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Abstract—Service-oriented architectures (SOAs) promise to provide transparency to resource access by exposing the resources

available as services. SOAs have been employed within pervasive computing systems to provide essential support to user tasks by

creating services representing the available resources. The mechanism of combining two or more basic services into a possibly

complex service is known as service composition. Existing solutions to service composition employ a template-matching approach,

where the user needs are expressed as a request template, and through composition, a system would identify services to populate the

entities within the request template. However, with the dynamism involved in pervasive environments, the user needs have to be met

by exploiting available resources, even when an exact match does not exist. In this paper, we present a novel service composition

mechanism for pervasive computing. We employ the service-oriented middleware platform called Pervasive Information Communities

Organization (PICO) to model and represent resources as services. The proposed service composition mechanism models services as

directed attributed graphs, maintains a repository of service graphs, and dynamically combines multiple basic services into complex

services. Further, we present a hierarchical overlay structure created among the devices to exploit the resource unevenness, resulting

in the capability of providing essential service-related support to resource-poor devices. Results of extensive simulation studies are

presented to illustrate the suitability of the proposed mechanism in meeting the challenges of pervasive computing—user mobility,

heterogeneity, and the uncertain nature of involved resources.

Index Terms—Pervasive computing, dynamic service composition, graph models, middleware, heterogeneous devices.

Ç

1 INTRODUCTION

SERVICE-ORIENTED architectures are suitable for designing
and deploying pervasive computing environments in

which facilitating user tasks is a major focus. Typically, user
tasks will require a number of resources possibly spread
over the networked environment. If the user requirements
are known a priori, the required resources can be tuned for
user access when desired. However, such a static design of
systems would limit their possible usage by other user
tasks. Due to the growing applications of pervasive
computing, there is a need to provide support to user tasks
in the face of dynamic challenges such as heterogeneity,
resource restrictions, and mobility. Service-oriented envir-
onments promise flexibility in terms of user support, as well
as better resource utilization. By modeling the available
resources as services and by designing a mechanism to
access the available services, a pervasive computing
environment can be effectively transformed into a service-
oriented environment. Further, by creating access mechan-
isms that can dynamically utilize available services in an
efficient way to provide the best possible support for user
tasks, guaranteed results can be delivered.

Service composition mechanisms are being employed to
deliver support to complexuser taskswithin service-oriented
environments. The mechanism of combining two or more
services together to form a complex service is known as
service composition. Service composition mechanisms are
classically treated as extensions to service discovery techni-
ques. Typically, a service composition system accepts a
complex user task as an input and attempts tomeet the needs
of the task at hand by appropriately matching the task
requirements with the available services. The approaches
defined in [1], [2], [3], and [4] have the requirement that there
is a one-to-one correspondence between the required services
and those that are available. If one or more of the required
services cannot be located, existing systemseither fail or enter
an extended mode of discovery.

Typical pervasive computing environments are envi-
sioned to embody a number of devices with a very rich set
of functionalities. In the presence of such richness, it is
desirable to dynamically combine available basic services (as
building blocks) to create composite services. User and
application service requests typically require support from
multiple services. Current solutions are limited to a one-to-
one matching between the requested services and those that
are available. The dynamic service composition mechanism
presented in this paper identifies possible ways to combine
existing services to arrive at a service required by a user/
application request. In the rest of the paper, the requests
that need service support are also referred to as tasks.

The main contributions of this paper include: 1) a
mechanism to model services, 2) a graph-theory-based
service compositionmechanism, and 3) a hierarchical service
overlay in pervasive computing environments. The service
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model is aimed at capturing the features and useful
characteristics of resources in a pervasive environment using
the Pervasive Information Communities Organization
(PICO) [5] middleware. Semantic descriptions of services
are used to 1) organize services in a repository and 2) retrieve
services required by tasks. The dynamic composition
mechanism built using graph techniques has the capability
of combining existing services to arrive at a complex solution.
The hierarchical service overlay formed is capable of
handling a number of challenges in pervasive computing
such as resource heterogeneity, user and resource mobility,
locality of service provisioning, and so forth. In an earlier
work [6], we have introduced the basic compositionmechan-
ism and the hierarchical service overlay [7] mechanism. In
this paper, we extend the initial models and present detailed
discussions. A brief description of the overall architecture
and the PICO middleware model is presented in Section 2.
Themodelused to represent services and tasks ispresented in
Section 3. Section 4 presents the technique used to aggregate
available services and the mechanism of task resolution. The
hierarchical service composition mechanism based on a
device overlay formed through the LATCH protocol is
presented in Section 5. Section 6 details the capabilities of
our composition mechanism in terms of its ability to handle
the challenges involved. In Section 7, we lay out our future
research directions and some open problems.

2 SYSTEM ARCHITECTURE

The overall system architecture in a service-oriented
environment is abstractly represented in Fig. 1. Typically,
resources that can be potentially used over the network are
modeled as services. The services thus created are asso-
ciated with metadata that describe the service and their
usage pattern. Many such services available within the
environment are discovered using one of the popular service
discovery mechanisms [8], [9], [10]. The descriptions of
discovered services are stored in a centralized directory, as
in the Service Location Protocol (SLP) [9], or in a distributed
directory structure such as that in Jini [8]. Users (applica-
tions) approach the directory to locate one or more services
they need. The directory performs a query on the registered
services and returns a matching service if found. In systems
such as SpiderNet [2], Anamika [1], and the recent Web
services infrastructure [11], where service composition is
supported, the users (applications) are accommodated by
locating complex combinations of simple services. Such

composed services enable users (applications) to reach their
goal without having to discover and coordinate among a
number of services on their own.

The service composition mechanism presented in this
paper employs the event-oriented middleware called PICO
[5]. The middleware framework provides a transparent
platform for applications and services alike to operate on
and cooperate with each other in an efficient manner. The
modeling constructs in PICO provide ways to extract the
capabilities of resources and allow services to be built
around the capabilities. By creating a cooperative structure
among the designed services, a mechanism for achieving
complex goals is realized.

The device model captures the characteristics and features
of the available hardware resources. The identified features
in the device model are provided as services over the
network by creating software entities called delegents
(intelligent delegates). Many such delegents can be com-
bined together into a cooperative structure called commu-
nities. The communities offer a transparent service usage
mechanism within the PICO framework.

3 SERVICE MODEL

The capability of a service-oriented system to successfully
operate in the face of the above-stated dynamic conditions
depends greatly on the description of the service and the
mechanism used to identify suitable matches to facilitate
task support. There have been a number of service-oriented
systems [12], [11], [13], [8], [4], [9] that allow service
descriptions to include domain-specific information, en-
abling intelligent service selection. Typically, the metadata
that represents the service includes descriptions about
service capabilities. By employing semantics, formal de-
clarative descriptions are attached to services. Computer
programs can use these descriptions to find the appropriate
services and use them correctly [14]. A domain ontology is
used to conceptualize domain knowledge with commonly
accepted vocabulary and to provide semantics to service
descriptions [15]. By referring to such ontologies, the
representation of entities can be interpreted. There have
been a number of service composition mechanisms pro-
posed in [16], [17], [18], and [19] for Web services that
exploit the semantic information associated with service
descriptions. Although much of the work involving
semantics is still under research, it is expected that many
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Fig. 1. Overview of operations in SOA. (1) Resources are exported as services. (2) Services are registered at the directory. (3) Users query the

directory for service(s). (4) Directory performs lookup/composition on registered services. (5) Directory returns results to user.



systems will benefit from semantics-based approaches in
the near future. In Section 4, we describe a method that
utilizes the semantic description of services.

3.1 Service Representation

Each delegent service is described as a simple graph
GS ¼ fVs; Es; �s; �sg, with Vs being a single element set
representing the service itself. The directed edge set Es

represents the inputs and outputs for the service. The vertex
attribute function �s is responsible for embedding the
attributes on the vertex, including the semantic description
of the service, location, cost of utilization, promised through-
put, advertised delay, and so forth. The edge attributes,
including the semantic description of the parameter, the
parameter type, the data rates, formats, and so forth, are
represented by the function �s.

Fig. 2 shows the representation of a service that performs
text-to-voice conversion. The semantic attribute associated
with the input is text, whereas the syntactic attribute
specifies the expected form of text, which is ASCII in this
case, along with other associated parameters such as the
data rate. The descriptions on the vertex and other edges
follow the same approach.

3.2 Task Representation

User tasks and applications that need additional support
can exploit the presence of services. The model used to
represent tasks contains descriptions of required services.
Each task is modeled as a directed attributed graph
GR ¼ fVr; Er; �r; �rg, where the vertex set Vr represents the
services required to accomplish the task, and the edge set Er

represents the transition among the services. The attributes
on the vertices are represented by �r, including preferences
such as the location, cost, acceptable delay, and so forth.
The attributes along the edges are represented by �r, which
takes care of attaching the semantic description of data, data
formats, data rates, quality requirements, message formats,
and so forth. Fig. 3 shows an example of a task graph,
representing the task of reading out a file to a user.

There has been a number of initiatives [20], [21], [22], [23],
[24] focusingon the extraction of requestmodels fromcontext
information. In [24], a detailed framework for generating a
task based on the target application has also been provided.
Based on these existing works, we assume that the graph
representing a task is already embedded into the applications
by the designers or that the application has the ability to
generate the requests based on the current context.

4 SERVICE AGGREGATION

Typically, all the services available are collected in direc-
tories, where the metadata associated with services are

stored. The directory is either maintained as a centralized
structure, in SLP [9], or in a distributed fashion, as in Jini [8].
For simplicity, we first present a centralized directory
scheme that supports service composition. The distributed
structure of service aggregation and service composition is
presented in Section 5.

In a centralized scheme of operation, all the services
present within a pervasive computing environment are
registered with a directory. At the directory, the service
graphs ðGSÞ are parsed for storage into a two-layered
aggregation graph GP . For each registered service, the first
stage of aggregation is based on the semantic parameters
associated with the service. The second stage of aggregation
is based on the syntactic type of the parameters. Algorithm 1
is the procedure for storing all the registered services into
the aggregated graph GP . Consider the service graphs
shown in Fig. 4a. The first service Sae>b provides a
transformation from the semantic type A to the semantic
type B. The actual syntactic types associated are a1 and b1,
respectively. Similarly, the second service Sbe>d transforms
from the semantic type B to D, whereas the syntactic
parameters associated are b2 and d2, respectively.

Algorithm 1. Service aggregation algorithm

1: InitGP ¼ null

2: for all GS do

3: pin ¼ inParamðGSÞ, pout ¼ outParamðGSÞ

4: if psemantic
in 62 G1

P then

5: addNodeðG1
P ; p

semantic
in Þ

6: end if

7: if psemantic
out 62 G1

P then

8: addNodeðG1
P ; p

semantic
out Þ

9: end if

10: if isNeighborðpsemantic
in ; psemantic

out ; G1
P Þ ¼ FALSEÞ then

11: addEdgeðpsemantic
in ; psemantic

out ; G1
P ÞÞ

12: end if

13: if pin 62 G2
P then

14: addNodeðG2
P ; pinÞ

15: end if

16: addEdgeðpsemantic
in ; pinÞ

17: if pout 62 GP then

18: addNodeðGp; poutÞ

19: end if

20: addEdgeðpsemantic
out ; poutÞ

21: inNode ¼ getNodeðG2
P ; pinÞ

22: outNode ¼ getNodeðG2
p; poutÞ

23: Edge e ¼ addEdgeðinNode; outNodeÞ

24: attribsðeÞ ¼ attribsðGSÞ

25: end for
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Fig. 2. Graph representation of a service.
Fig. 3. Graph representing the task of reading out a file.



When Sae>b is registered at the directory, the following
holds true:

. nodes A and B are created in the first layer,
G1

P 2 GP ,
. a directed edge is created between A and B in G1

P ,
indicating that a service that can perform the
transformation from A to B exists,

. nodes a1 and b1 are created in G2
P ,

. directed edges connect nodes from G1
P to G2

P (A
to a1 and B to b1), indicating that the syntactic
parameter a1 represents the semantic type A and the
parameter b1 represents the syntactic type B, and

. adirectededge is created inG2
P betweena1and b1, and

the attributes on the edge a1e>b1 are copied from
�sðSae>bÞ.

A similar process is carried out for the service Sbe>d, also
resulting in an aggregation as shown in Fig. 4b.

During the process of aggregation, the attributes avail-
able through the service definitions are maintained as the
attributes on the edges of G2

P . These attributes are essential
to match the requirements of a task to the available service
descriptions during composition. By aggregating all the
available services into one single graph, we essentially
maintain an aggregated knowledge base which can be
queried for supporting complex tasks. In Section 4.1, we
detail the basic process of extracting a possible composed
service, that is, matching a task.

4.1 Task Resolution

A task is submitted to the directory for resolution. At the
directory, the components of the task graph are matched
against available basic services to generate possible compo-
site services. If there is a direct match between an available
service and the requirements specified in GR, the user task
is supported trivially. On the other hand, if such a direct
match does not exist, a combination of available services
can be utilized to meet the requirements. To accomplish
this, we can combine multiple services in such a way that
the resulting complex service provides the same function-
ality as the required service. Two services S1 and S2 can be
combined with one another to form a complex service S3

under the following conditions:

outputðS1Þ ffi inputðS2Þ; ð4aÞ

�sðS
out
2 Þ � �sðS

in
1 Þ: ð4bÞ

The first condition (4a) ensures that the output produced

by S1 can be consumed by S2. The second condition (4b)

states that the output attributes of S1 can be completely

accepted by S2.

While (4a) restricts the services that can be combined

based on the type of parameter, (4b) imposes the condition

that the data produced by one service needs to be

consumed by its successor with minimal losses.

The process of coming up with a possible composition

for a given task is according to the procedure presented in

Algorithm 2. Similar to service aggregation, task resolution

is also performed in two steps. In the first step, one or more

possible compositions are derived at the semantic level

based on the aggregate graph G1
P . If a composition is

possible at the semantic level, the underlying services that

can take part in the composed result are identified at the

second level of aggregation G2
P during the second step. For

each vertex in the task graph GR, the semantic mappings of

the inputðA ¼ psemantic
in Þ and outputðB ¼ psemantic

out Þ para-

meters to the nodes in the aggregation G1
P are identified.

If both A and B are in G1
P and if a path exists from A to B,

then a possibility of providing the requested service exists.

Any path identified in G1
P is a composition in the semantic

plane. To identify the corresponding services that can take

part in the composition, a corresponding path needs to be

identified in G2
P , which is done by identifying the correct

syntactic parameters (a and b) related to the request

(available as links from G1
P to G2

P ) and locating the shortest

path from a to b in G2
P , as shown in Fig. 5. The procedure is

repeated for all the nodes in GR. The composition identified

is stored in the composed graph GC , which is returned as

the result (for the query GR). For each of the nodes, K

(predefined) shortest paths are considered in G1
P and a

feasible composition in G2
P is derived based on one of the

K paths. The process of task resolution is depicted in Fig. 5.

The resulting composed graph GC ¼ fVc; Ec; �c; �cg is also a

directed attributed graph. GC is returned as a result of

composition. Based on the capabilities of the device where

the query originated, the services are directly invoked by

the device, or service utilization is achieved with a

resourceful device acting as a proxy.

Algorithm 2. Request resolution algorithm

1: GR  Request

2: GC  null

3: K  number of paths to consider
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Fig. 4. Process of service aggregation. (a) Service graphs for services Sae>b and Sbe>d. (b) Resulting aggregation graph GP .



4: for all (node vr in Gr) do

5: pSin ¼ inParamsemanticðvrÞ

6: pTin ¼ inParamtypeðvrÞ

7: pSout ¼ outParamsemanticðvrÞ

8: pTout ¼ outParamtypeðvrÞ

9: if pSin AND pSout in G1
p then

10: for k ¼ 0 to K do

11: pSine>p
S
out ¼ shortestPathðpSin; p

S
out; G

1
P Þ

12: if 9 pTine>p
T
out 2 G2

P ffi pSine>p
S
out then

13: GC ¼ addToResultðpTine>p
T
outÞ

14: BREAK

15: end if

16: end for

17: else

18: GC ¼ addToResultðnullÞ

19: end if

20: end for

21: return GC

4.2 Analysis of Composition

By employing a layered approach ðGP ¼ G1
P þG2

P Þ, the

search space for composition is reduced to polynomial time

from a potentially exponential one. Based on the system

domain, the vocabulary containedwithin the ontology iswell

known. Each service within the domain is represented with

reference to the employed ontology. Considering an ontol-

ogy with size N , if there are n services available within the

system (generally,n >> N), all then services are represented

using the N members in the ontology. This results in

improved response time during composition. Since the

aggregation is maintained separately based on the semantic

representations ðG1
P Þ, the possibility of composition for any

given task can be determined by finding if there exist paths in

G1
P . The shortest path in G1

P between any given pair of nodes

can be determined in OðjV 1
p jlgjV

1
p j þ jE

1
p jÞ time, where

jV 1
p j � N . Since we consider K shortest paths for each node

in the task graph GR, the resulting complexity for composi-

tion in the semantic plane for each node in GR is

OðjV 1
p jlgjV

1
p j þ jE

1
p j þKÞ. For each of the K paths identified,

a valid path needs to be determined in G2
P , which can be

performed inOðKjVC jÞ since the resolution is performed just

by looking at the neighbors in G2
P .

During the process of resolution, a candidate service in
G2

P has to accommodate a number of requirements specified
by the task. Requirements such as the permissible delay,
allowable loss, cost of utilization, location, and so forth are
some example constraints that need to be considered during
composition. These requirements are specified within the
task through the attributes on the nodes ðVr 2 GRÞ as a
constraint set C ¼ fc1; c2; . . . ; cng. These parameters are
retained as the edge attributes within G2

P . While deriving
the composite solution for the task, set C is treated as
weights along the edges. The computation of the shortest
path has to consider these multiple constraints along the
edges as weights, as mentioned in (4b). These conditions
can be treated as weights along the edges, thus turning the
problem of finding a path between two nodes into a
multiconstrained path selection (MCPS) problem, which is a
well-known NP-complete problem [25]. The MCPS problem
has been well studied in the context of quality-of-service
(QoS)-aware routing [25], [26], [27], [28], with proposed
solutions to achieve polynomial time bounds for restricted
versions of the problem. In our approach, to achieve
polynomial time performance for service composition, we
limit the number of services used to compose each
requested service within the task.

4.3 Performance Comparison

To analyze the performance of our graph-based service
composition scheme, we conducted simulation experiments
and compared our scheme against a generalized discoverþ
match scheme. To measure the composition efficiency of
our scheme, we have built a centralized directory, where all
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Fig. 5. Task resolution process. (a) Aggregate graphGP . (b) Task graphGR. (c) Composed result in semantic graphG1
P . (d) Resulting compositionGC .



the available services register. When a service registers with
the directory, a graph ðGSÞ representing the service is
provided as a part of the advertisement. At the directory, an
aggregated graph ðGP Þ of all the registered services, which
is generated according to Algorithm 1, is maintained. When
a user device has a task to be accomplished, the task request
is submitted to the directory in the form of a graph ðGRÞ.
The tasks are resolved according to the procedure detailed
in Algorithm 2.

The discoverþmatch technique for service composition
is implemented as follows. Similar to the previous scheme,
all the available services register at a directory, and the
directory maintains a list of all the available services. The
user task is represented as a task graph ðGRÞ and is sent to
the directory for resolution. At the directory, the services
specified within the task graph (denoted by the vertex set
Vr) are matched against the services that are registered to
identify available matches.

For the purpose of simulation and to demonstrate the
power of our scheme, we have considered services that
perform transformation between two alphabets. A
service si is represented as ae>b if si accepts an input
of type a and produces an output of type b. By considering
all possible combinations of alphabet transformations
ðae>b; ae>c; . . . ; ae>z; . . . ; ze>yÞ, there are 625 unique ser-
vices. Within the simulation, we control the service density
by varying the number of registered services at any given
time. The composite service requests also contain a
combination of letters, each of which represents a service.
The results shown below are averaged over 10 simulation
runs with varying service densities. For each run, there are
25 requests. The plot shown in Fig. 6a is a comparison of
the composition efficiency of our graph-based composition
approach against the discoverþmatch scheme. The com-
parative ratio of composition ðCCRÞ is also shown in the
plot in Fig. 6b. As can be seen from the results, our graph-
based service composition mechanism can perform better
due to the flexible approach to service composition. The
comparative ratio of composition is given by the following
formula:

CCR ¼
�GSC

�DM

; ð4cÞ

where �GSC is the number of successful compositions using
our graph-based composition scheme and �DM is the
number of successful compositions based on the traditional
discoverþmatch approach.

5 HIERARCHICAL SERVICE OVERLAY FOR

COMPOSITION

The service composition mechanism presented in Section 4
assumes the presence of a directory, where information
about all available services is collected and queries about
services are resolved. Such an architecture can typically be
mapped onto managed environmentswith well-defined nodes
in the network that can act as directories. Depending on the
number of nodes involved, the directory itself can either be
centralized or distributed. The presence of a managed
infrastructure enables designers to identify and deploy
specific nodes that can act as directories. Similarly, other
essential operations such as name resolution [29], proxy
operation [30], and so forth can be deployed on dedicated
(possibly distributed) nodes within the network. However,
within pervasive computing environments, it is not always
possible to assume the support of an infrastructure. User
tasks need to be supported even in completely ad hoc
environments with no infrastructure support. Also, due to
the diverse nature of the involved devices (and, hence, the
resources), it is a challenging task to create a transparent
platform for executing user tasks.

To achieve transparent operational support, we employ
a device classification mechanism in our approach.
Resources with relatively higher degrees of availability
and with minimal resource restrictions such as the servers,
clusters, and so forth can be classified into the highest end
of the spectrum, which is a level-3 device. Under level 2,
user devices such as laptops and PDAs are classified. The
mobility associated with such resources differentiates
them from level-3 devices. Resources that can host the
middleware and accommodate native support for dele-
gents to execute but cannot act as proxies for other
resource-poor devices are classified into level 1. Level-0
devices are resources with no native support for addi-
tional configuration. In such cases, a proxy is assigned to a
level-0 device to make its features available as services in
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Fig. 6. (a) Composition success rate comparison. (b) Comparative ratio for composition.



the environment. In Table 1, we present a summary of the
resource classifications.

The classification of resources into one of the above
levels is performed at the time of configuring the resources
and installation of the middleware. The level of the device �
is made available through the device specification docu-
ment to be used at runtime.

The device classification derived according to the guide-
lines in Table 1 is useful in deriving an organized
hierarchical structure in the pervasive environment. The
basic principle of organization is for the resource-poor
devices to depend on their resource-rich counterparts for
their operations. The computing resources that are a part of
the infrastructure that have relatively lower constraints in
terms of resource restrictions are typically mapped into a
higher level. Resources such as PCs and servers can support
essential operations such as service discovery, service
composition, and proxy operation for their resource-poor
counterparts. This results in a hierarchical relationship as
shown in Fig. 7. The organization of resources into a service
overlay is facilitated by a process we refer to as latching. The
basic principle of latching is that a device with lower
resource availability latches itself to another device with
higher resource availability. The process is repeated until a
level-3 device is reached. The result of the latch process is a
hierarchy with all the level-3 devices being mapped at the
highest level in the tree.

The process of latching is detailed as a protocol, and the
timing diagram of the LATCH protocol is depicted in Fig. 8.

5.1 The LATCH Process

When a device A enters the environment, it attempts to join
the environment by broadcasting a LATCH_HELO message
as an advertisement, along with the information about its
device level ð�ðAÞÞ. Another device B that is already in the

environment upon receiving the message from A inspects

�ðAÞ and compares it with its own �. If �ðAÞ > �ðBÞ, then B

sends a LATCH_REQ message to A, requesting A to be B’s

parent. If �ðAÞ < �ðBÞ, then B sends a LATCH_INVITE

message to A, inviting A to be B’s child. If �ðAÞ ¼ �ðBÞ,

then B sends a LATCH_SIBLING message to A and adds A

as a sibling. When A receives a response from B, it inspects

the response and adds B as either a parent, child, or sibling

based on �ðAÞ. A LATCH_ACK acknowledgment is sent

from the parent to the child once the child is registered at

the parent. When registering itself with a parent, a device A

sends the local parameter graph GP if it already has some

children. Otherwise, A sends service graphs ðGSÞ of all the

services it offers.
The resulting hierarchical overlay is maintained with

periodic LATCH_HELO messages, along which the current

status of the child nodes is relayed to the parent. The parent

inspects the LATCH_HELO message and keeps the child’s

status as alive and also updates the attributes of the services

provided by the child based on the information that is

piggybacked along with the LATCH_HELO message.
With the hierarchical structure created among the

devices, those at a lower level will rely on their higher

level counterparts (parents) for essential operations such as

service discovery, composition, proxy operation, and so

forth. By maintaining such a hierarchy, the differences in

the capabilities of different devices involved can be made

transparent to the applications that operate within the

created environment.
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TABLE 1
Device Classification Chart

Fig. 7. Hierarchical organization of devices. (a) Device hierarchy based

on �. (b) An example hierarchy. Fig. 8. Timing diagram of the LATCH process.



5.2 Hierarchical Aggregation of Services

Due to the dynamic nature of resources involved in
pervasive computing environments, the structure of the
hierarchy can change frequently. The change in the
structure can be largely attributed to either a node moving
from one location to another or node unavailability due to
resource limitations. In either case, the service overlay will
be modified to reflect the current status of resources.

When a new device A joins the hierarchy, the parent B
will collect the graphs for all the services provided by A and
updates the local service aggregation GB

P . Algorithm 3
details the procedure used to admit a new node into the
hierarchy. The updated information is sent up the hierarchy
to B’s parents with a LATCH_ADD message. Similarly,
when a parent B observes that its child A is unavailable
(through the missing LATCH_HELO message), it deletes all
the services associated with A and sends the update
message LATCH_REM to its parents along with the
information about services offered through A.

Algorithm 3. Hierarchical service aggregation algorithm

Gb
P  local aggregation

Ga
P  child0s aggregation

set visited ¼ false for all vip 2 Ga
P

for all ðvipÞ in Ga
P do

if visitedðvipÞ ¼ false then

addNodeðvipÞ

end if

end for

Procedure addNodeðp1Þ

if ðp1 62 V b
P Þ then

add p1 to Gb
P

end if

for all neighborðp1Þ ¼ p2 do

addNodeðp2Þ {neighborðp1Þ is connected by a directed

edge originating at p1}

end for

addEdgeðp1; p2Þ {Copy all edges between p1 and p2 in Ga
P

and their respective attributes}

Also add an attribute reachableFrom to p1, p2 and set its

value to a.

The algorithm considers each vertex pi in the child’s
aggregation GA

P and inspects to see if it is already a vertex in
the local aggregation GB

P . If pi is not present in GB
P , then pi is

added toGB
P . Each edge originating at pi (which represents an

individual service) is then incrementally added to the local
aggregation upon inspecting all the nodes in GA

P . Although
the service information is replicated all along the hierarchy,
the fact that the nodes higher up in the hierarchy are more
capable than those at lower levels substantiates the design.

When a device A leaves a parent B, either due to A being
mobile or due to resource limitations, it may notify B of its
departure. Otherwise, B decides that A is no longer
available due to the missing periodic LATCH_HELO
messages. Once A departs, all the services that were
reachable through A should no longer be contained within
B’s aggregation. For this, B examines each edge eip 2 GB

P to
see if reachableFromðeipÞ ¼ A and deletes all edges that
were reachable through A.

Based on the hierarchy formed, we make the following
definitions:

. Service zone. The service zone of a deviceD includes all
the children of D within the hierarchy and itself. The
service zone of a device defines the zone forwhich d is
responsible with respect to service-related operations
such as discovery, composition, and failure recovery.
All the children of D depend on D to provide service-
related support. If a particular task can be completely
supported within the service zone of a device D and
not within the service zone of any of its children, then
Dwill manage the composed service.

. Search zone. The search zone of a device D is its own
service zone if �ðDÞ > 1. If �ðDÞ < 1, then the search
zone of D is the service zone of parentðDÞ. When D

has a task to be composed, the aggregation in the
local search zone is first inspected. If any of the
required services for the task cannot be met, the
search zone is then expanded to the search zone of
parentðDÞ, and so on.

Fig. 9 illustrates the service and search zones for an
example hierarchy.

5.3 Hierarchical Service Composition

When a particular task needs to be accomplished, based on
the � of the device generating the request, the task
resolution process begins either at the same device or at
its immediate parent. Assuming that D generates a task
request ðGD

R ¼ fV
D
r ; ED

r ; �
D
r ; �

D
r gÞ and �ðDÞ ¼ 1, the task will

be forwarded to D’s parent, A, for resolution. Upon receiving
the request, A will run the request resolution algorithm
presented in Algorithm 2 and attempt to generate a possible
composition. Suppose A can compose a set of nodes
v1r ¼ fv

D
i g

k
i¼1 2 V D

r . It sets the composition for GD
R as GD

C ,
populates GD

C with the successful partial compositions, and
forwards only those nodes ððV D

R Þ
0 ¼ V D

R � v1r) to its own
parent for resolution. The process repeats until the highest
node (say, B and �ðBÞ ¼ 3) in the hierarchy is reached. At
B, all the available services within the environment are
inspected upon consultation among the other devices with
� ¼ 3 to arrive at a possible composition.

6 ANALYSIS OF DYNAMIC SERVICE COMPOSITION

The hierarchical service overlay formed among the resources
available within a pervasive computing environment is used
in supporting essential service-related operations such as
service discovery, composition, and service management.
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Fig. 9. Illustration of service zone and search zone in the hierarchy.



Based on the hierarchical operation, we can observe support
for the following service-related factors.

6.1 Locality of Service

Locality of service refers to the requirement that the
distance between the requesting entity and the services
used in composition will be as small as possible. Locality of
service is an important factor when the tasks include
services which interact directly with users. Also, since each
of the individual services can possibly reside on different
nodes within the network, there will be an inherent
network-related cost involved in combining them. To
minimize such a cost of operation in a composed service,
all involved services need to be located as close to each
other as possible. The resulting hierarchical organization of
devices also contains nodes that are a part of the
infrastructure. In such devices, it is possible to embed
additional location information that can contribute in
refining the locality of services [12]. Consider a hierarchy
similar to the one shown in Fig. 9. If a request for
composition arises at a device A in the hierarchy, as shown
in Fig. 9, an attempt for composing all the required services
is first done at the device B, which is the parent of A over
the service zone of B. Since the service zone of B includes
all the services around B, any successful composition
within B’s service zone is guaranteed to be the closest
possible composition for the request.

Since the hierarchy is formed based on the network
distance between devices, the locality of services refers to
the network locality. Many of the devices in a pervasive
computing environment are typically equipped with short-
range wireless interfaces for communication. In such
devices, the network locality can also reflect the physical
proximity of devices. Moreover, as a request is forwarded
through the hierarchy, more powerful devices residing
higher in the hierarchy can contribute to the refinement of
location information.

6.2 Quality-Aware Composition

Typical user requests contain a number of parameters that
need to be satisfied while the composition is being carried
out. The parameters can be user preferences such as the
desired location, a particular service provider, and so forth
and also classical QoS parameters such as required
bandwidth, permissible delay, acceptable cost, and so forth.
In [31], an effective mechanism for attaching quality
parameters to resources has been presented. We utilize
this scheme to embed quality-related information to
services. Essentially, the quality parameters associated with
each service are embedded as attributes of the service.
The node attribute function �s of each service graph is
responsible for attaching and maintaining the quality
attributes qs ¼ fQin; Qoutg for each service. The quality
requirements of a request are also specified as node
attributes within the request graph GR ¼ fVr; Er; �r; �rg.
Therefore, 8vi 2 Vr;3 fq

s
ig

n
i¼1.

The result of a composition for vi 2 Vr is SC ¼ fsag
k
i¼a,

that is, all the services that form the path ðpine>poutÞ in GP .
While computing the path SC , we need to make sure

that qsðSCÞ � qsðviÞ and qsðSCÞ ¼
Pk

a¼1 q
s
a.

The composed service can be ensured to meet the quality
requirements of the request by using the attributes on the
edges of GP to compute the shortest path ðpine>poutÞ in GP .

As mentioned in Section 4.2, the problem of finding a
path in a multiconstrained graph is NP-complete. There
have been a number of schemes [25], [26], [27], [28]
proposed to achieve polynomial time bounds for the
problem. As proposed in [27], by maintaining an average
cost function reflecting values of all the specified require-
ments, the problem can be reduced to simple path selection
problem. However, due to the varied nature of metrics and
dynamically changing values, it is hard to maintain such a
cost parameter within the pervasive computing domain. We
employ a limited version of MCPS by limiting the length of
composition, which is essentially the number of services
that can be used to compose a single service. Although this
limits the number of possible solutions, it provides an
acceptable bound on the delay during service composition.
Fig. 10 shows the effect of limiting the length of the
composition to a predefined number. If the service density
is higher, even with a lower value of composition length, a
successful composition can be achieved. However, at lower
service densities, it might be necessary to allow higher
composition lengths for better composition.

6.3 User and Resource Mobility

One of the major challenges in pervasive computing
applications is the issue of mobility. In any pervasive
computing environment, once the initial composition is
identified and a service session is established, the mobility
of the user can change the composed solution. For example,
the user might walk out of a room where a video stream is
being displayed or move to a more capable terminal. Also,
there is a possibility that one of the services currently being
used in the composition becomes unavailable. For example,
a handheld device being used to present the video stream
might no longer be available due to power limitations. In
such situations, the challenge is to reconfigure the session
under progress as quickly as possible by considering the
current resource availability around the user. With the
hierarchical service overlay, it is possible to ensure that the
request can be recomputed with minimal interruption of the
session under progress.

The effect of user mobility while a service session is in
progress can lead to a complete recomposition of the
service. Typically, however, it is sufficient to identify a new
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interactive service closer to the user such as a display unit, a

speaker, and so forth. When a session is in progress, there

are a set of services fscig
n
i¼1 that are initially a part of the

composition. When the user moves to a new location, the

first task is to identify a suitable service sk that can directly

interact with the user. Based on the service selected to

interact with the user, the composition needs to be changed

accordingly. Through simulations, we have observed that,

in a majority of the cases, it is sufficient to only recompose a

part of the original composition.
When a resource being used in a composition is mobile

or is no longer available due to resource restrictions, we

need to identify an alternative service to fulfill the part that

was being played by the missing service. Therefore, when a

resource either moves or is no longer available, all the

services that were available through that particular device

become unavailable. For a service session in progress,

which uses one or more services of the mobile device, it is

now necessary to recompute a portion of the composition.

Recall that the result of a successful composition SC is a set

of services fsig
n
i¼1, where a subset of the composed services

is used in matching the needs of each node in the request

graph GR. So, 8vk 2 Vr;3 fsig
k
i¼1. If a service sj 2 fsig

n
i¼1

present on the device that moved out of a particular service

zone was a part of an ongoing composed session (that is, a

node in the request GR), only that part of the request needs

to be recomposed. Based on the hierarchy, a new composi-

tion can be generated to meet the requirements of the

affected node vk 2 VR in at most two search zone expan-

sions and another lookup on GP among the level-3 devices.
Since the maximum depth of the hierarchy is three, it is

sufficient to expand the search zone twice to reach the

Level-3 device and, if required, another lookup can be

made among the Level-3 devices. Fig. 11a shows the

comparison of reconfiguration times between the dis-

cover-and-match scheme and the hierarchical composition

scheme due to user mobility. Fig. 11b shows the compar-

ison in case of a mobile resource. Since, at each level of the

hierarchy, the available services are already aggregated, the

reconfiguration is a matter of a new lookup in the graph

GP . The simulation results show that the hierarchical

scheme outperforms schemes based on discover-and-match

techniques.

7 CONCLUSIONS AND FUTURE WORK

The presence of a number of personal devices with users
and a variety of communication mechanisms make it
possible to realize a pervasive computing environment
where essential support to user tasks can be provided. In
this paper, we have described a model to build service-
oriented environments using the PICO middleware frame-
work. The features available through a number of resources
can be offered as services by designing and deploying
software entities called delegents. Typical user tasks require
support from a number of services. Service composition
techniques offer advanced support to user tasks by
identifying all the required services for a particular task
and achieving coordination among the identified services.
The service composition mechanism presented in this paper
performs beyond the traditional discoverþmatch ap-
proaches by constructing possible compositions based on
their semantic and syntactic descriptions. We have also
presented a hierarchical service overlay mechanism based
on the proposed LATCH protocol. The hierarchical scheme
of aggregation exploits the presence of heterogeneity
through device cooperation. Devices with higher resources
assist those with restricted resources in accomplishing
service-related tasks such as discovery, composition, and
execution. Through simulation results, we have shown the
performance improvement achieved by the proposed
scheme as compared to the traditional discoverþmatch

schemes.
The proposed work is aimed at exploiting the features of

devices in the environment to provide support to user tasks.
The current framework assumes the availability of informa-
tion such as the device capabilities made available at design
time. In reality, due to the dynamic nature of devices and
varying workload, the capabilities of each device can vary
over time. It is thus necessary to dynamically capture
information regarding the state of a device while the device
is operational. Such a dynamic mechanism will ensure
uniform resource consumption, timely support, and fair-
ness in resource utilization. The changing states of
resources result in a dynamic hierarchical overlay that
accurately reflects the device state. The development of a
dynamic scheme to capture the device state will also lead to
the possibility of ensuring that a service session in progress
is supported in an unobtrusive manner by monitoring the
involved services and the resources they execute on. We are
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Fig. 11. Composition reconfiguration time (a) due to user mobility and (b) due to resource mobility.



currently working toward developing such a model that

would capture information about the available resources in

a dynamic fashion.
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