and all
heap sizes. Our empirical experimentation confirms these findings.
Over a wide-range of heap sizes and the 11 benchmarks studied, we
found that each of five different collectors enabled the best perfor-
mance at least once; this set of garbage collection systems includes
those that implement semispace copying, generational collection,
mark-sweep collection, and hybrids of these different systems. As
such, we believe that to achieve the best performance, the collection
and allocation algorithms used should be specific to both applica-
tion behavior and available resources.

Existing execution environments enable application- and heap-
specific garbage collection, through the use of different configura-
tions (via separate builds or command-line options) of the execu-
tion environment. However, such systems do not lend themselves
well to next-generation, high-performance server systems in which
a single execution environment executes continuously while multi-
ple applications and code components are uploaded by users [22,
17, 33]. For these systems, a single collector and allocator must be
used for a wide range of available heap sizes and applications, e.g.,
e-commerce, agent-based, distributed, collaborative, etc. As such,
it may not be possible to achieve high-performance in all cases and
selection of the wrong GC system may result in significant perfor-
mance degradation.

In this work, we present the design, implementation, and evalua-
tion of a dynamic GC switching system for JikesRVM, a performan-
ce-oriented, server-based, Java virtual machine [2] from the IBM
T.J. Watson Research Center. Our switching system facilitates the
use of the garbage collector and memory allocator that will enable
the best performance for the executing application and the underly-
ing resource availability. The system we present is extensible and
general; it can switch at any time during execution of a program be-
tween many different types of collectors, e.g., semi-space, copying-
mark-sweep, and many variants of generational collection.

To exploit this dynamic switching functionality, we also present
annotation-guided GC selection to enable application-specific garb-
age collection. With each Java program, we annotate the best-
performing GC for a range of heap sizes. Upon invocation, the JVM
switches to the GC system specified by the annotation given the cur-
rent maximum available heap size. We identify the best-performing
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Figure 1: Benchmark performance using different GC systems
and heap sizes in the JikesRVM. No single collector enables the
best performance for all programs and all heap sizes. The GC
systems that we used for these experiments are Semispace copy-
ing (SS), Mark-sweep (MS), Generational/Mark-sweep (GMS)
hybrid, Generational Semispace (GSS), and a non-generational
Semispace/Mark-sweep collector (CMS) (see Section 2.1 for de-
tails on these collectors). The y-axis is total time in seconds. For
SPECjbhb, the y-axis is the inverse of the throughput reported by
the benchmark; we report 108/throughput in operations/second
to maintain visual consistency with the other graphs. The x-axis
is heap size relative to the minimum in which the program can
execute. The benchmarks are from the SPECjbb, JOIden, and
SpecJVM98 suites.

GC system, off-line, via execution profiles from multiple inputs and
resource constraints. We then annotate the program with this in-
formation using a bytecode annotation system that we developed in
prior work [28]. Furthermore, we extend this technique using a sim-
ple heuristic to investigate the efficacy of switching automatically
using only on-line application and resource behavior.

To evaluate our system, we employed a number of different bench-
marks. We present results from this evaluation and compare the
overhead of our system (without switching) with that of a clean,
unmodified system for a wide range of garbage collection config-
urations. In addition, we present the efficacy of annotation-guided
GC selection and empirically evaluate automatic switching. Our
results indicate that annotation-guided GC selection imposes very
little overhead (3-4%) over using the best-performing GC system at
each heap size. In addition, our system can significantly reduce the
negative impact of selecting the wrong collector (24-26%) and im-
prove performance over always using the popular Generational/Mark-
Sweep hybrid (by 7% on average).

We next motivate our work and overview the design and im-
plementation of our dynamic GC switching framework. In Sec-
tion 3 we present annotation-guided and automatic switching strate-
gies that exploit dynamic switching to improve program perfor-
mance. We then describe and analyze our experimental results in
Section 4, and present our related work (Section 5), and conclusion
(Section 6).

2. APPLICATION-SPECIFIC GC

The next-generation of high-performance server systems must
enable continuous availability and high-performance to gain wide-
spread use and acceptance. Due to the portability, flexibility, and
security features enabled by the Java programming language and its
execution environments, a number of high-end server systems now
employ Java as the implementation language for application and
execution servers [22, 17, 33]. These systems run a single virtual
machine (VM) image continuously so that applications and code
components can be uploaded and executed as needed by customers
(for customization, collaboration, distributed execution, etc.).

Given this model (single VM and continuous execution) and ex-
isting JVM technology, a single, general-purpose collector and al-
location policy must be used for all applications. However, many
researchers have shown that there is no single combination of a col-
lector and an allocator that enables the best performance for all ap-
plications, on all hardware, and given all resource constraints [4,
16, 42]. Figure 1 confirms these findings. The graphs show perfor-
mance over heap size for SPECjbb [38], Voronoi from the JOlden
benchmark suite [13], and db from the SpecJVM98 suite [38] exe-
cuting within the Jikes Research Virtual Machine (JikesRVM) [2].
The x-axis represents heap size relative to the minimum heap size
that the application requires for complete execution. For SPECjbb,
the y-axis is the inverse of the throughput reported by the bench-
mark; we report 10%/throughput in operations per second to main-
tain visual consistency with the execution time data of the other
benchmark. For the data in all graphs, lower values are better.

The top-most graph in the figure shows that for SPECjbb, the
semispace (SS) collector, performs best for all heap sizes larger
than 4 times the minimum and the generational/mark-sweep hy-
brid (GMS) performs best for small heap sizes. The middle graph,
for Voronoi shows that for heap sizes larger than 4 times the mini-
mum, semispace (SS) performs best. For heap sizes between 2 and
4 times the minimum, mark-sweep (MS) performs best. Moreover,
for small heap sizes (GMS) performs best. The bottom-most graph
shows the performance of db: SS and GSS (a generational/semispa-
ce hybrid) perform best for large heap sizes and CMS (a non-genera-



tional semispace copying/mark-sweep hybrid) and MS perform best
for small heap sizes. We refer to any point at which the best-
performing GC system changes as a switch point. These results
support the findings of others [4, 16, 42], that no single collection
system enables the best performance across benchmarks; moreover
no single system performs best across heap sizes for a single bench-
mark/input pair.

To exploit this execution behavior that is specific to both the
application and the underlying resource availability, we extended
JikesRVM, to enable dynamic switching between GC systems. The
goal of our work is to enable application-specific garbage collec-
tion, to improve performance of applications for which there exist
GC switch points, and to do so without imposing significant over-
head.

2.1 Implementation Framework

The JikesRVM [2] is an open-source, dynamic and adaptive opti-
mization system for Java that was designed and continues to evolve
with the goal of enabling high-performance in server systems. The
JikesRVM compiles (at runtime) Java bytecode programs at the
method-level, Just-In-Time, to x86 (or Power PC) code. The sys-
tem performs extensive runtime services, e.g., garbage collection,
thread scheduling, synchronization, etc. In addition, JikesSRVM im-
plements adaptive optimization by performing on-line instrumenta-
tion and profile collection and then using the profile data to evalu-
ate when program characteristics have changed enough to warrant
method-level re-optimization. The current version of the JikesRVM
optimizing compiler applies two levels of optimization (0 and 1).
Level 0 optimizations include local propagation (of constants, types,
copies), arithmetic simplification, and check elimination (of nulls,
casts, array bounds). Moreover, as part of level 0 optimizations
write barriers are inlined into methods if the GC system is gener-
ational. Level 1 optimizations include all of the level 0 optimiza-
tions as well as common subexpression elimination, redundant load
elimination, global propagation, scalar replacement, and method in-
lining (including calls to the memory allocation routines).

The JikesRVM (version 2.2.0+) implements the Java Memory
Management Toolkit (JMTK) [8] that enables garbage collection
and allocation algorithms to be written and “plugged” into Jikes-
RVM. The framework offers a high-level, uniform interface to Jike-
SRVM that is implemented by all memory management routines.
We refer to the combination of an allocation policy and a collec-
tion technique as a GC system (this corresponds to a Plan in IMTk
terminology). The JMTk allows users to implement their own GC
systems easily within JikesRVM and to perform an empirical com-
parison with other existing collectors and allocators. The IMTk pro-
vides users with utility routines for common GC operations, such
as, copying, marking and sweeping objects. When a user builds
a configuration of JikesRVM, she is able to select a particular GC
system for incorporation into the JikesRVM image.

The five GC systems that we consider in this work are Semispace
copying (SS), a Generational/Semispace Hybrid (GSS), a Genera-
tional/Mark-sweep Hybrid (GMS), a non-generational Semispace/
Mark-sweep Hybrid (CMS), and Mark-sweep (MS). These systems
use stop-the-world collection and hence, require that all mutators
pause when garbage collection is in progress. Readers should refer
to [26, 8] for a detailed description of these collectors; however,
the generational collectors deserve special mention.

The GSS system makes use of well-known generational garbage

collection techniques [3, 40]. Young objects are allocated in a variable-

sized nursery space using bump-pointer allocation from a contigu-
ous block of memory. Upon a minor collection, the nursery is
collected and the survivors are copied to the mature space. The
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Figure 2: Original and new (dynamic, switch-enabled)
JikesRVM/IMTK class hierarchy

mature space is collected by performing a semispace copying col-
lection following a minor collection, as needed. This process is
referred to as a major collection. Since generational GC performs
minor collections separately from major collections, write-barriers
are needed for all pointer stores to identify pointers from objects in
the mature space to those in the nursery. We describe the implica-
tions of the use of write barriers in our system in Section 2.2.3.

The GMS system also employs a generational model. However,
the mature space is managed in the same way as the mark-sweep
space in the non-generational Mark-sweep system (MS). Allocation
from this space is performed using a sequential, first-fit, free-list
resource and collection is a two-phase process that consists of a
mark phase in which live objects are marked and a sweep phase in
which unmarked space is returned to the free-list.

CMS ! is similar to SS in that it is non-generational and is di-
vided into two sections. However, CMS is a hybrid approach in
which the first section is managed via bump-pointer allocation and
copy collection and the second section is managed via Mark-sweep
collection (and uses free-list allocation as described above). CMS
does not use write-barriers. As a result, CMS is only able to identify
references from the mark-sweep space to the semispace by tracing
the objects in the former. Consequently, when a CMS collection
occurs, the entire heap is collected — using copy collection for the
first section then mark-sweep collection for the second section.

JVM system classes and large objects are handled specially in the
JikesRVM/IMTk system. All of the GC systems include a immor-
tal space that holds the JikesRVM system classes. Immortal space is
allocated using the bump-pointer technique and this space is never
collected. In addition, each collection system considers objects
of size 16KB and greater as “large objects”. Generational collec-
tors allocate large objects from the mature space; non-generational
collectors employ a separate large object space. This large object
space, when used, is managed via Mark-sweep collection.

We extended the JikesRVM/IMTK system to implement all of
these GC systems within a single image of the execution environ-
ment. Moreover, we enabled the system to switch between SS,
GMS, GSS, CMS, and MS dynamically. In the following section,
we describe the implementation of our GC switching system.

2.2 Multiple Garbage Collection
Systems in a Single JVM

The version of the Plan class dictates which GC system is built
into a single JikesRVM image. The only way to change Plans (to
use a different garbage collector) is to build another image using
a different JikesRVM configuration. Our extension to JikesRVM
requires that multiple GC systems be included in a single system
image. To enable this, we implemented a generic Plan class, from

!Note: This is a stop-the-world collector and should not be con-
fused with the Concurrent Mark-Sweep collector in Sun’s HotSpot
VM [23]



which all specific GC system classes derive, e.g., SSPlan, CMS-
Plan, GMSPlan, GSSPIan, etc. Each of these plans are instantiated
in a single image of our system. Since the JMTk provides com-
mon utility routines, we can share most of the garbage collection
code among the plans. The size of a typical VM image built with
our extensions is 44.2MB, compared to an average size of 42.6MB
for the reference JikesRVM images (ranging from 37.2MB for SS
to 49.4MB for MS) — our extensions do not significantly increase
code size. Figure 2 shows the JikesRVM JMTK class hierarchy be-
fore and after our extensions.

We inserted a global field (currentPlan), into the class that im-
plements the JikesRVM GC system interface. This field identifies
the GC system that is currently in use. At all times, the instantiation
of each GC system (a Plan object) is available in our system.

Each program allocation site invokes the alloc method in the Plan
class. We implemented this routine as a static method to avoid vir-
tual method dispatch and guarded inlining. This method invokes
the appropriate static allocation routine according to the GC sys-
tem identified by currentPlan. When a switch occurs, we update
currentPlan to reflect the GC system to which we have switched.

To support multiple GC sys-
tems, we require gddress ranges Nursery
for all possible virtual memory o
resources to be reserved. Our goal %
is to enable as much overlap of I Mark-Sweep
virtual address spaces as possi-
ble to reduce the overhead of switch-
ing (described further below). The High Semispace
address space layout that we use
is shown in Figure 3. Each ad- .

. . Low Semispace

dress range is mapped to physi-
cal memory Igzily (asitis u_sed Large Object
by the executing program), in 1 Space
Megabyte chunks. The immor- &
tal and large object space within % GC Data Structures
our system are shared across all -
GC systems. Similar to the ref- Immortal

erence system, we allocate ob-
jects larger than 16KB from the
large object space.

Figure 3: Virtual address lay-
out in the switching system

2.2.1 Switching Between GC Systems

Switching between GC systems requires that all mutators be sus-
pended to preserve consistency of the virtual address space. Since
the JikesRVM collectors are all stop-the-world, the system imple-
ments the necessary functionality to pause and resume mutator thre-
ads. We extended this mechanism to implement switching.

When a switch occurs, we stop each executing mutator thread as
if a garbage collection was taking place. A full garbage collection,
however, may not be necessary for all switches. To enable this, we
meticulously designed the layout of our heap spaces (Figure 3) in
such a way so as to reduce the overhead of collection, i.e., to avoid
a full garbage collection for as many different switches as possible.
For example, a switch from SS to GSS only requires that future
allocations come from the GSS nursery area since SS and GSS share
their two half-spaces. Therefore, we only need to perform general
bookkeeping to update the currentPlan to implement the switch.

Table 1 indicates when a GC is required on a switch and if it is,
what type of GC is required, e.g., full (F) or minor (M). If no GC is
required then the entry in the matrix is marked with an N. We use
the notation XX->Y'Y to indicate a switch from collection system
XX to collection system YY; in the matrix, the entries show the
type of GC that is required for row—>column. Note that we need to

perform a garbage collection when switching from MS in only two
cases (while switching to SS and GSS, the latter being a collector
that is very often not the best choice). Moreover, MS commonly
works well for very small heap sizes. We therefore use MS as our
initial, default collector. As our system discovers when to switch to
a more appropriate collection system, the cost of the switch itself is
likely to be low since only switches to SS and GSS will require a
full garbage collection.

We next describe the operations required for each type of switch.
Whenever we perform a copy from one virtual memory resource to
another, we invoke the allocation routine of the GC system to which
we are switching.

Switches That Do Not Require Collection. As mentioned above,
SS—>GSS does not require a collection since their virtual semis-
paces are shared. Similarly, MS->GMS, MS->CMS, and GMS-
>CMS do not require a garbage collection upon a switch since the
mark-sweep is shared. Following the update to currentPlan, our
system allocates heap space from the nursery or initial semispace,
for GSS and GMS, and from the initial semispace for CMS.

Switches That Require Minor Collection. When we switch from
a generational to a similar non-generational collector, e.g., GMS-
>MS and GSS->SS, we need only perform a minor collection.
That is, in addition to updating the currentPlan, we must collect the
nursery space and copy the remaining live objects into the (shared)
mature space.

Switches That Require Full Collection. The remaining switch
combinations require a full garbage collection. We perform each
switch as follows:

e SS/GSS->GMS/CMS/MS. To switch between these collec-
tion systems, we perform a semispace collection (or a major
collection for GSS). However, instead of copying survivors to
the empty semispace, we copy them to the mark-sweep space
of the target systems. When switching from GSS, we do the
same; however, we must also copy the objects in the GSS
mature space to the mark-sweep space.

o GMS/MS->SS/GSS. To perform this switch, we perform a
major collection and copy survivors from the nursery and live
objects from the mature space to the semispace. If we are
switching from a non-generational MS system to SS or GSS,
we mark live objects in the mark-sweep space and we forward
them to the semispace resource. Since we must move objects
during MS collection, we must maintain multiple states per
object. We do this using an efficient, multi-purpose, object
header described in Section 2.2.2.

e CMS->Any GC. Since there are no write-barriers imple-
mented for CMS, the heap spaces in this hybrid collector can-
not be collected separately. Without write-barriers to identify
references from the mark-sweep space to the semispace, we
may incorrectly collect live objects if we collect the semis-
pace alone, i.e., those that are referenced by mark-sweep ob-
jects but not reachable from the root set. When we switch
from CMS to any other GC system, we must perform a full
collection to ensure that we consider all live objects.

Although the switching process is specific to the old and the new
GC systems, we provide an extensible framework that facilitates
easy implementation of switching from any GC system to any other,
existing or future, that is supported by the JikesRVM JMTk. More-
over, unlike all previous work, our system is able to dynamically
switch between GC systems that use very different allocation and
collection strategies.



GC Requirements Upon Switch
N:None, F:Full, M:Minor
Switch from Row to Column
|| SS | CMS | GMS | GSS | MS

SS N F F N F
CMS || F N F F F
GMS || F N N F M
GSS (| M F F N F
MS F N N F N

Table 1: Given the layout of our virtual address spaces, we may
or may not need to perform a full garbage collection for all
switches. The entries in this table indicate when GC is required
on a switch (from the row GC to the column GC) and if it is,
what type of GC is required: full (F), minor (M), or none (N).

When a switch completes, we suspend the collector threads and
resume the mutators, as is done during the post-processing of a nor-
mal collection. In addition, we unmap any memory regions that
are no longer in use. The reference JikesRVM implementation uses
on-demand memory mapping of the virtual address space. To use
physical memory efficiently, we dynamically unmap unused mem-
ory space when we switch to a new collection system.

A limitation of the switching mechanisms described above is that
we may not be able to perform certain kinds of switches when mem-
ory is highly constrained. For example, while switching from MS
(or GMS, CMS) to SS (or GSS), we need to map the virtual address
space corresponding to the SS tospace, on demand. However, we
cannot unmap the MS address space until all live objects have been
copied to the SS tospace. Consequently, our system requires more
physical memory than the reference system, while performing the
switch in these cases. In practice however, our system never per-
forms a switch from MS to SS or GSS when memory is constrained
(we provide further explanation of why this is the case in Section 3).
A similar problem exists for switching from SS (or GSS) to a MS
(or GMS, CMS) system. Note, however, that in these cases, we can
unmap memory from the SS tospace before we copy objects to the
MS space, since the SS tospace will not be used subsequently.

2.2.2 Multi-purpose Object Header

As mentioned in the previous section, to switch from a GC sys-
tem that uses a mark-sweep space (GMS, CMS, and MS) to a GC
system that uses a contiguous semispace (GSS, SS), we must main-
tain state for both the mark-sweep process as well as for the pro-
cess of forwarding objects to the semispace. Typically, garbage col-
lectors store this state in the header of each object. In JikesRVM,
the garbage collectors each use a single 4-byte entry in the object
header, called the status word.

The mark-sweep collector requires two bits in the status word:
the mark bit to mark live objects and the small object bit to indi-
cate that the object is a small object. The use of the small object
bit by this GC system enables efficient size-specific free-list allo-
cation. Since the system aligns memory allocation requests on a
4-byte boundary, the lowest two bits in an object’s address are al-
ways 0. Hence, the mark bit and the small object bit can be encoded
as the lowest two bits in the status word.

Semispace collectors also require header space to record the state
of the copy process and the address to which the object is copied.
A semispace collector marks an object as being forwarded while
it is being copied. Once it is copied, the object is marked as for-
warded and a forwarding pointer to the location to which the object
was copied, is stored in the initial 30 bits of the header. The be-
ing forwarded state is necessary to ensure synchronization between

Mark Sweep
[1[0] | UNUSED [1]1]
state: SMALL OBJECT| MARKED

\ UNUSED
state: SMALL OBJECT

Copying
[ForwARDI NG PO NTER] 1[0]  [ForRwARDI NG Pal NTER] 1[1 |
state: FORWARDED state: BEI NG FORWARDED

Figure 4: Examples of bit positions in status word in object
header

multiple collector threads. These two states are stored in the two
least-significant bits of the status word.

The two least-significant bits in an object status word implement
different states depending on the collector with which JikesRVM
is configured at build-time. For example, as shown in Figure 4, if
JikesRVM is built using a mark-sweep GC system, the value 0x2
in the two least-significant bits of the status word of an object in-
dicates that the object is small and unmarked. However, if instead,
the semispace collector is used, this state indicates that the object
has been forwarded to the to-space during a collection. Similarly, if
these bits are both set, the status word indicates that the object is a
small object and has been marked as live by a mark-sweep collec-
tor; the same state indicates to a semispace collector thread that the
object is currently being forwarded by another thread.

Upon a switch from a collector that uses a mark-sweep space to
one that uses a semispace, we must forward marked objects to the
semispace. Consequently, our switching system must support all
four distinct states concurrently, in addition to space for a forward-
ing pointer. To account for the two additional bits required and to
avoid using an additional 4-byte header entry, we use bit-stealing
(also used in prior GC systems [6]) in which we “steal” the two
least-significant bits from another address value that is byte-aligned.
In JikesRVM, the object header also stores a pointer to a Type In-
formation Block (TIB), which provides access to the internal class
representation and the virtual method table of the object. We use the
two least-significant bits from the TIB to store the additional states,
being forwarded and forwarded, during the copying process. This
implementation requires that we modify VM accesses to the TIB so
that these bits are disregarded.

2.2.3 Optimizations

There are two primary sources of overhead introduced by our au-
tomatic GC switching system: The use of write barriers which are
not needed by all collectors and the loss of inlining opportunities
due to dynamically changing allocation routines. As mentioned in
Section 2.2.3, since our system can switch to a generational col-
lector at anytime, we must insert write-barriers for every field as-
signment in every method — these instructions execute even when
the collector in use is non-generational. Moreover, if there is ever
only a single GC system, we can inline calls to the allocation rou-
tine. However, in our system the allocation routine may change;
consequently, we cannot perform such inlining.

To address these issues, we implemented two compiler optimiza-
tions that enable specialization of optimized methods according to
the underlying GC system. In particular, for methods optimized at
level 1 (as is done in the base system), we inline the allocation rou-
tines of current GC system. In addition, for methods optimized at
level 0 or 1 (as is done in the base system), we only insert write
barriers for field accesses in methods when the current GC is gen-
erational.

As mentioned previously, we employ adaptive optimization in
which only hot methods are optimized at increasing optimization
levels (only 0 and 1 currently). Hot methods are identified via online



sampling. All other methods are fast-compiled. We modified the
fast compiler to insert write barriers into all methods regardless of
the underlying GC system. In addition, the fast compiler performs
no inlining.

If our system switches to a new GC system after method spe-
cialization has occurred, we must invalidate these methods so that
future invocation of them will cause recompilation. We implement
invalidation by simply replacing the table entry for the method with
the same compilation stub used by JikesRVM to enable lazy, method-
level, compilation [29]. Moreover, if such a method is currently ex-
ecuting, i.e., it is on the runtime stack of some application thread,
we must recompile it immediately (as part of the switch) and replace
its runtime stack frame.

To enable this, we implemented a general form of the on-stack
replacement and method invalidation mechanism described in [15].
A complete description of our implementation is described in the
technical report version of this paper [37]. In summary, we ex-
tended the system to enable OSR at any point during program ex-
ecution — at which a GC system switch can occur, i.e., program
points at which the compiler has generated live-variable informa-
tion. These points include allocation sites, call sites, prologue and
epilogue yieldpoints, loop backedges, and explicit yieldpoints [2].

We employ OSRInfo points to gather the information consisting
of the stack and method-local variables, required to perform OSR,
at every potential switch point. OSRInfo points are similar to OS-
RPoints used in [15] in that they OSRInfo points record informa-
tion about live variables. However, they are not unconditional yield
points, unlike OSRPoints. Moreover, OSRInfo points are only used
during compilation to generate liveness information about variables
at all garbage collection switch points, and as such, do not appear in
the final machine code. During on-stack replacement, the switch-
ing system accesses the maps generated from the OSR information
to extract values from the correct register and stack locations for
the method being replaced. The OSR system then inserts these val-
ues into the appropriate frame locations for the new version of the
method.

In addition to method invalidation and OSR, we implemented the
write barrier to be as efficient as possible. We use a single, shared
write-barrier for all types of generational GC systems. Moreover,
as we showed in Figure 3, we placed the nursery space in our sys-
tem at the highest virtual address. Hence, we require only a single
check (to determine if the value is greater than the nursery bound-
ary) to determine if the young object reference is in the nursery. Our
universal write-barrier implementation is similar to that described
in [9].

3. GARBAGE COLLECTOR SELECTION

By implementing the functionality to switch between collection
systems while the JikesRVM is executing, we can now select the
“best-performing” collection system for each application that exe-
cutes using our system. To this end, we implemented Annotation-
guided GC System Selection. Annotation is information that is com-
municated (transfered and loaded) as part of the program; this in-
formation can include anything from static analysis data to offline
profile information. Annotation has be shown to be effective for
reducing the overhead of dynamic optimization and for improving
execution performance by providing “hints” to the compilation and
runtime environment about optimization opportunities and analysis
information [27, 28, 31, 20, 25]. We use annotation in this work to
identify per-application garbage collectors that should be employed
by our GC Switching system.

To enable annotation-guided GC selection, we analyzed appli-
cation performance off-line using the different JikesRVM GC sys-

Min Annot GC Selector

Heap Switch
Benchmark || Input/Cross (MB) | GC(s) Ratio
compress 100/10 21 SS —
jess 100/10 9 GMS —
db 100/10 15 CMS/SS 1.73
Javac 100/10 30 GMS —
mpegaudio 100/10 11 GSS —
mtrt 100/10 16 GMS —
jack 100/10 18 GMS —
JavaGrande || AllSizeA/SizeB | 15 GMS/SS | 3.00
mst 1050 nodes/640 | 78 MS/CMS | 1.47
specjbb 1 warehouse/2 40 GMS/SS | 3.00
VOoronoi 65000 pts/20000 | 34 MS/SS 4.26

Table 2: Annotated GC selection decisions, minimum heap sizes
and inputs. If there is a switch point, we annotate the minimum
heap size and the Switch Point Ratio: switch point heap size over
minimum heap size. We present data for the first input (In-
put) in the pair Input/Cross. We consider both inputs (Input
& Cross) to infer the best performing GC at a particular heap
size/minimum heap size ratio.

tems. We considered a number of different heap sizes and program
inputs. We list these inputs in our annotation selection table Table 2,
as input and cross. We extracted, for each heap size, the best per-
forming GC system across inputs. In addition, for benchmarks for
which there were multiple best-performing GCs for different heap
sizes, we also identified the switch points for each program (if any),
i.e., the heap sizes at which the best-performing GC changes.

For all of the benchmarks that we studied, the per-GC perfor-
mance was very similar across inputs. Only two benchmarks ex-
hibited differences in GC performance across inputs. This input-
dependence is very different from other types of profiles, e.g., meth-
od invocation counts, field accesses, etc., in which cross-input be-
havior can vary widely [27]. Therefore, it is less likely that we
will negatively impact performance for inputs that we have not pro-
filed. Even so, we consider two inputs for each benchmark to de-
termine the annotation. To compute the GC to annotate for the two
benchmarks that exhibited differences across inputs, we identified
the GC that imposed the smallest percent degradation over the best
performing collector across inputs at each heap size.

The values that we annotate are shown in the final two columns
of Table 2. For each benchmark, we specify the GC system that
performs best. If there is more than one best-performing GC for
different heap sizes, i.e., there is a switch point, we annotate each of
the GCs and switch points.

We found that for all of the benchmarks studied, if there was a
switch point, there was only a single switch point and that the switch
point heap size was very similar relative to the minimum heap size
for each input. As such, we specify the switch point as the ratio of
switch point heap size and the minimum heap size. At program load
time, the JVM computes the ratio of current maximum heap size to
minimum heap size and compares this value with the annotated ra-
tio. If the value is less, the JVM switches to the first GC (left of
slash in the table entry) and to the second GC (right of slash), other-
wise. This requires that we also annotate the minimum heap size for
the program and input. However, this reduces the amount of offline
profiling required since given the minimum heap size for an input,
we can compute the switch point using the ratio from any input,
since this switch point ratio holds across inputs for all benchmarks
that we studied. Five of these eleven programs have switch points.

We use a 4-byte annotation in each class file of an application
containing a main method. We insert annotations into class files us-
ing an annotation language and a highly compact encoding that we



developed in prior work [28]. Upon initiation of dynamic loading
of the first application class file, JikesRVM switches to the collec-
tion system specified; if there is a switch point for the program,
our system compares the switch point ratio with the ratio of cur-
rent maximum available heap size and minimum heap size. If the
minimum heap size is not specified, 40MB is assumed. Since the
best-performing collection system may depend on the underlying
architecture (memory size, cache levels, cache sizes, register count),
we can also incorporate different architectures as part of our profile
collection and annotation. For this work, we focus solely on the x86
architecture.

One limitation of this annotation-based approach, is input de-
pendence. Even though we consider multiple inputs and for these
benchmarks, the gc-selection variance across inputs is small, it may
happen that a previously unknown input causes the selection de-
cision to change — needlessly causing a degradation in program
performance. Moreover, offline profiling requires more developer
effort. To address these issues, we also investigated the efficacy
of automatically selecting the appropriate GC system using on-line
program behavior.

To enable this, we employed a simple heuristic based on max-
imum heap size and the heap residency following GC. Given our
experience with the annotation-based system, we determined that
the best performing collector is consistently GMS for small heaps
and SS for large heaps. If the heap availability should change, e.g.,
to make room for concurrent execution of other programs, our sys-
tem can automatically switch to GMS or SS accordingly.

In addition to determining what GC system to switch to, we
must also identify when to switch. Some possible options include
heap residency thresholds, GC frequency thresholds, and allocation
behavior. As an experiment, we implemented the above heuris-
tic (GMS/SS switching with a 90MB heap size threshold) using a
heap residency threshold of 60%. As such, given any application,
our system waits until the live data following a collection exceeds
60% of the available heap size. At which point, the system checks
whether the maximum heap size is greater than 90MB, and if so,
switches to SS; else it switches to GMS. The system uses MS as the
initial, default GC system. Our use of a residency threshold enables
us to use two different collectors for the two different, commonly
occurring, program phases: startup and steady-state.

The primary difference between automatic switching and annotat-
ion-guided switching is that the switch occurs after program execu-
tion has begun. Consequently, there may be optimized methods
in the system that are specialized for the previous GC system. As
such, automatic switching employs both method invalidation and
on-stack replacement to invalidate such specialization. Since only
very hot methods are optimized by JikesRVM, the number of meth-
ods that require invalidation or OSR is small in our experience.

We acknowledge that our automatic GC selection heuristic is
simple. We include it as a second example of how our switching
framework can be employed; moreover, we provide an empirical
analysis of the overheads it imposes in the results section. We intend
to study extensively techniques for automatic and adaptive switch-
ing as part of future work.

4. EVALUATION

To empirically evaluate the efficacy of switching between garbage
collectors dynamically, we performed a series of experiments using
our system and a number of benchmark programs. We first describe
these benchmarks and our experimental methodology with which
we generated the results.

4.1 Experimental Methodology

We gathered our results using a dedicated 2.4GHz x86-based
single-processor Xeon machine (with hyperthreading enabled) run-
ning Debian Linux v2.4.18. We implemented our switching frame-
work within the JikesRVM version 2.2.0 with jlibraries R-2002-11-
21-19-57-19.

The standard, best-performing JikesRVM configuration is the adap-
tive configuration. This system identifies “hot” methods (that are
then optimized) via samples taken on (timer-based) thread switches.
Since this process is non-deterministic, the methods optimized and
consequently, execution time across runs (using the same input) is
highly variable. To eliminate this non-determinism, we profiled
each program off-line 100 times and collected the list of methods
selected for optimization by JikesRVM. We then computed the in-
tersection of these files and annotate those methods using a system
that we developed in prior work [27, 28]. When a method is about
to be compiled, the system checks whether the method is annotated,
and if so, optimizes it directly. Similar to [34], we refer to this sys-
tem as pseudo-adaptive since only “hot” methods are optimized.
Such a system is (more) deterministic and therefore, our experi-
mental measurements contain less variance and can be reproduced
directly. The profiles we used are available on our research lab web
page [39].

For all of our results, we compiled the JikesRVM boot image with
full optimizations. In addition, we inserted write-barriers into all
compiled methods and we did not inline allocation sites. This con-
figuration allows us to avoid invalidation and on-stack replacement
of boot image methods. However, it also imposes execution over-
head in the form of missed inlining opportunities and write-barrier
execution for non-generational collectors for all boot image meth-
ods that execute. Our results include this overhead. To evaluate the
impact of these missed opportunities in general, we present results
on the use of invalidation and on-stack replacement for application
code at the end of the results section.

We measured the impact of switching on application performance
separately from compilation overhead. To enable the former, we ex-
ecuted the benchmarks through a harness program. The harness re-
peatedly executes the programs; the first run includes program com-
pilation and latter runs do not since all methods have been compiled
following the initial invocation. We report results as the average of
the final 5 of 10 runs through the harness. We experimented with a
range of programs from various benchmark suites, e.g., SpecJVM98
and SPEC;jbb [38], JOlden [13], and JavaGrande [24].

4.2 Results

We next present the empirical evaluation of our system. We eval-
uate the system using annotation and automatic GC selection.

Annotation-Guided GC Selection

As described in the methodology section, we present performance
numbers using the pseudo-adaptive JikesRVM system without com-
pilation overhead. We present the compilation times with our sys-
tem separately.

For annotation-guided GC selection (described in Section 3), we
selected the best-performing GC system for a range of heap sizes by
profiling multiple inputs offline (inputs are listed in Table 2). The
GCs and switch points that we annotate and use are shown in the
same table. For brevity, we present results only for the first input
specified in Table 2.

Our system uses the annotation to switch GCs immediately prior
to invocation of the benchmark (program load time). Our perfor-
mance numbers include the cost of this switch. In addition, our
system compiles methods with the appropriate allocation routine
inlined when “hot” methods are fully optimized. The system does



X .
oo . SPECjbb2000 8 Voronoi
: L s MS
) - Ms 74 . .
b X - GMS ' -e-- GMS
S o ; ~-x-- GC
R ! ---¢-- CMS
3 --+-- CMS 6 i hd
, X —+— GC Annot ; —-+— GC Annot
300 i * ’g |
T | H ;
= L gsp ¥
3 . SR S
£ 2504 % o b :
3 : g43 %
) a & 5 R
= ‘ ! w s .
200 4 S
bt 31l Y
o) P n
150 e T
“or 35ung
100 ;
2
Heap Size Relativeto Min Heap Size Relativeto Min
db compress
454 --m-- SS
s o
--e--GMs L
40 % GC 1::
. ----- CMS
: —-+— GC Annot
8 35J g
I £
(o Yo F
S M ]
3 '\ . H
X B X
I > ]
25 ks
6 -
20
15 5 T T T T T T T T T T 1
1 1 2 3 4 5 6 7 8 9 10 11 12
Heap Size Relativeto Min Heap Size Relativeto Min
*m jess
javac L
--m-- SS
=SS —a-- MS
Ao MS ----- GMS
e ggs --%-- GC
e --4-- CMS
e CMS —-— GC Annot
—+— GC Annot

Execution Time (sec)
Execution Time (sec)

12
Heap Size Relativeto Min Heap Size Relativeto Min

Figure 5: Performance comparison between our switching system, GC Annot (dashed line with + marks), and the unmodified
reference system built with five different GC systems. The first three graphs show three representative benchmarks with switch
points. The remaining graphs show three representative benchmarks without switch points. The x-axis is heap size relative to the
minimum (1 to 12 times the minimum). The y-axis is execution time (in seconds); for SPECjbb, the y-axis is the inverse of the
throughput reported by the benchmark; we report 10%/throughput in operations/second to maintain visual consistency with the

execution time data. GC Annot effectively and efficiently tracks the best-performing collection system regardless of whether there
are switch points.



insert write-barriers into all unoptimized (fast-compiled) methods;
however, write-barriers are only inserted into optimized (“hot”) meth-
ods for generational collection systems. Since our system switches
to the annotated GC system before the benchmark begins executing,
no invalidation or on-stack replacement is required (we discuss the
performance impact of employing these mechanisms at the end of
the results section).

As we discussed in Section 3, there were 5 of 11 benchmarks
that exhibit a switch point. Given such benchmarks and our sys-
tem’s ability to switch between GCs given the maximum avail-
able heap size, our system has the potential to enable significant
performance improvements since no single collector is the best-
performing across heap sizes for these programs for the same input.

The first three graphs of Figure 5 shows the results for three
representative benchmarks with switch points. The x-axis in each
graph is heap size, relative to the minimum (heap size divided by
the minimum heap size of the program). We specify the minimum
heap sizes per benchmark in column three of Table 2.

The y-axis is program execution time in seconds. For SPECjhb,
the y-axis is the inverse of the throughput multiplied by 10%; we
report this metric to maintain visual consistency with the execution
time data, i.e., lower numbers are better. The y-axis value ranges
vary across benchmarks.

Each graph contains six curves, one for each of the JikesRVM
garbage collectors. These curves represent the performance of the
“clean”, unmodified, system. The GC systems that we evaluate in-
clude Semispace (SS), a Generational/Semispace Hybrid (GSS), a
Generational/Mark-sweep Hybrid (GMS), a non-generational Sem-
ispace/Mark-sweep Hybrid (CMS), and Mark-sweep (MS). The GC
Annot curve (dashed line the plus signs and plotted in red if in color)
shows the performance of our GC switching system and annotation-
guided selection.

Each of these benchmarks exhibit a switch point (a change in
best-performing GC system), and, our system is able to track the
best-performing GC for both small and large heap sizes. For ex-
ample, for db , our system tracks CMS for small heaps and SS for
large heaps. As such, for a single program and input but different
resource availability levels, our system can improve performance
over using any single collector for these programs.

The rest of the graphs of Figure 5 show the results for three repre-
sentative benchmarks for which there is no switch point. The layout
of the graphs is the same as those described previously. For these
benchmarks, our system tracks the best-performing collector. No-
tice that the best-performing collector differs across programs, e.g.,
SS performs best for compress and GMS performs best for the oth-
ers. Since our system uses annotation to guide GC selection and
dynamically switch to the best-performing GC for each program, it
is able to improve performance across benchmarks over any single
GC system. This becomes more evident when we evaluate this data
across benchmarks.

The tables in Figure 6 and Table 3 summarize our results across
benchmarks and heap sizes. The tables show how our system re-
duces performance hits taken when the “wrong”, i.e., worst-perfor-
ming collector, is chosen. In addition, they show the average per-
formance degradation over optimal selection. This degradation is
due to cross-input differences (for mpegaudio and JavaGrande as
explained in Section 3) and to the differences in our system that en-
able its flexibility, e.g., write-barrier execution in unoptimized code,
boot image optimization, switch time (from MS, the default system,
to the annotated system), etc.

Table (a) in Figure 6 shows the average difference between our
GC switching system and the best-performing GC at each heap size
(column 2) and between our system and the worst-performing GC

at each heap size (column 3). In parentheses, we show the aver-
age absolute difference in milliseconds; for SPECjbb the value in
parenthesis is the difference in inverse throughput.

Note that the data in these tables do not compare our system
against a single JikesRVM GC system; instead, we are comparing
our system against the best- and worst-performing GC system at
every heap size. For example, for large heap sizes for the SPECjbb
benchmark, the SS system performs best. For small heap sizes,
GMS performs best. In this case, to compute percent degradation,
we take the difference between execution times enabled by our sys-
tem and the SS system for large heap sizes, and our system and
the GMS system for small heap sizes. On average across bench-
marks and heap sizes, our system imposes 4% overhead over the
best-performing GC system at each point. Perhaps more impor-
tantly however, our system can reduce the overhead of selecting the
worst-performing collector (which again may be different across
applications and heap sizes) by 26%.

Table (b) presents these same results when we omit Mark-Sweep
(MS) collection from consideration. MS works well for small heaps
but is thought to implement obsolete technology. As such, we con-
sider the performance of our system without it. On average across
benchmarks and heap sizes, our system imposes 3% overhead over
the best-performing GC system at each point. In addition, and more
importantly, our system can reduce the overhead of selecting the
worst-performing collector by 24%. Interestingly, when MS is dis-
regarded from the data, the average degradation actually decreases.
This is due to the fact that MS is the best-performing collector for
the Voronoi benchmark for small and medium sized heaps. In fact,
for this benchmark, the degradation over the best GC is -2%, i.e. an
improvement, if MS is not considered. For many of our benchmarks
(SPEC]jbb, db, JavaGrande, etc.), MS is the worst-performing col-
lector, and consequently, the average performance improvement is
less than that shown in Table (a).

Finally, Table 3 presents the percent degradation over always
using the Generational/Mark-Sweep Hybrid (GMS). GMS is quite
popular and thought to be the best-performing, JikesRVM GC sys-
tem — it is the JikesRVM default collector. GMS exploits the genera-
tional hypothesis: programs commonly allocate many, small, short-
lived objects. As such, it should be able to perform well in gen-
eral for a wide range of programs. As the data in Figure 5 shows
however, GMS works well in many cases but other GCs enable
better performance for some benchmarks (compress, db, Voronoi,
etc.). Our system enables a 7% improvement (a negative degrada-
tion) over always using GMS across benchmarks and heap sizes.
This improvement varies across inputs: 14% and 12% for db and
Voronoi, to almost 45% for MST. Note, however, that MST is a
very short running program — small differences in execution time
(800ms) translate into very large percent differences. The improve-
ment in db translates to over a 3 second benefit.

Another form of overhead that our system introduces, that is not
measured in the previous results, is compilation overhead. On
average, our system imposes no significant overhead on fast com-
pilation (0.2%) despite the fact that it inserts write-barriers into all
methods. For the optimizing compiler, we introduce 18% overhead
(97ms) — since compilation overhead is so small, a small increase
in compilation time translates into a large percent overhead. This
additional overhead can be attributed to not inlining allocation rou-
tines for the boot-image and inserting write barrier checks into the
boot-image code (the code that executes when the compilers run).

Overall, these results indicate that our framework is able to achie-
ve performance that is similar to the best-performing collector (in
terms of both execution performance and compilation overhead) by
making use of the annotated information to guide dynamic switch-



Average Difference Between Best & Worst GC Systems
GCAnnot
Degradation Improvement
Benchmark over Best over Worst
compress 6.28% (443ms) 3.53% (279ms)
jess 2.82% (85ms) 56.17% (5767ms)
db 2.88% (532ms) 12.47% (3028ms)
javac 5.64% (392ms) 24.12% (2944ms)
mpegaudio 3.54% (214ms) 3.21% (209ms)
mtrt 451% (270ms) 42.29% (5170ms)
jack 3.22% (147ms) 32.70% (2787ms)
JavaGrande 3.97% (2511ms) 17.71% (15500ms)
SPECjbb 2.22% (3.17*108/tput) | 27.95% (82.68*106/tput)
MST 4.07% (30ms) 48.42% (1001ms)
\oronoi 9.20% (144ms) 31.78% (1063ms)
Average 4.38% 26.22%
@)

Average Difference Between Best & Worst GC Systems
GCAnnot
Degradation Improvement
Benchmark over Best over Worst
compress 6.28% (443ms) 1.47% (113ms)
jess 2.82% (85ms) 53.23% (5595ms)
db 2.88% (532ms) 8.04% (1866ms)
javac 5.64% (392ms) 21.47% (2727ms)
mpegaudio 3.54% (214ms) 2.62% (170ms)
mtrt 451% (270ms) 42.29% (5170ms)
jack 3.22% (147ms) 30.81% (2681ms)
JavaGrande 3.97% (2511ms) 14.25% (12680ms)
SPECjbb 2.22% (3.17*108/tput) | 24.11% (76.21*108 /tput)
MST 4.07% (30ms) 48.08% (999ms)
\oronoi -2.00% (-64ms) 31.78% (1063ms)
Geo. Mean 3.36% 24.13%
(b)

Figure 6: Summarized performance differences between our annotation-guided switching system and the reference system across
heap sizes. Table (a) shows the percent degradation over the best- and percent improvement over the worst-performing GC systems
across heap sizes (the time in milliseconds that this equates to is shown in parenthesis). Table (b) is the same as (a) only we have
omitted Mark-sweep from the comparison since it is thought to implement obsolete technology.

Average Difference Between Best & Worst GC Systems
AutoSwitch

Degradation Improvement
Benchmark over Best over Worst
compress 8.70% (608ms) 1.71% (140ms)
jess 36.60% (1080ms) | 47.05% (5652ms)
db 18.9% (3489ms) 8.54% (2348ms)
javac 26.89% (1817ms) | -4.97% (-367ms)
mpegaudio 12.41% (748ms) | -4.82% (-312ms)
mtrt 30.04% (1816ms) | 10.60% (1074ms)
jack 19.29% (855ms) | 19.12% (1886ms)
Geo. Mean 15.15% 17.14%

GC Annot: Average
Degradation Over

Benchmark Generational Mark-Sweep
compress -0.37% (-28ms)
jess 2.82% (85ms)
db -14.17%  (-3122ms)
javac 5.19% (373ms)
mpegaudio -2.19% (-140ms)
mtrt 2.32% (78ms)
jack 3.22% (147ms)
JavaGrande -0.19% (-87ms)
SPECjbb 0.95%  (1.72*10%/tput)
MST -44.66% (-827ms)
\oronoi -11.88% (-241ms)
Geo. Mean -6.64%

Table 3: Percent degradation of our system over always using
the popular GMS collection. The negative values indicate that
on average across heap sizes, our system improves performance
over GMS.

ing between GC systems. Moreover, when there is a switch point
for programs, our system can enable the best performance on aver-
age over any single GC system for that program. For cases in which
there is no cross-over between optimal collectors, our system main-
tains performance similar to that of the reference system. However,
since the optimal GC varies across benchmarks, our system is able
to perform better than any single GC system across benchmarks.

Automatic Switching

Finally, we empirically evaluated automatic switching (AutoSwitch).

To experiment with such a configuration, we implemented the sim-
ple heuristic (based on 60% heap residency) described in Section 3.

Invalidation and on-stack replacement are two optimizations that
we described in Section 2.2.3 that enable us to aggressively inline
allocation sites and avoid inlining write-barriers into hot methods,
according to the GC system in use when optimization is performed.
As a result, we are able to achieve performance levels similar to that
of a non-switching JVM, as shown in the data for annotation-guided
GC selection. However, if the system switches GCs during execu-
tion of the program, we must undo this optimization and replace
this code with versions optimized for the GC system to which we
have switched.

By employing OSR and invalidation, the compilation system of
AutoSwitch has more work to do. It must generate an OSRInfo
record for every point in the program at which a GC switch can oc-

Table 4: AutoSwitch Results. We show the percent degrada-
tion over the best- and percent improvement over the worst-
performing GC systems across heap sizes (the time in millisec-
onds that this equates to is shown in parenthesis).

cur in the JikesRVM, i.e., GC safe-points (call and allocation sites,
loop backedges, etc). These records are later discarded once the
live variable information is stored into compact OSR maps; how-
ever, the cost of their generation and processing is present in the
compilation time. On average across benchmarks, our system im-
poses an additional 348ms in optimization time (for hot methods).
AutoSwitch increases fast-compilation time by only 0.2% (0.73ms).

We next measured the performance of AutoSwitch, using the
SpecJVM98 benchmarks. Table 4 presents the average performance
overhead (without compilation overhead) across these benchmarks
and heap sizes (those used in our previous results). The table uses
the same format as we used previously for Table (a) in Figure 6. Au-
toSwitch enables performance improvements over the worst-perfor-
ming GC of 17% (1488ms) on average. If we do not consider the
MS collector, this improvement is 15% (1213ms) on average. How-
ever, the average degradation of our system over the best-performing

collector is 15% (1489ms). This is significantly worse than annotation-

guided GC selection.

The primary difference between annotation-guided GC selection
and AutoSwitch is the use of OSR and invalidation of specialized
methods. As such, we investigated the overhead imposed by each to
identify the source of overhead imposed on AutoSwitch. For small
heap sizes, the 60% residency threshold is reached very early during
program execution when very few methods have been discovered
as hot and optimized. As such, invalidation and OSR overhead,
if they occur at all, impose very little overhead (21.0ms on aver-
age across benchmarks for invalidation, and 0.0ms for OSR). For



larger heap sizes, this threshold is reached after significantly more
execution time has elapsed potentially increasing the number of op-
timized methods that must be invalidated and, if they are currently
executing, OSR’d. For medium-sized heaps invalidation overhead
is 25ms on average across benchmarks and for OSR it is 0.6ms. For
large-sized heaps, the overhead is 38ms and 5ms on average, for in-
validation and OSR, respectively. Our measurements indicate that
overall, the overhead introduced by invalidation and OSR is very
small for all heap sizes. We have omitted per-benchmark results for
brevity; however, they are available in our technical report [37].

Upon further investigation, we discovered the cause of remain-
ing overhead: loss of optimization opportunity. As described in
Section 2.2.3, we insert OSRInfo place-holders into the code at
all points at which a thread-switch and GC can occur, in order to
recover method state during OSR. We implement these OSRInfo
points as extensions to the YieldPoint instruction, an instruction
that causes the currently executing thread to yield the processor to
other threads. A fundamental characteristic of yieldpoints in the
JikesRVM s that the optimizing compiler pins these instructions
to ensure that they execute at the point specified; this prevents the
optimizer from moving instructions around them (performing code
motion).

In our system, unlike the OSR mechanism described in prior
work for deferred compilation [15], our OSR points (OSRInfos)
are simply markers that are later discarded during code genera-
tion. However, the compiler handles them similarly to yieldpoints
(which ensures that our OSR maps are correct), and as such, does
not perform code motion optimizations across them. In addition,
since OSRInfo instructions need to use live variables in the program
code (similar to OSRPoint instructions), other optimizations, like
load/store elimination and dead-code elimination are also inhibited.
Since there are many points at which OSR might occur, the quality
of the code that our optimizing compiler produces is significantly
worse than that of the clean system (for which there are no OSRInfo
points).

We are currently investigating ways to enable these optimiza-
tions, regardless of OSRInfo points. Specifically, we must incre-
mentally update the OSR map information as optimizations cause
the method state (stack/locals) to change. We will investigate the ef-
ficacy of this approach as well as other heuristics to guide automatic
switching as part of future work.

5. RELATED WORK

Two areas of related work show that performance due to the the
GC employed varies across applications and that switching collec-
tors dynamically can be effective. In [30, 32], the authors show that
performance can be improved by combining variants of the same
collector in a single system, e.g., mark-and-sweep and mark-and-
compact. and semispace and slide-compact In [35], the authors
show that coupling compaction with a semispace collector can be
effective. No extant system, to our knowledge, provides a gen-
eral, easily extensible framework that enables dynamic switching
between a number of completely unrelated collectors.

Other related work shows empirically that performance enabled
by garbage collection is application-dependent. For example, Fitzg-
erald and Tarditi [16] performed a detailed study comparing the
relative performance of applications using several variants of gen-
erational and non-generational semispace copying collectors (the
variations had to do with the write barrier implementations). They
showed that over a collection of 20 benchmarks, each collector vari-
ant sometimes provided the best performance. On the basis of these
measurements they argued for profile-directed selection of GCs.
However, they did not consider variations in input, required differ-

ent prebuilt binaries for each collector, and only examined semis-
pace copying collectors.

Other studies have identified similar opportunities [4, 42, 36].
IBM’s Persistent Reusable JVM [21] attempts to split the heap into
multiple parts grouped by their expected lifetimes, employs heap-
specific GC models and heap-expansion to avoid GCs. It supports
command-line GC policies to allow the user to choose between opti-
mizing throughput or average pause time. BEA’s Weblogic JRockit
VM [7] employs an adaptive GC system which performs dynamic
heap resizing. It also automatically chooses the collection policy
to optimize for either minimum pause time or maximum through-
put, choosing between concurrent and parallel GC, or generational
and single-spaced GC, based on the application developer’s choice.
BEA’s white-paper [7], however, describes the system at a very high
level and provides few details or performance data. We were unable
to compare our system against the JRockit, due to its proprietary
nature. To our knowledge, no extant research has defined and eval-
uated a general framework for switching between very diverse GC
systems, such as the one that we describe. In addition, our automatic
switching heuristic, albeit simple, requires no user intervention and
achieves considerable performance improvement.

6. CONCLUSION

Garbage collection plays an increasingly important role in next-
generation Internet computing and server software technologies.
However, the performance of collection systems is largely depen-
dent upon application execution behavior and resource availability.
In addition, the overhead introduced by selection of the “wrong”
GC system can be significant. To overcome these limitations, we
have developed a framework that can automatically switch between
GC systems without having to restart and possibly rebuild the exe-
cution environment, as is required by extant systems. Our system
can switch between collection strategies while the program is exe-
cuting. Our empirical evaluation shows that the annotation-guided
switching system we describe degrades performance by under 4%
on average over the best-performing collection system for a partic-
ular heap size given the range of heap sizes studied. In addition, our
system significantly improves performance (over 24% on average)
over the GC system at each heap size and over always using the
popular Generational/Mark-Sweep hybrid (by 7% on average).

As part of future work, we plan to investigate techniques that
reduce the overhead of automatic switching, dynamically identify
switch points online. We plan to consider the frequency of col-
lections, allocation rates, and memory hierarchy behavior to guide
adaptive selection of collection and allocation algorithms. In ad-
dition, we plan to investigate whether it is more effective to switch
between fewer, more homogeneous garbage collectors, and how our
system adapts to variable workloads in a server environment that
runs multiple applications concurrently.
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