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Abstract—Emerging portable applications, including Human
Activity Recognition and Robot Navigation, require always-on
sensing technologies to continuously monitor the environment.
Continuous sensing, however, strongly dominates the hardware
devices’ power consumption and consequently hampers the sys-
tems’ always-on functionality. In this paper we propose a circuit-
aware Machine Learning scheme that exploits the devices’ ability
to dynamically tune the quality of its sensors to trade-off system
level accuracy versus total system-level power consumption. To
this end, we 1) analytically derive the power-quality trade-off
space in sensory front-ends; 2) use these equations to make
the probabilistic relations between sensory features and their
degraded versions explicit in a Bayesian Network classifier; and
3) propose a methodology building upon this model to control
the required sensory information quality at run-time. We show
how this enables to tune the circuit’s power consumption versus
inference accuracy trade-off space with fine granularity, and
achieve significant power savings at almost no accuracy loss.
In addition, our methodology is able to cope with sensor failure
and with a dynamically changing environment by means of an
efficient on-line tuning strategy. This dynamic Power-vs-Quality
scalability is empirically shown on various Machine Learning
benchmarking datasets.

Index Terms—Hardware-aware Machine Learning, Bayesian
Network Classifiers, Quality Scalable Systems, Embedded Sens-
ing, Embedded Classification

I. INTRODUCTION

S
ENSORY technologies are essential in many portable

devices (e.g. smart watches and phones, domestic gad-

gets, robots, etc.) as they provide an interface between the

user and the environment. Many real-world applications and

implementations, however, encounter a fundamental conflict

between the desire to uninterruptedly gather, process and fuse

a large amount of high quality sensory information and the

battery life of the corresponding device.

Consider, for example, a smart-phone based Human Activity

Recognition (HAR) application used for daily activity monitor-

ing of elderly people [1]. To be reliable, this application should

be able to constantly collect and process high quality sensory

information from e.g. accelerometers, gyroscopes and GPS,

but its always-on functionality will be impeded by the high

energy demands that these sensory tasks entail [2]. State-of-

the-art implementations often address limitations on computa-

tional bandwidth by running the most complex sensor fusion

and inference tasks on the cloud [3], [4]. Yet, the dominant

power consumption of sensor interfaces remain the main bot-

tleneck towards the realization of always-on embedded sensing

applications. In addition, heavy resource usage has been shown

to be a reason leading to poor app reviews in online app stores

[5]. In this paper we consider the range of embedded sensing

applications whose energy consumption is dominated by the

sensing and feature extraction blocks. This is most apparent

in applications where classification is done locally for latency

and/or privacy reasons, and hence communication overhead

is low. Examples are wearable health monitoring [6], home

monitoring [7] or mobile activity recognition [1], [8].

To enable their always-on functionality, this class of ap-

plications necessitate a new paradigm whereby 1) the circuit

level of abstraction is scalable in favor of power consumption

savings and 2) the algorithmic level of abstraction is aware

of the circuit’s properties and can control said scalability

towards meeting the user’s performance demands. The key

insight used in this paper is that it is not always required to

operate sensing circuits at their highest possible quality. For

example, considering the use case above, it is not necessary

to perform high-accuracy high-power GPS sensing when the

data collected by the accelerometer indicates that the person

is immobile for some period of time.

The most common approach within the Machine Learning

community is to first convert sensory information into fea-

tures which then are used as input for a Machine Learning

algorithm. As an example, one can compute the mean and

energy of the measurements collected by an accelerometer and

gyroscope in order to detect whether a person is walking or

sitting. In this paper, however, we extend upon this general

scheme and propose the Power-vs-Quality scalable sensing

system depicted in Figure 1. The idea is that the system

exploits the ability of state-of-the-art circuits to dynamically

tune the quality of its sensory signals, and thus adapts the

features dynamically, in return for power savings. By being

aware of the relationship between a sensor signal’s quality and

its power consumption, and by tracking each sensory stream’s

quality and power consumption at run-time, this scheme is able

to minimize the system’s power consumption while meeting

the Machine Learning task’s requirements. The design and al-

gorithmic paradigms discussed herewith give rise to Power-vs-

Quality tunable inference systems that are capable of operating

in various trade-off points between inference accuracy and

power consumption, while maintaining the system’s robustness

to dynamically changing environments.

The main contribution of this paper is threefold, each of

them in correspondence to one of the building blocks of the
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system as depicted in Figure 1. Concretely, 1) we introduce a

tunable feature extracting front-end and derive the power-noise

performance scalability equations that describe the circuit

components of the system; 2) utilize these equations to propose

a circuit-aware Machine Learning scheme, in the form of a

Bayesian Network Classifier, that can exploit said scalability;

and 3) propose a run-time strategy that tunes the power-noise

performance and closes the loop between the scalable circuit

and the circuit-aware Machine Learning system.

The remainder of this paper is organized as follows. In

Section II, we discuss the the state-of-the-art sensing circuits

and circuit-aware Machine Learning techniques. Section III

introduces the system architecture of the proposed Power-

vs-Quality scalable inference system and briefly outlines the

interaction of the different building blocks necessary for such

a scalable-system. Next, Sections IV, V, and VI detail the

individual building blocks of our system. Finally, we experi-

mentally simulate and evaluate the proposed scalable system

in Section VII and conclude in Section VIII.

II. RELATED WORK AND BACKGROUND

We now discuss state-of-the-art approaches towards en-

abling always-on inference in embedded sensing applications,

both from a sensing-circuits and Machine Learning point of

view.

A. Circuit Design

The recent surge of applications based on smart low-

power sensing systems has sparked significant research into

highly power-efficient processors and adaptive sensor front-

ends. Many state-of-the-art implementations focus on the op-

timization and design of hardware accelerators and processors

dedicated to run specific inference algorithms [9]. Another

body of work, focuses on the sensor interfaces motivated by

the often dominant power consumption of the sensor circuits

which have to remain always-on and cannot benefit from

duty cycling, as the processing unit can. Solutions for signals

that can be sparsely represented often exploit compressive

sensing [10]–[12] based approaches to reduce the system

power consumption. For systems that do not require full

precision, but need always-on sensing, adaptive sensing based

approaches are targeted [13], [14]. Such approaches enable a

scalable resolution performance depending on the complexity

of the current information extraction task.

While highly efficient, these sensing circuits are not yet co-

optimized with the inference tasks or algorithms, which can

enable a further factor in efficiency of such sensing systems.

The tight integration of power-noise scalable sensing systems

with circuit-aware Machine Learning algorithms opens up

opportunities towards co-optimization as they are capable of

pre-processing the incoming sensory signal at the scalable

sensor front-end thus facilitating a direct interface between

the circuit’s analog domain properties and the algorithmic

implementations.

B. Machine Learning techniques

Several bodies of work in the Machine Learning community

focus on enabling efficient embedded classification of sensory

data. One of such approaches consists on sequentially deciding

what set of observations provide the most information [15]

under scarce resources [16] and whether more observations are

required to meet the tasks’ requirements [17]. However, these

techniques are often not suitable for multi-sensor time series

where sensory readouts have to be sampled synchronously at

real-time. Another stream of research focuses on cost-aware

feature sub-set selection where one trades off the value of

information in the observations with the impact these obser-

vations have on the overall system’s resource management,

whether computational or circuit oriented [1], [18], [19]. A

third line of research exploits application specific temporal

characteristics, such as context changes, to optimally switch

to low-power sensing modalities that keep inference perfor-

mance losses to a minimum [20]. Finally, the authors of [21]

have devised a run-time power-vs-quality tuning strategy for

sensor networks that relies on a cascaded detection system

to filter out irrelevant data instances and thus reduces data

transmission costs while also increasing the outcoming data

quality. However, the two aforementioned techniques exploit

application specific properties, context changes in the first

case and data transmission in the second. In addition, all the

techniques mentioned thus far only enable a few points in

the power versus accuracy trade-off space, as they can only

decide to observe a feature or not. This fails to exploit all the

power saving opportunities of the hardware platform, which,

can in fact, be tuned to operate at different levels of quality.

Specifically, state-of-the art feature selection enables a trade-

off space with 2N operating points, whereas the proposal in

this paper makes available CN operating points, where N
refers to the number of features in the classifier and C to the

number of possible levels of quality per feature. As such, our

methodology allows for a more subtle inclusion of lower and

higher quality (and consequently, power consumption) feature

versions, as opposed to the on or off approach of state-of-

the-art. In addition, we introduce a heuristic based strategy

that comes with very limited overhead, allowing it to function

efficiently in dynamic run-time scenarios.

Recent work focuses on exploiting the run-time scalability

of quantization noise [22], but fails to harness the more

power effective saving opportunities of on thermal-noise based

degradation. In addition, it does not provide a run-time strategy

for Power-vs-Quality performance tunability that can deal with

dynamically changing environmental conditions and sensor

failure. In the remainder of this paper, we will propose a

methodology that addresses the aforementioned shortcomings

to realize an efficient run-time tunable, circuit-aware embed-

ded sensing paradigm.

III. POWER-VS-QUALITY SCALABLE SENSING

SYSTEM

The noise scalable system has the purpose of enabling

sensory based classification in power constrained embedded

devices. The focus of this paper, as highlighted in Figure 1 is

the tight integration of three crucial building blocks:
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Fig. 1. Power-vs-Quality Scalable Sensing System.

a) Power-vs-Noise tunable mixed-signal feature-extracting

front-end: Within this block, the incoming sensory signal

is first processed by a set of amplifiers and filters whose

settings can be tuned to scale the level of noise tolerance

in exchange for power savings. This will be detailed in

Section IV, where we also derive the analytical equations

highlighting its scalability aspects. The processed signal is then

discretized by the Analog-to-Digital-Converter (ADC) and fed

to a digital unit where the features — measurable properties of

the incoming signal used by the Machine Learning algorithm

— are extracted. Each sensory signal is interfaced to its own

processing chain and can therefore be individually tuned. As

such, the quality of the features generated from a particular

sensor are jointly controlled. For example, in Figure 1, the

quality of Feature 1 and 2 is regulated by the amount of noise

tolerated by Sensor front-end 1 while the quality of Features

3 and 4 is controlled by Sensor front-end 2.

b) Quality scalable Bayesian Network classifier: The end

goal of the Power-vs-Quality Scalable Sensing System is to

classify the incoming sensory signals, e.g. to identify a specific

activity within a Human Activity Recognition application. This

task is achieved by a Bayesian Network classifier which was

selected over other Machine Learning schemes because: 1)

Bayesian Networks facilitate the sensor fusion required by

the applications of interest because their probabilistic nature

allows to easily model the dependencies (and conditional

independencies) among variables of different magnitudes and

natures. They also enable the seamless integration of ex-

pert knowledge. 2) Bayesian Networks allow to model the

probabilistic and statistical properties of the incoming data,

including the noise it is subjected to. 3) They allow to encode

the properties of the extracted sensory features at varying

levels of quality (or circuit noise tolerance) thus enabling the

exploitation of the scalable circuit mentioned in the previous

paragraph. 4) As a generative model, Bayesian Networks can

deal with missing data, e.g. due to failing sensors; and, in

contrast to other computationally expensive generative models

such as Neural Networks, they can do this in a concise and

efficient manner. A Bayesian Network can also be sampled

to re-create the statistical properties of the training data thus

eliminating the need to have access to ground truths or a data

corpus. As will be discussed in Section V, the model thus

enables circuit-awareness, since it contains information about

the circuit properties and it exploits it from the algorithmic

level of abstraction. Note also that the selected scheme sup-

ports any Bayesian Network model structure such as naive

Bayes or Tree Augmented Naive Bayes (hence the connected

features in black in block b) of Figure 1).

c) Run-time Power-vs-Performance tuning algorithm: The

circuit-awareness and the noise scalability provided by the

previous two blocks is exploited by a run-time control block

that monitors the user’s classification accuracy and power

consumption needs and selects the optimal sensory chain-

wise noise tolerance. The proposed strategy relies also on

the Quality scalable Bayesian Network classifier to draw the

Power-vs-Accuracy search space within which the optimal

noise configurations can be selected. In Section VI we provide

the details of the tuning strategy and we describe its run-time

implementation under static run-time conditions — during

which the optimal sensor-wise noise configurations are fetched

from an off-line generated Look-Up-Table (LUT) as shown

by block c1 in Figure 1 — and under dynamic run-time

conditions — during which we select the optimal set of sensor-

wise noise configurations according to the current state of the

world (sinit ) as shown by by block c2 in Figure 1. This block

closes the loop between the scalable circuit and the circuit-

aware algorithmic level of abstraction and it results in a set of

Pareto optimal Power-vs-Accuracy operating points that aim to

minimize the system’s power consumption whilst complying

to the classification performance requirements set by the user

and the application.
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Fig. 2. Power-vs-noise performance scalable front-end.

IV. POWER-VS-NOISE TUNABLE FEATURE

EXTRACTING FRONT-END

The Power-vs-Noise performance scalable feature extracting

front-end typically consists of the following building blocks

(see Figure 1, block a): multiple sensors, a low-noise analog

front-end amplifier for each sensor, an ADC to digitize the

amplified signal, and a digital feature extraction block where

features required by the application are extracted for each

sensor. To minimize the power-consumption of the sensing

system, we introduce a Bayesian Network based algorithm,

that controls the noise performance of the digitized sensory

data to settle for the minimum quality necessary for a partic-

ular application, and hence minimize the power consumption

of the complete system.

For the range of applications under consideration, we as-

sume the use of a 45 nm CMOS technology for the design

of both analog and digital blocks. In Sections IV-A and IV-B,

we analyze the power consumption contributions of the analog

sensing front-end and of the digital feature extraction block.

A. Analog Sensing Front-end

Commonly used analog-mixed signal sensing front-ends use

a low-noise amplifier to translate the physical sensor signal to

electrical domain and then digitize the signal using an ADC as

shown in Figure 2. Such a signal processing front-end exists

for each of the sensors used in the system. The low-noise

amplifier is modeled as an inverting amplifier with a capacitive

feedback network as shown in Figure 2 (dc-biasing not shown),

while the ADC is modeled as nb bit quantizer operating at a

sampling frequency of fsamp.

We now derive the Energy-vs-Noise performance scalability

equations for the sensing front-end shown in Figure 2. The to-

tal noise performance of the amplifier and ADC is derived first

followed by the energy-consumption. The noise performance

for the Gm cell used in the amplifier is modeled as shown in

the Figure 3. The noise current spectral-density at the output

of the Gm cell (see Figure 3) can be expressed as

SI
gm,op = 8kTγ(gminp + gmbias) (1)

where γ is a process dependent constant typically between

2.3 and 2.5, k the Boltzmann-constant and T the operating

temperature. The design variables gminp and gmbias are

the transconductances of the input transistors and the load

Fig. 3. Noise model for the Gm cell used in Fig. 2

transistors respectively. Referring the output current noise

spectral density to the input, we get:

SV
gm,inp =

8kTαγ

gminp
(2)

where α = 1 + gmbias/gminp and is typically between

1− 2.

The transfer-function for the noise spectral density from

non-inverting terminal to output of Gm cell is modeled as

(see Figure 3)

H(s) =
(

1 +
Ci

Cf

)( 1

1 + s/ωp

)

(3)

where 1 + Ci/Cf is the dc closed-loop gain while 1

1+s/ωp

represents the variation of the closed loop gain with the

frequency and ωp being the -3dB cutoff frequency.

From Eq. 2 and 3, the mean-square value of voltage noise at

the output of the Gm cell, Vn,gm,out can be hence expressed

as

V 2
n,gm,out =

∫
∞

0

| H(s) |2 SV
gm,inp

df

(ωCL)2
(4)

where CL is the equivalent load capacitance at the output

of the Gm cell. Upon integration the above equation can be

simplified to

V 2
n,gm,out =

(

1 +
Ci

Cf

)2αγkT

CL
(5)

If an nb-bit ADC completes the sensor front-end, then the

total noise contribution of the sensing front-end, Vn,rms,tot

can be expressed as

V 2
n,rms,tot =

(

1 +
Ci

Cf

)αγkT

CL
+

1

12
·
V 2
ref

22nb
(6)

where (1/12)(V 2
ref/2

2nb) is the mean-square value of the

quantization noise of an nb bit ADC. The quality of the

sensory signal generated is based on SNR of the front-end

and it can be expressed as

SNR = −20 log(2
√
2Vn,rms,tot), (7)
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nb =
SNR− 1.76

6.02
(8)

for a normalized signal swing of 1Vp−p. This SNR based

metric of signal quality expressed as number of bits nb is

used in Sections V and VI to optimize the Energy-vs-Quality

trade-off.

We now derive the energy consumption of the sensing front-

end based on the approximation that for an nb bit ADC to

yield meaningful output it is necessary that the noise of the

amplifier is smaller than the quantization noise of the ADC

V 2
n,gm,out < V 2

n,quant,adc (9)

The above equation sets a minimum limit on the load-

capacitor CL and can be expressed as

(

1 +
Ci

Cf

)2αγkT

CL
<

1

12

V 2
ref

22nb
(10)

where Vref is the ADC reference voltage. Thus

CL,min =
(

1 +
Ci

Cf

)24αγkT

V 2
ref

22nb (11)

Further, since there is a feedback factor of Cf/(Cf + Ci)
for signals with a bandwidth of fsig , the minimum transcon-

ductance necessary for the Gm-cell can be expressed as

gminp,min =
(

1 +
Ci

Cf

)

2πfsigCL,min (12)

Combining Eq. (11) and (12)

gminp,min = 48παγkT
(

1 +
Ci

Cf

)2 fsig2
2nb

V 2
ref

(13)

Using gm/ID-based design approach, for a simple OTA,

the minimum ID can hence be expressed as

ID,min = 2
gminp,min

η
(14)

The parameter η depends on the biasing of the input transistors

and is typically < 20 in the saturation and in-between 20 -

25 for the sub-threshold operation, while the factor 2 accounts

for the differential nature of the amplifier.

Very often, for designs in scaled CMOS technologies, a

single stage open-loop amplification is not sufficient and hence

typically 2-3 stage open loop amplification is used. To ensure

amplifier stability in a 3-stage amplifier design, the transcon-

ductance in 2nd and 3rd stage may need to be as high as

3gminp,min and 5gminp,min respectively thus increasing the

bias current in 2nd and 3rd stage proportionately higher. Thus,

depending on the amplifier architecture, the total amplifier bias

current ID can be estimated to be range bound as :

ID,min < ID < 9ID,min (15)

Based on the above analysis the energy consumption (per

digital sample generated) of the sensor interface circuitry

highlighted in Figure 2 can be hence expressed as

Etot =
VDDID + 2fsig2

nbFOMadc

2fsig
(16)

Fig. 4. Energy-vs-Noise performance scaling for the analog sensing front-end.

where FOMadc for STOA ADCs is typically around 10 - 50

fJ / conv-step [23].

Thus from Eq. (13), (14), (15) and (16) we can write

E1stage
tot =

Dominant
︷ ︸︸ ︷

48π
αγ

η
kT

(

1 +
Ci

Cf

)2VDD22nb

V 2
ref

+ 2nbFOMadc (17)

E3stage
tot =

Dominant
︷ ︸︸ ︷

9 · 48παγ
η
kT

(

1 +
Ci

Cf

)2VDD22nb

V 2
ref

+ 2nbFOMadc, (18)

where E1stage
tot is the energy consumed when using a single

stage open-loop amplification and E3stage
tot when using three.

This range of energy-consumption for the analog front-end is

depicted in Fig. 4 as a function of signal quality expressed in

i.e. nb.
There is a clear trade-off between the processed signal

quality and the required energy consumption. Note that a

power vs signal quality relationship can be also derived simply

by gaining knowledge of the operational frequency of the

sensor-front end, which is application specific. This power vs

quality relationship will be exploited by a Bayesian Network

based classifier in Sections V and VI to dynamically select

the features with just enough quality to maintain the required

level of accuracy for the application.

B. Digital Feature Extraction

As highlighted in Figure 1, the digital feature extraction

block computes the application specific features from the dig-

itized sensory data. These features are then used by a Bayesian

Network Classifier to predict the most likely class to which

the incoming sensor streams belong. The energy consumption

of this digital feature extraction block depends largely on the

type of operation necessary to compute them. In this paper we

consider the range of embedded resource constrained sensing

applications, where classification has to happen locally for
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privacy or latency reasons. Examples of the most common

features for this application range are mean, standard devia-

tion, magnitude, maximum, fft coefficients, etc, as discussed

by works on Human Activity Recognition [1], [8], health

monitoring [6] and home monitoring [7]. All of these features

can be computed with a set of multiplications and additions.

Therefore, in this work we estimate the energy consumption

of the feature extraction block as a function of the number

of multiply-accumulate (MAC) operations required per input

sample. The level of complexity of the aforementioned features

varies. In the calculations of this paper, we will assume that on

average, all the arithmetic operations involved in the extraction

of a feature, including multiplications, additions and compar-

isons, can be averaged as 3 MAC operations per sample (e.g.

mean, variance and min/max estimation all require one MAC

per sample, a 64 point fft would need 6, etc). As explained

in Section IV, we assume a 45 nm CMOS technology for

our energy calculations. For this particular technology and

application range, the estimated energy consumption of a 16

bit MAC operation is 1.5 pJ [24]. Assuming the use of a 16-bit

data path and floating point computations, the expected energy

consumption per input sample for the feature extraction block

is EFea.Extr. = #operations × Energy/operation16b =
3MAC × 1.5pJ = 4.5pJ as shown by the yellow curve

of in Figure 4. However, for many application specific de-

signs, digital blocks can be designed to perform arithmetic

operations with variable precision. Considering that energy

consumption in the digital domain scales linearly with respect

to bit length, the authors in [25] provide an alternative fea-

ture extraction energy estimation cost for custom hardware:

EFea.Extr.Custom = #operations×Energy/operation1b ×
#bits as shown by the purple curve.

C. Analog vs Digital power consumption

Throughout this section we have shown that, for the hard-

ware properties assumed in this paper, the energy consumption

of the analog sensing front end is mostly dominant with

respect to the digital feature extraction block. Therefore, we

will illustrate how the analog sensing block’s Power-vs-Noise

scalability, derived in subsection IV-A, can be exploited by our

proposed Machine Learning scheme. Note that the generality

of our Machine Learning strategy is not lost with these

assumptions, as the Energy-vs-Noise relationships derived in

Section IV-A can very well be done for any digital block

in applications where its power consumption dominates. An

example of such cases can be found in advanced health

monitoring systems, which do more complex denoising, ar-

tifact mitigation, or principal component analysis, resulting

in digital subsystems that are less power efficient than the

sensors themselves (accelerometers, ECG sensors, etc) and

their analog signal conditioning [26]. Just like in the analog

case, it is possible to scale the noise in the feature extraction

block (by e.g. reducing bit length or sample number in compu-

tation or storage) in favor of power consumption savings. The

proposed Machine Learning scheme can also exploit this trade-

off to determine the optimal digital feature extraction noise

tolerance. In this scenario, the control block output in Figure

1 would be fed to the digital feature extraction block instead

of to the analog sensing block. In addition, any combination of

the energy-vs-quality models represented by the four curves

of Figure 4 could be used by our run-time tuning strategy,

thanks to its heuristic based optimization methodology. For

the experimental section we continue analyzing the impact

of only the analog power scaling but will further prove that

the overhead digital power consumption does not defeat the

benefits of our strategy.

V. QUALITY SCALABLE BAYESIAN NETWORK CLASSIFIER

In the previous section, we showed how the Power-vs-

Quality relation can be derived for each sensory stream in

the system, and we concluded that it can be exploited towards

minimizing the power required for classification. This calls for

a circuit-aware algorithmic strategy that not only takes into

account the circuit’s properties but also exploits them while

meeting the users’ performance requirements.

We present a Machine Learning run-time strategy that relies

on a Bayesian Network to control the noise degradation of the

sensor front-end to meet a desired classification performance

while minimizing the power consumption. Bayesian Networks

(BN) are directed acyclic graphs that compactly encode a

joint probability distribution over a set of random variables

[27]. Unlike other deep architectures, which are typically

discriminative, Bayesian Networks are generative models and

inference can be performed regardless of what nodes are ob-

served or hidden, i.e. without the need to retrain or restructure

the model. As such, at any given time, we can decide to

stop observing any set of features or start observing sets of

previously hidden features. This capability not only allows to

completely de-activate sensor streams when desired (due to

e.g. very low power consumption requirements) but, as we will

discuss in Section VI-D, is essential to account for dynamic

run-time conditions, such as sensor failure.

For the noise tuning strategy, we propose to extend a

Bayesian Network classifier with nodes representing various

(circuit-)noise prone versions of each feature such that each

of them can be observed at a specific quality. It is important

to realize that the data used to train the model is, in most

cases, already noisy and the extent to which this noise affects

the classifier’s inference performance should determine the

tolerated circuit noise in the information gathering stage. In

Section VI we introduce a strategy that exploits this circuit

noise to trade-off power consumption for inference accuracy.

A. Model

In the rest of this paper, we use the standard notation for

variables and their instantiations. Specifically, variables are

denoted by upper case letters (F ) and their instantiations by

lower case letters (f ). Sets of variables are denoted by bold

upper case letters (F) and their instantiations by bold lower

case letters (f ).

Figure 5(a) shows the proposed model structure for an

example Bayesian Network. The n-feature Tree Augmented

Bayesian Network classifier has been extended with n addi-

tional nodes that encode the probabilistic relations between
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Fig. 5. (a) Example of a Quality scalable Bayesian Network classifier created
by extending a Tree Augmented Naive Bayes classifier with noisy feature
versions. (b) An example of the probabilistic relation between feature Fi and
it’s noisy version F ′

i
.

the features and their low quality versions, denoted by Fi and

F ′

i , respectively.

At run-time, the system observes the features F ′

i and uses

this information to marginalize their non-observed, high qual-

ity counterparts Fi. The proposed structure hence encodes the

following joint probability distribution over the original and

low quality feature sets and the class variable C:

Pr(C,F1, .., Fn, ..., F
′

1, .., F
′

n) =
n∏

i=1

Pr(F ′

i |Fi) · Pr(F1, . . . , Fn, C) . (19)

The distribution describing Pr(F1, . . . , Fn, C) is learned

from the training data and the class labels C; while the

probabilistic relation Pr(F ′

i |Fi) is modeled as a Gaussian

distribution with mean µ = Fi and standard deviation si =
Vn,rms,tot as introduced by Eq. 6. The model thus allows to

tune the amount of noise tolerated for the extraction of feature

Fi, which results in a proportional power consumption scaling

(recall from Eq. 17 that Etot and therefore Ptot is proportional

to the number of nb bits SNR).

Under this scheme, each feature can suffer from h user

defined levels of increasing quality degradation, each char-

acterized by a standard deviation: si,model = {si,1, ..., si,h}
and corresponding to a SNR range (in bits) of Ni,model =
{nbi,1, ..., nbi,h}.

As explained in Section IV, each sensory signal is interfaced

to a Feature-Extracting Front-end. Thus, the set of features

generated from each such sensory stream will suffer from

the same degradation at any given time. Consider, for in-

stance, the system shown by Figure 1 which consists of two

sensors and four extracted features. Features 1 and 2 suffer

simultaneously from the noise of sensor front-end number 1

and features 3 and 4 from the noise of front-end 2. To ease

the subsequent explanations we refer to the sets of features

of each sensory stream as Fsensor,j. Thus, for the previous

example {F1, F2} ∈ Fsensor,1 and {F3, F4} ∈ Fsensor,2. The

selected feature-wise noise configuration would be described

by sselect = {s1, s2, s3, s4} with s1 = s2 and s3 = s4. The

model as such allows to, at any given time t, assess the impact

that varying the amount of noise si on each of its observed

features i might have on classification performance.

B. Inference

At run-time, only the nodes corresponding to the low quality

feature versions (F ′

i in Figure 5) are observed while the nodes

corresponding to the high quality feature versions (Fi) are

latent, i.e. they are never observed.

The model is parameterized in terms of the standard de-

viation si of the noise impacting Pr(F ′

i |Fi) such that, for

various degrees of degradation, the same node F ′

i can be

(re)used. Note that observing a feature with an infinite standard

deviation is equivalent to completely pruning this feature

(not observing this sensor, and shutting down the sensory

chain). Given an observation {f ′

1, f
′

2, ..., f
′

n}, classification is

performed by selecting the class that maximizes the posterior

probability:

Pr(C|f ′

1, f
′

2, . . . , f
′

n) ∼
∑

F1

· · ·
∑

Fn

n∏

i=1

Pr(f ′

i |Fi) · Pr(F1, . . . , Fn, C) .
(20)

The Quality scalable Bayesian Network Classifier thus

allows to evaluate classification accuracy under different levels

of circuit induced feature quality degradation. This also means

that a relationship between classification accuracy and the

Feature-Extracting Front-end’s power consumption can be

established, which, as detailed in the following section, will

allow to control the amount of degradation needed in each

sensory chain to meet the user’s performance needs.

VI. RUN-TIME FEATURE QUALITY TUNING

The model introduced in the previous section allows to ex-

ploit the Power-vs-Noise scalability of the Feature-Extracting

front-end from the algorithmic level of abstraction. In this

section, we present the run-time strategy that controls such a

tunability and describe its functionality modes under different

scenarios.

A. Selection Strategy

The run-time strategy we propose consists of selecting

the local optimal set of sensor-wise noise configurations in

the classification accuracy versus power trade-off space. The

methodology traverses the quality scalable model to perform

this optimization procedure and it ultimately pursues two

goals: (a) for a given power consumption, find the sensor-wise

noise tolerance that maximizes the classification accuracy or

(b) for a target accuracy, find the sensor-wise noise tolerance

that minimizes power consumption. The available set of such

configurations is encoded in the quality scalable model, which

allows to choose among h different quality settings for each

of the j sensors (see Section V-A) and therefore each of their

corresponding feature sets Fsensor,j. As such, for each feature

Fi within that set, we select the standard deviation si that

defines the conditional probability distribution Pr(F ′

i |Fi). As

described in Section V-A, the selected standard deviation si
represents the total rms noise tolerated by the sensor front-end

as described by Eq. 6.

The number of sensors (and therefore Feature-Extracting

Front-ends) of the system and the number of available settings
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for each of them define the number of degrees of freedom

with which the search space can be traversed. Specifically,

the Power-vs-Accuracy search space consists of a total of hk

operating points, where h is the number of possible noise

settings defined in si,model and k represents the total number

of ”tuning knobs” or individual sensor streams in the system

(for the example in Figure 1, k = 2). Since the size of this

space increases exponentially with the number of sensors on

the system, exploring it exhaustively can become infeasible.

Therefore, as common for selection problems of this kind [15],

[28], our methodology relies on a greedy search heuristic to

explore the search space.

B. Search Strategy

Algorithm 1 provides the details of the search strategy,

which is initialized to the current feature-wise noise setting

(sselect = sinit) defined by the user or by the current run-time

conditions. This noise setting also allows the estimation of

the initial state within the power-vs-accuracy trade-off space

(p and a) which enables the algorithm to search through it until

either of the accuracy or power stop criteria (pstop, astop) have

been met.

At every iteration, the algorithm targets to reduce the quality

of each sensor-wise feature set Fsensor,j, thus producing as

many quality reduction candidates as there are “tuning knobs”

and selecting the best one by means of a greedy neighborhood

search: in each candidate j, the noise tolerated by feature i
(included within the set of features Fsensor,j) is increased

one level with respect to the current setting, hence going

from sj,vj
to sj,vj+1, where vj refers to the current value

of sj . Each candidate’s sensor-wise noise tolerance, described

by scand,j = {s1,v1 , . . . , sj,vj+1, . . . , sn,vn
}, thus induces a

possible accuracy and power consumption trade-off operating

point (acand,j ,pcand,j). Recall from Eq. 17 that the power

consumption of each sensor stream in the front-end (Pi in

Algorithm 1) is dominantly proportional to 22nbi , where nbi is

the SNR in number of bits, as defined by Eq. 7. The algorithm

then selects the candidate that minimizes a predefined cost

function CF = ∆a
∆p

, where the term ∆ refers to the predicted

state difference between step t and step t + 1. The accuracy

term a is estimated by counting the number of instances in a

validation set Fval that were correctly predicted according to

their ground truths Cval. Note that completely pruning sensors

is possible by assigning an infinite value to si.

C. Static run-time conditions

Performing this optimization procedure for a range of target

accuracy and power consumption settings results in a Pareto-

optimal trade-off front. For a selected subset of accuracy or

power targets the front-end noise configurations (S) can be

stored in a Look-Up-Table (LUT) in the embedded device.

Assuming static run-time conditions, feature-noise tuning can

then be executed by fetching the configurations that fulfill run-

time accuracy or power needs.

Input : BN , astop, pstop, Fval,Cval,sinit
Output: S,A,P
S := ∅, A := ∅, P := ∅
sselect = sinit
a = Accuracy(BN ,sselect ,Fval,Cval)

p =
∑n

i=1
Pi(si), si ∈ sselect

〈S,A,P〉 = 〈S ∪ sselect,A ∪ a,P ∪ p〉
while p 6= pstop AND a 6= astop
do

for j = 1 to n do
scand,j = {s1,v1

, . . . , sj,vj+1, . . . , sn,vn
}

∆acand,j = a−Accuracy(BN ,scand,j ,Fval,Cval);

∆pcand,j = p−∑n
i=1

Pi(Si) , si ∈ scand,j
end

sselect = argmin
N∈N

CF(∆acand,∆pcand)

update a = Accuracy(BN , sselect ,Fval,Cval);

update p =
∑n

i=1
Pi(si), si ∈ sselect

〈S ∪ sselect,A ∪ a,P ∪ p〉
end

Return: S,A,P
Algorithm 1: Feature noise tuning

D. Dynamic run-time conditions

The run-time implementation strategy above is, however,

not guaranteed to be robust under certain run-time scenarios

as demonstrated in the experimental section. Dynamically

changing circuit conditions that are not included in the model,

e.g. sensor malfunction, cannot be accounted for during this

off-line derivation of a single static optimal set (S). Storing

a different LUT for each of those possible conditions is

infeasible in an embedded device due to its limited memory

capacity. For instance, a 17 feature application with 7 available

noise conditions would result in 177 = 410 million settings

to store. Moreover, in most cases, these external conditions

cannot be predicted well on beforehand or are impossible to

monitor.

For such a dynamic setting, we propose to iterate through

Algorithm 1 at run-time, therefore selecting the optimal oper-

ating points not only in accordance to the user’s requirements

but also to the current state of the world. To achieve this, the

current feature-noise conditions are provided as an input to

Algorithm 1 (sinit) as shown in Figure 1, thus allowing the

search strategy to cater to dynamically changing feature-noise

conditions. However, the data driven accuracy estimation —

that consists on counting the number of correctly predicted

instances from a validation set Fval to which the noise

described by scand has been added — requires a significant

amount of memory to store such a validation set. Therefore,

we replace the data-driven accuracy estimation by an on-line

accuracy estimation approach that utilizes information solely

from the Bayesian Network as shown in Figure 6. For that,

we rely on a simple forward sampling process executed on-

line on the device and we will show that the algorithm can

perform adequately, even for small sampling sizes (which are

favored due to the embedded device’s constraints). At run-

time, we perform forward sampling on the Bayesian Network
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Fig. 6. Process for run-time estimation of expected accuracy: the sample set
Q, which comprises Ns data vectors, is sampled from the off-line trained
model BN . Each data vector qi contains sampled feature values qs and the
class it was sampled from cs. The model BN is then used to estimate the
class posterior Pr(C|qs) and is compared to the sampled cs to estimate the
expected accuracy in equation 21.

parameterized by the current choice of tolerated noise sselect.

By drawing a total number of NS instances, we effectively

produce the sample set described by Q = {q1, . . . ,qNs}
with q = {cs, q1, . . . , qn}, where cs is sampled from the

class node and the instances q are sampled from the noisy

feature nodes. Recall from Section V-A that the probabilistic

relation Pr(F ′|F ), as defined by Eq. 19, is parametrized by

a Gaussian distribution with standard deviation proportional

to the current amount of noise tolerated by each feature.

Thus, this sampling process allows to effectively draw a

variety of virtual datasets that are capable of emulating the

effect of the current noise tolerance setting on the sensory

features. Using the probabilistic relations provided by the

Bayesian Network, we compute each instance’s class posterior

probability according to Eq. (20). The expected classification

accuracy is then estimated with the following equation:

E[accuracy ] =
1

NS

NS∑

s=1

1(cmaxs = css) , (21)

where cmaxs = argmaxC Pr(C|qs) and the choice of NS

is application dependent. Algorithm 1 uses the sampled set Q

and the expected accuracy estimation in Eq. 21 to perform

the on-line selection of feature noise settings that satisfy the

desired power-accuracy needs (pstop, astop). Specifically, the

set of instances sampled from the noisy feature nodes F ′ pro-

vide Algorithm 1 with the input validation set Fval, while the

instances sampled from the class node C provide the ground

truths Cval. The term Accuracy(BN , sselect ,Fval,Cval) can

then be estimated by E[accuracy ], as defined in Eq. 21.

TABLE I
EXPERIMENTAL DATA SETS.

Dataset Instances Features Classes Selected F.

Pioneer 1 6129 27 35 17
HAR 10299 561 6 37
Sonar 208 60 2 8
Glass 214 9 6 6

WDBC 569 30 2 11
Pima 768 8 2 5

Vehicle 846 18 4 8
Banknote 1372 5 2 5

Leaf 340 16 30 10
Ecoli 327 8 5 5

Australian 690 14 2 7

VII. EXPERIMENTAL EVALUATION

We analyze the performance of the proposed noise tuning

strategy under static and dynamic run-time conditions on

two sensor-based applications of interest: Human Activity

Recognition [8] and Mobile Robotics [29]. Furthermore, we

implement the methodology in 9 additional Machine Learning

benchmarking datasets [30] to demonstrate its general appli-

cability.

A. Experimental setup

All the benchmarks included in this paper underwent a

pre-processing step that consisted on removing the nominal

features and performing feature selection with Weka’s wrapper

subset evaluator with a Bayes Net classifier, a best-first search

and the default parameters [31]. Table I outlines the details

of the chosen benchmarks, including the number of pre-

selected features (column denoted Selected F.) as used in our

experiments.

For all the experiments, we defined h = 7 possible sig-

nal quality settings (see Section V-A) equal to smodel =
{0.0002, 0.0004, 0.005, 0.02, 0.05, 0.09,∞} — with ∞ cor-

responding to pruning the feature — normalized according

to each feature’s dynamic scale and corresponding to a SNR

range of Nmodel = {11, 10, 5, 4, 3, 2, 0} bits. The power

estimates were then obtained with the Equations detailed in

Section IV-A . To ease the performance analysis and due

to missing information on the properties of the circuit with

which each data set was generated, we normalized those

estimated in all experiments from 0 to 1. As such, a normalized

power consumption equal to 1 represents the setting where all

feature streams are extracted at the highest possible quality

(corresponding to si = 0.0002 or a SNR of 11 bits).

All the experimental results we present throughout this Sec-

tion were obtained by conducting a 5-trial, 5-fold validation.

The reported accuracy percentages reflect the performance of

the Quality Scalable Bayesian Network Classifier with a naive

Bayes structure (block b of Figure 1) when the tested instances

are subjected to the noise tolerance setting selected by the

Feature Quality Tuning strategy (Section VI) in either the

Static or Dynamic run-time conditions. That is, Gaussian noise

parameterized by the current choice of si was added to each

1From activities that include only linear movement (without turning and
gripper activity).
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feature and then discretized, thus simulating the impact that the

noisy analog component of the Sensor Front-end might have

on the quality of the features fed to the classifier. For this, we

assume that the relationship between the analog circuit noise

from the amplifiers and filters of the Sensor Front-end and the

noise we inject in the features is linear. This is because all the

operations we do in the digital domain — including feature

extraction— consist of additions and multiplications. An ad-

dition of noisy data will result in a noisy result with a linear

noise dependence: a+ noise+ b+ noise = a+ b+2 · noise.

The same goes for a multiplication: (a+noise)·(b+noise) =
a · b + (a + b) · noise + noise2, where the last term can be

neglected since noise is smaller than the signal.

B. Performance of the Feature Quality tuning strategy

In this section we analyze the trade-offs induced by imple-

menting the Feature Quality Tuning strategy under different

scenarios and conditions.

We perform most of the analyses on the Human Ac-

tivity Recognition (HAR) [8] and the Mobile Robotics Pi-

oneer benchmarks [29], as they correspond to the sensor

based applications of interest listed in this paper and they

have been used by the Machine Learning community for

classification tasks. The HAR benchmark includes features

generated from six sensor streams (a tri-axial accelerome-

ter and a tri-axial gyroscope) and can be used to identify

the activities of ‘Walking’,‘Walking upstairs’,‘Walking down-

stairs’,‘Sitting’,‘Standing’ and ‘Laying’. The features used for

these experiments include properties of time and frequency

based physical quantities among which are mean, standard

deviation, maximum/minimum magnitude, kurtosis, entropy,

skewness and energy of body acceleration and jerk, and gravity

[8]. The Pioneer benchmark was collected by a mobile robot

with three different types of sensors (sonars, wheel odometers

and vision sensors) and it has been used to identify specific

navigation occurrences described by the direction of the move-

ment (forwards or backwards), whether the navigation path

was obstructed or unobstructed, the activity’s speed, and the

visibility of objects in the environment [29].

As mentioned in Section V-A the noise scalable Bayesian

Network model makes available hk operating points in the

Power-vs-Accuracy trade-off space, where h refers to the

available number of noise settings per feature set and k refers

to the number of ”tuning knobs”, or noise-tunable sensors with

their own feature generating sensory stream (see Section V-A).

With 6 tuning knobs for the HAR application (a tri-axial

accelerometer and tri-axial gyroscope), there are thus 76 such

operating points available. For the experiments in this paper,

we used 17 of the Pioneer features, each corresponding to

a particular sensory stream and therefore a particular tuning

knob, resulting in a total number of 717 possible operating

points. Instead of searching exhaustively across these large

trade-off spaces we implement the proposed heuristic, which

induces the Pareto-optimal trade-off curves shown by Figure 7.

Each of these curves consists of h×k Pareto-optimal operating

points, that is 42 for HAR and 119 for Pioneer.

For the HAR application, the scheme provides power con-

sumption savings of at least an order of magnitude whilst

Fig. 7. Power-vs-Accuracy trade-off achieved by the noise tuning strategy on
the HAR and on the Pioneer benchmarks compared to other state of the art
implementations.

preventing accuracy degradation. Additional power savings

of, for example, 4 orders of magnitude can be traded-off for

accuracy losses by selecting an operating point that performs

at 90% instead of 95% accuracy. The Pareto-front for the

Pioneer benchmark avoids accuracy degradation with power

savings of an order of magnitude but degrades at a faster

rate than the one for the HAR benchmark. This difference

in performance, among other factors, relates to the number of

instances available in the datasets and the number of classes

to predict (see Table I) . The HAR dataset has almost twice

as many instances as the Pioneer does, which allows to train

a more precise model. In addition, the Pioneer dataset has

35 classes whereas the HAR only has 6, resulting in more

overlap of the conditional distributions Pr(C|F ), especially

when the features are subjected to noise. Such effects can also

be observed on the benchmark datasets that will be discussed

in Section VII-E.

Figure 7 also shows the results attained by our proposal

in comparison to state of the art implementations. For both

datasets, we compare with state-of-the-art feature selection

strategies, such as the one used by [18], where it is only

possible to decide whether a feature is observed or pruned.

In addition we include the classification accuracy attained

by several other Machine Learning methodologies on the

same dataset: we contrast the HAR application with 5 other

benchmarks [1], [32]–[35] and the Pioneer application with

[29].

Figure 8 illustrates, for the HAR benchmark, four par-

ticular trade-off configurations achieved with the presented

optimization methodology. Point 1 shows that a power saving

of one order of magnitude without accuracy degradation can

be achieved, when the features generated by the gyroscope

in x have a noise setting of s = 0.0002 while the rest use a

resolution of s = 0.0004. An additional power reduction of

three orders of magnitude (point 2) with a degradation of 5%

accuracy is achieved when the features from the accelerometer

in y tolerate tolerates s = 0.005 and the rest tolerate s = 0.02.

Point 3 and 4 are achieved by pruning the y-gyroscope and

the x-gyroscope sensor streams, while allowing more noise for

the rest of their features as shown in the Figure.
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Fig. 8. Examples of four operating points on the Power-vs-Accuracy trade-off
for the HAR benchmark.

C. Feature noise tolerance run-time implementation

The trade-offs discussed in the previous section assume

static conditions and, under such assumption, can be imple-

mented at run-time by fetching the selected operating points

from a LUT. As we have discussed in Section VI, dynamically

changing run-time conditions can reduce the robustness of the

LUT strategy.

As a motivating example, we now illustrate the LUT

strategy’s lack of robustness in the case of sensor malfunc-

tion or sensor de-activation for the HAR and the Pioneer

datasets in Figure 9. The blue curve shows the results from

the LUT methodology with entirely functional sensors and

serves as a reference. The red and yellow curves show the

performance during failure of a particular sensor (listed at

the top of the sub-plots) of the on-line strategy and the LUT

strategy, respectively. Whereas the on-line methodology is

able to, at run-time, pick a feature combination that does

not require the usage of the failed or deactivated sensor,

the LUT methodology is bound to the settings selected off-

line, which are not optimized to account for this situation.

Consider, for instance, the failure of the HAR application’s z-

accelerometer after the first iteration. The on-line methodology

(red) is capable of selecting new sensory noise and pruning

combinations that achieve almost the same performance as

the reference with fully functional sensors (blue). In contrast,

the LUT methodology (yellow) experiences an accuracy drop

of more than 2% after a few iterations. A similar effect can

be observed when the odometers of the Pioneer application

lose functionality. Certain applications, however, rely heavily

on features from particular sensors, which, for the current

experiments, is also a consequence of the feature selection

procedure the datasets underwent as a pre-processing step.

Consider, for example, the failure of the y-axis accelerom-

eter in the HAR application. Both in the on-line and off-line

case accuracy fall considerably after the first iteration because

some of the features extracted from that sensor provide the

most valuable observations. A similar effect is observed in

the case of failure of all seven sonars of the Pioneer robot as

two of them bear the most informative observation.

This is observed as well as of the vision sensors in the same

application. Overall, note that regardless of the application and

the failed sensor, the LUT methodology’s accuracy drops at a

faster rate than the on-line optimization methodology. It should

be noted that due to its probabilistic nature, Bayesian Network

classifiers are capable of successfully inferring classes regard-

less of what feature subsets are observed or hidden. Other

Machine Learning schemes, such as Neural Networks, would

not be able to deal with this without having to retrain the

model.

Fig. 9. Performance comparison of the LUT and on-line optimization
strategies during sensor stream malfunction.

Regardless of whether the application is faced with a

dynamic run-time scenario (as the one just discussed), it is

important to assess the performance of the on-line optimization

strategy against the LUT methodology, as the on-line strategy

suffers from imperfect accuracy estimation due to its limited

sampling set. Figure 10 shows a comparison of the trade-

off achieved by the off-line LUT methodology (as seen in

the last Subsection) and the on-line optimization when using

three sampling set sizes NS for the estimation of expected

accuracy in Eq. 21. Specifically, for the blue curve we used a

sample size NS equal to IN , where IN is the total number of

instances available in the dataset (see Table I), for the red we

used NS = IN/5 and for the yellow NS = IN/10. Overall,
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Fig. 10. Performance comparison of the LUT case and the on-line case with
different sample sizes

the performance loss from the on-line strategy is very limited,

or less than 2%. Note that the smaller the sample size, the

larger the standard deviation across the different trials will be.

Overall, we have seen throughout this Section that the

on-line optimization methodology is capable of dealing with

unforeseen dynamic run-time situations while retaining most

of its Power-vs-Accuracy performance, even for small sample

sizes (IN/10).

D. Digital overhead power consumption

This section will assess the computational overhead due to

the run-time tuning strategy, and put it in perspective relative

to the achievable system power savings. Recall from Section

IV-C, that the analog sensor front-end power consumption is

dominant with respect to the digital feature extraction, so we

leave the latter out of this analysis. We will illustrate this

overhead with the HAR benchmark, described in Table I.

Similar to Section IV-B, the energy consumption estimation

is based on the number of required elementary operations.

Note that, because the probabilistic relations Pr(F ′|F ) can

be parametrized and therefore Pr(F ′|C) can be computed

in advance, the marginalization is not needed at run-time.

Considering the necessary memory operations, as well as all

the actions that have to be performed to sample the Bayesian

Network and estimate the expected accuracy, the elementary

operation count per iteration of Algorithm 1 is: (d+1)×2Ns

memory fetches; (d+1)×2Ns register operations; (2d+2)×
2Ns multiplications; and Ns × (3 + c + d × (1 + card(d)))
additions (where d denotes the number of features and card(d)
the number of values each of them can take on, Ns the number

of samples and c the number of possible classes).

In Table II we put this overhead power consumption of the

tuning algorithm in perspective with the lowest analog sensing

power consumption, which will take place when the signal is

TABLE II
OVERHEAD OF RUNNING ALGORITHM 1 EVERY MINUTE WITH RESPECT

TO LOWEST ANALOG POWER CONSUMPTION.

Scaling scenario
Relative power
consumption

1) Worst:Pmax to Pmax/5, NS = IN 0.4%

2) Average:Pmax/5 to Pmax/10, NS = IN/5 0.02%

3) Best:Pmax/10 to Pmax/20, NS = IN/10 0.006%

extracted with only 2 bits SNR (see Figure 4). For this analysis

we assume that the analog sensor-front end has a frequency of

10 kHz and that the control block is running Algorithm 1 every

minute. Let’s analyze three different scenarios: 1) The system

is currently using all the features at its highest quality and,

over the course of the following minute, we need to scale the

analog power consumption by 5 fold with minimum accuracy

loss (thus NS = NI for expected accuracy estimation). We

can see from the first row of the table that the tuning algorithm

would require 0.4% of the lowest analog power consumption.

2) If we would look for a further power consumption scaling

of Pmax/10 while relaxing the accuracy specifications (using

now NS = NI/5), the relative power consumption decreases

all the way to 0.02%. 3) Finally, going from a scaling of

Pmax/10 to Pmax/20 with the lowest possible number of

samples for the expected accuracy estimation reduces the

consumption to as low as 0.006%. Because the overhead of

the on-line tuning procedure is negligible in comparison to the

overall power savings for several sample sizes, the designer

is allowed to freely chose among them in accordance to their

optimization targets, i.e. reduce the power as much as possible

with a small sample size or maximize the performance as much

as possible while still attaining power savings.

Note that, similar to the control block, the classification task

itself (block b) of Figure 1) is required at a much lower fre-

quency than that of the sensing and feature extraction blocks.

This as the inference runs on features which are extracted over

a larger time window (such as min/max/mean/variance/fft/).

Moreover, each iteration of the algorithm run by the control

block includes several inference steps. Therefore, we do not

include any further analysis on the classification blocks power

consumption.

E. Methodology’s performance for a wide range of bench-

marking datasets

For the purpose of generality, we also demonstrate the

applicability of our methodology on 9 benchmark data sets

from the UCI Machine Learning repository [36]. Most of

these datasets are not from sensor-based applications, however,

we assumed that they provide numerical strings similar to

those collected by sensor interfaces. This also shows the broad

applicability of our methodology: it successfully achieved the

trade-off of interest regardless of the application and data type

it encounters.

Figure 11 shows the trade-off attained by the selection

strategy at different Power scaling levels for all the datasets.

The curves labeled “Offline” present the results from estimat-

ing the accuracy with a validation data set (which would be
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Fig. 11. Performance of the Feature Quality Tuning algorithm for different benchmarks.

implemented at run-time by fetching this values from a LUT).

The rest of the curves refer to the on-line optimization strategy

as discussed in the last section, for three sizes of samples

used for the estimation of the expected accuracy. Accuracy

degradation rates depend on the data sets’ properties: number

of sensor streams or ’tuning knobs’, number of possible classes

to predict, and number of instances available for training. More

tuning knobs result in a finer granularity of the Power-vs-

Accuracy trade-off space and thus the possibility to better

comply to the particular operational needs requested by the

user. However, a larger dimensionality in Bayesian classifi-

cation problems results in increased occurrences of decision

boundaries [37] —regions where the curves of Pr(Fi|C)
intersect— and therefore in higher susceptibility to classifi-

cation errors. In other words, a noisy feature value f ′

i can

be assigned to a discretization interval different to the one

its noiseless version fi would be, resulting in the prediction

of different classes in both cases. This effect can also be

heightened by a wider shape of the distribution of Pr(Fi|C)
due to the class overlap this entails. Conversely, data sets

with larger training sets result in more robust classifiers. For

example, note how the off-line trade-off compares to the on-

line trade-offs for the Banknote vs for the Sonar benchmarks

— with 1372 and 200 dataset instances, respectively. The

performance of all 4 curves in the first case do not differ

for more than 3% while in the latter case there is serious

accuracy loss regardless of the sample size. In general, we

can conclude that Power-vs-Quality Scalable Sensing Systems

are expected to be more valuable for multi-sensory systems

not only because the number of possible configurations in

the Power-vs-Accuracy trade-off space is proportional to the

number of available ’tuning knobs’ as mentioned before; but

because it is more likely that the model does not largely

rely on only one sensor, thus keeping classification accuracy

from degrading for a significant amount of power consumption

savings.

Under the same experimental conditions we can see that,

overall, all the data sets benefit from the different noise tuning

strategies: in all our experiments, they lose less than 5%

accuracy while achieving power savings of at least four orders

of magnitude. This also proves that the methodology can be

effectively implemented with a wide variety of applications as

it allows to select the optimal settings (e.g. amount of noise

injected, desired initial and final accuracy/power) according to

the data set and the classification task.

VIII. CONCLUSION

In this paper we presented a Power-vs-Quality scalable

sensing system which allows to efficiently tune noise in

sensors through a Machine Learning controlled feedback loop.

We proposed a Bayesian Network classifier structure that

encodes the probabilistic relations between sensory features

and their noisy counterparts with multiple levels of circuit de-

pendent degradation. This enables a run-time implementation

of dynamic Power-vs-Quality tunable inference for always-on

sensing. We demonstrated that this model allows to exploit
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the resource saving opportunities of feature tunable sensing

systems by dynamically controlling the amount of tolerated

noise across sensory features. We discussed the performance

of the proposed methodologies through the analysis of the

potential power consumption versus inference accuracy trade-

offs on several sensor based applications and we demonstrated

the general applicability on 11 standard Machine Learning

datasets. The methodologies are capable of dynamically find-

ing optimal sensor front-end noise settings, that can provide

significant power savings, while maintaining or only slightly

degrading accuracy. Additionally, we demonstrated that our

on-line methodology is robust against sensor failure while

incurring in negligible power overhead, proving thus its im-

plementation feasibility on embedded sensory devices.
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