
J. Non-Newtonian Fluid Mech., 76 (1998) 43–78

Dynamic simulation of freely-draining, flexible bead-rod chains:
Start-up of extensional and shear flow1

Patrick S. Doyle, Eric S.G. Shaqfeh *
Department of Chemical Engineering, Stanford Uni6ersity, Stanford, CA 94305-5025, USA

Received 14 June 1997

Abstract

We present a study of the rheology and optical properties during the start-up of uniaxial extensional and shear flow
for freely-draining, Kramers bead-rod chains using Brownian dynamics simulations. The viscous and elastic
contributions to the polymer stress are unambiguously determined via methods developed in our previous publication
[1]. The elastic contribution to the polymer stress is much larger than the viscous contribution beyond a time of
5.3l1/N

2 where N is the number of beads in the chain and l1 is the longest relaxation time of the chain. For small
Wi (at arbitrary strains) and for small strains (at arbitrary Wi) the stress-optic law is found to be valid. The
stress-optic coefficients based on the shear stress and first normal stress difference are equal for all Wi (even when the
stress-optic law is not valid) suggesting the stress-optic coefficient is in general a scalar quantity rather than its most
general form as a fourth order tensor.

We show that a multimode FENE-PM or Rouse model describes the rheology of the bead-rod chains at small
strains, while the FENE dumbbell is an accurate model at larger strains. We compare the FENE-PM and FENE
model to experimental extensional stress data of dilute polystyrene solutions and find that a multimode FENE-PM
with a Zimm relaxation spectrum describes the data well at small strains while a FENE dumbbell with a
conformation dependent drag is in quantitative agreement at larger strains. © 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The study and development of numerical techniques to solve non-Newtonian fluid mechanics
problems has undergone dramatic changes in recent years with the introduction of the
CONNFFESSIT [2–4] and Brownian configurational fields [4,5] methods which do not necessi-
tate closure approximations for nonlinear dumbbell models, such as the FENE model. However,
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even these methods still involve relatively simple bead-spring models as well as a limited number
of modes or springs. The understanding of the ‘physics in the spring’ requires further study of
the dilute solution rheology of polymers and is of great interest and concern in the literature
[6–9]. For weak flows in which the polymer configuration is only slightly perturbed from the
equilibrium configuration, linear dumbbell models show good agreement with experiments
[10,11]. Experimental data for Lagrangian unsteady flows with a substantial extensional compo-
nent have been successfully described via calculations using the nonlinear FENE model but
using physically unrealistic FENE parameters [12–15]. The failure of dumbbell models in strong
flows has been attributed to an extra viscous polymer stress [7,8] which is absent in most
polymer models.

There have been several studies which have suggested models and scalings for viscous polymer
stresses in the presence of unsteady strong flows. Kuhn and Kuhn [16] developed the internal
viscosity model (IV model) which accounts for the molecular rigidity of a polymer and frictional
barriers to rapid, short length scale distortions. The internal viscosity dumbbell model has a
force acting on the beads which is proportional to the rate of deformation of the spring
connecting the two beads [10,11]. Though the internal viscosity force is based on molecular
concepts, the strength cannot be readily estimated from the molecular structure of the polymer
[11]. In the limit of an infinite internal viscosity and several bead-springs, the model is similar
to the bead-rod model. Manke and Williams [17] found good agreement between the complex
viscosity of a modified multibead-IV model and bead-rod chains. However, in extensional flow
the multibead-IV model fails to predict chain unravelling or extension [18] which is observed in
the bead-rod model [8,19]. In transient shear flow, the multibead-IV model predicts large
oscillations in the approach to the steady state shear viscosity and first normal stress coefficient
[20] which have not been observed experimentally [10]. Additionally, the partitioning of the
polymer stress into elastic and viscous components [1,21] has not been examined for the
multibead-IV model.

Most other models of viscous stresses for flexible polymers have used rigidly constrained
beads which result in viscous stresses (in addition to the usual Brownian stresses) analogous to
that in a rigid rod suspension [21]. Acierno et al. [19] were among the first to use a
non-Brownian bead-rod model to develop a physical basis for viscous polymer stresses in
extensional flow. King and James [22] later suggested a frozen-necklace model in which a Rouse
chain in extensional flow becomes frozen into a fixed configuration. In both the bead-rod and
frozen-necklace models the viscous polymer stress is due to the rigid constraints imposed on the
polymer motion. Rallison and Hinch [7] showed the large viscous stresses for non-Brownian
bead-rod chains in extensional flow are due to backloops which form during the unravelling of
the chain. Guided by the backloop concept, Larson [23] developed a novel kink dynamics model
in which a polymer unravels like a one dimensional non-Brownian string and viscous forces arise
due to the inextensibility of the string. Hinch [8] performed both Brownian and non-Brownian
simulations of bead-rod chains along with the kink-dynamics model and concluded that the
polymer stress in strong flows is mostly viscous. The viscous polymer stress was found to scale
with Rg

4/N where Rg is the chain radius of gyration and N is the number of beads. His simulation
method for the Brownian chains was not rigorous and was later modified [24] to study the
relaxation of bead-rod chains from an initially unraveled configuration. Thus these previous
bead-rod studies fail to unambiguously determine the relative magnitudes of the viscous and the
elastic polymer stresses.
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Previously we developed a means to separate the elastic and viscous contribution to the
polymer stress for Kramers’ bead-rod chains [1]. In steady shear and extensional flow we
determined that the stress is dominated by the elastic component for all reasonable Wi where the
Wi is the product of the shear (or extension) rate and the longest relaxation time of the chain.
In extensional flow, the viscous stress becomes as large as the elastic at Wi=0.06N2 [1].
Recently, Rallison [9] has numerically confirmed the steady-state stress partitioning for small
chains (N510) in planar extensional flow but in his calculations for the start-up of elongational
flow he used a bead-stiff-spring model and thus was unable to compute a viscous polymer stress.
For Rallison’s start-up simulations he concluded that a significant viscous polymer stress exists
in transient flows which scales with Rg

2. This conclusion is based on how the polymer stress
scales with the radius of gyration tensor and not by determining the actual partitioning of the
polymer stresses. He does suggest the stress that he terms as ‘viscous’ may actually be an elastic
stress with a fast relaxation time. In the present study, we use our simulation method [1] and
unambiguously determine the partitioning of the stresses in transient flows for bead-rod chains.

The bead-rod chain is a coarse grain model of an atomistic polymer chain but is still too
cumbersome for the numerical solution of most non-Newtonian fluid mechanics problems.
Instead simple bead-spring models are most often employed. The original development of the
spring force in these models is based on the entropic restoring force for a bead-rod chain [25].
The force required to increase the chain end-to-end separation is linear in the end-to-end
separation for small deformations [25] and is given by the inverse Langevin function for large
distortions [26]. The Hookean spring force corresponds to the linear limit and the FENE spring
force is a numerical approximation of the nonlinear limit [27]. There is thus a direct relationship
between the spring constants and the bead-rod chain parameters. These models can be modified
to include multiple beads connected consecutively by springs (Rouse and multibead FENE
models). The polymer stress in the FENE and Rouse model is purely elastic because the spring
force law is derived from entropic restoring forces. The Rouse model fails in strong flows due
to an unbound growth of the chain microstructure [10,11]. Comparisons of the FENE model to
experimental data have usually made use of the Peterlin approximation [28] to preaverage the
nonlinear FENE force, commonly referred to as the FENE-P model. Small values for the
maximum extensibility of the dumbbell were needed to obtain quantitative agreement with
experiments [12–15]. While it is clear that the finite extensibility of the FENE dumbbell is
physically sensible, the magnitude of the nonlinear elastic stresses in strong flows and the proper
manner to choose the maximum extensibility of the dumbbell is not clear. A different test of the
FENE model is a comparison to the more complicated bead-rod model from which it was
originally derived. Previously [1], we demonstrated that FENE dumbbells are in good agreement
with the steady-state shear and elongational rheology of bead-rod chains, but we did not
compute transient properties of either model.

Experimentally one can measure polymer stresses using birefringence if the stress-optic law is
valid [29]. Experiments have confirmed the validity of the stress-optic law for weak shear flow
[30], while under strong flow conditions the stress-optic law is not generally valid [31–33]. Smyth
et al. [34] have confirmed the existence of viscous stresses for semidilute solutions of semirigid
polymers in steady shear flow and have shown that the stress-optic law is valid for the elastic
part of the polymer stress. An intriguing set of filament stretching experiments using Boger fluids
have recently been performed by Spiegelberg and McKinley [33] in which the stress-optic law



P.S. Doyle, E.S.G. Shaqfeh / J. Non-Newtonian Fluid Mech. 76 (1998) 43–7846

during the inception of extensional flow was valid up to a certain strain. It is not currently
known whether the failure of the stress-optic law for flexible polymer solutions in strong flows
is due to an additional polymer viscous stress or a nonlinear elastic polymer stress. Determining
this will not only aid in the fundamental understanding of polymer stresses in strong flows but
is the first step in developing a modified stress-optic relationship for highly extended dilute
polymers.

In this paper we present results for the transient stresses and birefringence of dilute bead-rod
chains in shear and uniaxial elongational flow. We concentrate on three main points: partition-
ing of the stresses into viscous and elastic components, comparison to the FENE dumbbell,
Rouse chains and FENE-PM model and the validity of the stress-optic law. Start-up of uniaxial
extensional and shear flow is presented for a wide range of Wi and N. The polymer stress is
separated into its viscous and elastic components and we determine the time scale and Flow
strength over which the viscous contribution is significant. We determine when and why the
stress-optic law begins to fail. The simulation results for the bead-rod chains are compared to
Brownian dynamics simulations of FENE dumbbells, numerical calculations of a multimode
Rouse chain and a multimode FENE-PM chain. A critical assessment is made of the bead-
spring models and whether their deficiencies are created by preaveraging approximations, coarse
graining, or more fundamental physical problems. The extensional viscosity predicted by the
FENE and FENE-PM models is compared to experimental data of dilute polystyrene solutions.

2. Bead-rod polymer model

In this study the polymer is modeled as a bead-rod chain, where the beads act as sources of
friction and the rods serve as constraints to hold successive beads at a constant relative distance.
Physically the rod length scale corresponds to a Kuhn step in a polymer molecule and is a
measure of the chain rigidity. We have chosen to examine the bead-rod model for two reasons.
First, the bead-rod model is the fundamental starting point for most constitutive equations and
simple dumbbell models [10,11,21]. Second, the rigid nature of the rods gives rise to viscous
stresses in addition to elastic stresses [21]. Thus, we can unambiguously determine the partition-
ing of the stresses into its viscous and elastic components.

The simulation technique has been discussed extensively in our previous paper [1] and a brief
overview is provided below. We employ index notation throughout our discussion and Greek
superscripts will refer to bead numbers. A stochastic differential equation used to compute chain
trajectories can be derived by considering the relevant forces on the chain: hydrodynamic (Fi

h,n),
Brownian (Fi

br,n) and constraint (Fi
c,n). Neglecting inertia, the forces on a bead are summed and

set at zero.
The hydrodynamic force on a bead is assumed to be linear in the slip velocity between the

bead and the solvent velocity at the bead center. Thus,
Fh,n

i = −j(r; n
i −u�i (r n

i )), (1)
where j is the drag an a bead, r i

n is location of the center of bead n, r; i
n is the velocity of bead

n and ui
�(r i

n) is the undisturbed solvent velocity. We have neglected any disturbance velocity
created by the beads. In our studies we limited ourselves to linear flows where the shear rate, g; ,
or extension rate, e; , rate is defined by:
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(u�i
(xj

=
!k ijg;

k ije;
shear flow,
uniaxial extensional flow,

(2)

and kij is defined by

kij=
!d i1dj2

d i1dj1−0.5di2dj2−0.5di3dj3

shear flow,
uniaxial extensional flow.

(3)

We assume that during each time step a bead experiences numerous collisions with the solvent
molecules. Neglecting the effects due to the constraints, these Brownian forces are approximated
as a d correlated, white noise process [35]. A discrete form for the Brownian forces during an
individual time step beginning at time t and ending at time t+dt is

�Fbr,n
i (t)�=0 (4)

�Fbr,n
i (t)Fbr,m

j (t)�=
2kTjdnmdij

dt
(5)

where t is equal to t+1/2dt which corresponds to a Stratonavich interpretation of the stochastic
term [35]. The 2kTj term results from satisfying the fluctuation dissipation theorem in the
absence of constraints [36]. We note that when the Brownian forces are included in this manner
they have a magnitude proportional to 1/
dt and the sample trajectories will be continuous but
the time derivative of the paths (or the velocity) will be discontinuous.

The constraint forces are calculated using the method of Lagrangian multipliers employed by
Ryckaert [37] and Liu [38]. The constant force on bead n is

Fc,n
i =T nu n

i −T n−1u n−1
i (6)

where T n are the N−1 undetermined Lagrangian multipliers, u n
i = (tn+1

i −tn
i )/a and a is the

length of the connecting rod. Physically T n corresponds to tensions in the connecting rods
arising from both the deterministic (flow) and stochastic (Brownian) forces. The Lagrangian
constraints are chosen to satisfy the constraint of constant rod length at the end of a time step.

An iterative scheme is used to clculate the trajectories of the chains in our simulations. We
have previously shown that this scheme is equivalent to a midpoint algorithm [1]. At the
beginning of each time step an unconstrained move, denoted by t*, is taken:

r n
i (t*)=r n

i (t)+
�

u�i (r n
i (t))+

Fbr,n
i

j

n
dt. (7)

The bead positions are subject to the constraint

[r n+1
i (t+dt)−r n

i (t+dt)][r n+1
i (t+dt)−r n

i (t+dt)]−a2B8 (8)

where 8�a2 and r i
n(t+dt) is given by

r n
i (t+dt)=r n

i (t*)+
�T nu n

i −T n−1u n−1
i

j

n
dt. (9)

Combining Eqs. (7)–(9) leads to N−1 nonlinear equations for the tensions. The nonlinear term
is small relative to the linear terms and the N−1 linear equations can be solved iteratively
[1,38]. The equations (1–9) form the basis for computing trajectories of a chain in a given flow
field and are referred to as the trajectory evolution equations.
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To begin a simulation a random walk polymer configuration is generated by choosing
successive bead positions from random vectors distributed over the surface of a sphere. Since the
equilibrium configuration of a bead-rod chain is not a random walk [10,39,40], we allow the
chain to equilibrate for 105×106 time steps during which the solvent velocity is set to zero. The
solvent velocity is then set to the desired value at t=0. Ensemble averages are taken over
populations of 100–4000 chains. For the range of Wi we simulated, the time step was set equal
to or less than 0.001ja2/kT. Additionally, in the extensional flow simulations we decreased the
size of the time step during a simulation as the strain and tensions in the connecting rods
increased.

2.1. Polymer stress calculation

Care must be taken in calculating the polymer stress in a system with rigid constraints.
Furthermore, the algorithm for stress calculation must be consistent with the simulation
algorithm in handling the stochastic forces. Algorithms which necessitate time derivatives of
spatial coordinates of beads, such as the Giesekus stress tensor [10], cannot be used due to the
discontinuous velocity of the beads. We employ a novel noise filtering technique [1] which
eliminates O(1/
dt) noise in the stress evaluation and is consistent with the Stratonavich
interpretation of the Brownian forces employed in the trajectory evolution algorithm. Specific
details of the technique can be found elsewhere [1].

The total stress in a flowing suspension of model polymers is the sum of the polymer and
solvent contributions,

sij=sp
ij+s s

ij (10)

and can be expressed as [10]

sij=tij−Pdij=tp
ij−Ppdij+t s

ij−P sdij (11)

where tij=t ij
p+t ij

s and P=Pp+P s. tij is defined to be zero equilibrium and P is an isotropic
pressure contribution.The polymer contribution to the stress is given by the Kramers–Kirkwood
stress tensor as the moment of the hydrodynamic forces [10]. Due to the force balance on the
chain, this can be expressed in terms of the Brownian and constraint forces

tp
ij= −np %

N

n=1
�R n

i Fbr,n
j +R n

i Fc,n
j � (12)

where np is the number density of polymer chains and Ri
n is the position of bead n relative to the

chain center of mass. Employing our noise filtering scheme, the polymer stress is calculated as

−np
#�R n

i (t+dt)+R n
i (t)

2
n

[Fc,n
j (t)−F�,nj (t)]+

�R n
i (t+dt)−R n

i (t)
2

n
F�,nj (t)

+
�R n

i (t+dt)−R n
i (t)

2
n

Fb,n
j (t+dt/2)

$
. (13)

Fi
*,n denotes the constraint forces derived including only Brownian forces in the trajectory

evolution equations and determining the Lagrangian multipliers subject to the constraint that
the link velocity is perpendicular to the link orientation at the beginning of a time step. Without
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the filtering technique, we would typically have to use ensembles which are at least 10–20 times
larger to obtain similar results.The viscous component of the polymer stress is much easier to
calculate since it does not directly involve stochastic forces. It is important to remember that the
stochastic forces contribute indirectly since they help to determine the chain configuration. For
a given chain configuration and flow field, the viscous stress is obtained by setting the Brownian
forces to zero and calculating the constraint forces. Since the flow field is not stochastic, we
impose the constraint that the link velocity is perpendicular to the link direction at the beginning
of a time step and noise filtering is not necessary. Denoting these constraint forces as Fi

cvisc,n, the
viscous stress is

tp,visc
ij = −np %

N

n=1
�R n

i Fcvisc,n
j �. (14)

The elastic or Brownian stress is then the difference in the total and the viscous stress.

2.2. Optical anisotropy and stress-optic law

The birefringence is a measure of the anisotropy in the index of refraction of a medium [29].
For polymer solutions, the birefringence measures the degree of orientation of the polymer on
the length scale of a Kuhn step [11,29]. Each rod in the chain is assumed to act as an individual
polarizing element with polarizability a1 parallel to the rod and a2 perpendicular. The dimen-
sionless polymer contribution to the index of refraction tensor nij

p is [11]

np
ij= %

N−1

n=1
u n

i u n
j , (15)

where ui
n is the orientation of rod n, ui

n=Ri
n+1−Ri

n. nij
p has been made dimensionless with

npA(a1−a2). A= (4p/3)((n2+2)2/6n) and n is the isotropic part of the index of refraction [11].
The birefringence, D%, is the difference in the principle eigenvalues of the index of refraction

tensor. For light propagating along the ‘3’ direction the birefringence is [29]

D%=
'� %

N−1

n=1
�u n

1u n
1−u n

2u n
2�
n2

+4
� %

N−1

n=1
�u n

1u n
2�
n2

, (16)

where D% has been made dimensionless with npA(a1−a2). The extinction angle, x, measures the
orientation of the principal axis from the ‘1’ direction [29]:

tan(2x)=
2 %

N−1

n=1
�u n

1u n
2�

%
N−1

n=1
�u n

1u n
1−u n

2u n
2�

(17)

For shear and uniaxial extensional flow, the dimensionless birefringence will be zero at
equilibrium and have a maximum possible value of N−1. The extinction angle in shear flow for
small Wi is initially 45° and can decrease to a minimum of 0°. Due to the symmetry of
extensional flow, the extinction angle is a constant for all Wi and is equal to zero when
measured relative to the principal axis. Note that one cannot deduce the degree to which a chain
has been extended from the birefringence unless you can prove by some other means how the
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chains are extended since a fully aligned chain and a chain which is folded back on itself can
have the same birefringence.

Experimentally, the birefringence can be a very useful non-invasive measure of the polymer
stress if the stress-optic law is valid for the system [11,41,42]. We define a stress optic coefficient
by the relation:

np
ij=Csp

ij. (18)

If the stress-optic law is valid then C will be a constant. Kuhn and Grun [26] have shown that
for small deformations of a bead-rod chain, the stress-optic law will hold and C will take on a
value of 0.2. Previously [1], we confirmed this constant coefficient for steady linear flows at small
Wi.

2.3. Dimensions

Unless otherwise noted all quantities will be presented in dimensionless terms. Lengths are
scaled on the bead separation distance a, forces with kT/a and time with the single bead
diffusion time scale ja2/kT. The flow strength is characterized by the Weissenberg number,
Wi=l1g; (or l1e; ) where l1 is the slowest relaxation time in the chain. In previous chain
relaxation studies [1], we found that for large chains (N]25) l1=0.0142N2ja2/kT. The
Weissenberg number is thus the ratio of the slowest relaxation process in the polymer chain to
the flow time scale. We define another measure of the flow strength based on the single bead
diffusion time as the Peclet number, Pe=g; a2/kT.

3. FENE dumbbell model

One of the simplest models for a polymer molecule is two beads joined by a spring. Kuhn and
Grun [26] derived a spring force starting from a bead-rod chain by considering the force
required to hold the two ends of a bead-rod chain with N beads at a fixed end-to-end vector Qi.
The force is proportional to an inverse Langevin function which diverges as the magnitude of
Qi approaches the chain contour length. A simpler empirical form was developed by Warner
[27]:

FFENE
i =

HQi�
1−

�Q
Q0

�2n , (19)

which is referred to as the FENE spring force. The FENE spring force diverges as Q=
QiQi

approaches the maximum extensibility of the dumbbell Q0. The parameters H and Q0 are related
to a bead-rod chain through the relations:

H=
3kT

(N−1)a2 , (20)

Q0= (N−1)a. (21)
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We have chosen to perform Brownian dynamics simulations of FENE dumbbells rather than
use the closure approximation of the FENE-P model because it has recently been shown [43,44]
that large differences exist between the models for transient flows. The relaxation time for the
FENE dumbbell is lH=z/4H where z is the drag on one bead in the dumbbell and the
dimensionless extensibility parameter is b=HQ0

2/kT. For large N, the extensibility parameter b
is equal to 3N. We will refer to this value of b as the corresponding value for a bead-rod chain
with N beads or alternatively, the expected value. In considering FENE dumbbells all lengths
are made dimensionless with 
kT/H and stress with npkT. A Weissenberg number for the
dumbbell is defined by WiFENE=lHg; (or lHe; ). We employ the semi-implicit predictor corrector
method proposed by O8 ttinger [44,45] to solve for the trajectories of the dumbbells. Ensemble
averages are taken over populations of 104 dumbbells. The dimensionless dumbbell stress is
calculated using the Kramers stress tensor

tFENE
ij =�QiFFENE

j �−dij. (22)

The dimensionless birefringence for the FENE dumbbell is [11]

D%= (1/5)[�Q1Q1−Q2Q2�2+4�Q1Q2�2]1/2. (23)

The FENE birefringence has been made dimensionless in the same manner as for the birefrin-
gence of the bead-rod chain, i.e. with np(a1−a2)(4p/3)((n2+2)2/6n). A maximum birefringence,
D%=b/5, occurs for a dumbbell aligned in the ‘1’ direction and stretched to maximum extension.
Expressed in terms of N, the maximum birefringence is 3/5N whereas for the bead-rod chain the
maximum birefringence is N. The models differ at full extension because the FENE birefrin-
gence (or any elastic dumbbell) is derived on the assumption of a small distortion from a
Gaussian coil [26]. Also, the dimensionless stress-optic coefficient for the FENE model is 1/5.

4. Rouse chain

The Rouse chain consists of a series of M+1 beads connected by M Hookean springs [10,46].
The spring force is the small deformation limit of the FENE spring force law and thus is only
physically valid for small deformations of the chain. The model can be transformed into normal
coordinates [46] and the constitutive equation consists of a series of uncoupled differential
equations [10]

tR
ij = %

M

a=1
ta

ij, (24)

l1,R

la,R ta
ij+

dta
ij

dt
=kijWiR+k†

ijWiR, (25)

where d/dt denotes a co-deformational or Maxwell derivative

d
dt

Qij=
dQij

dt
−WiR(kilQlj+Qilk

†
lj). (26)
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la,R is the time constant for mode a and WiR=l1,Rg; (or l1,Re; ). The stress has been made
dimensionless with npkT and time is made dimensionless with the time constant for the slowest
mode in the chain, l1,R. In the limit of large M, the ratio of the relaxation time for mode a to
that of the slowest mode scales as 1/a2 [11]. Each mode evolves independently and on a different
time scale. Analytic solutions for the stress exist for the inception of shear and extensional flow
[10].

The dimensionless birefringence for the Rouse model is

D%=
1
5
�# %

M

a=1
(ta

11−ta
22)
$2

+4
# %

M

a=1
ta

12
$2n1/2

. (27)

The Rouse model birefringence has been made dimensionless in the same way as the bead-rod
chain and FENE dumbbell, i.e. with np(a1−a2)(4p/3)((n2+2)2/6n) and the dimensionless
stress-optic coefficient is 1/5.

5. FENE-PM chain

The linear springs in the multimode Rouse chain can be replaced by M FENE springs but the
model can not be solved analytically for a general linear flow [10]. Bird et al. [28] used the
Peterlin approximation which replaces the squared length of each spring in the denominator of
the FENE spring force with the configurational average squared length and is termed the
FENE-P chain. Wedgewood et al. [47] developed a simpler constitutive equation by replacing
the squared length of each spring in the denominator of the FENE force law with the average
taken over all configurations and springs in a chain. This model is referred to as the FENE-PM
chain. Note that for M=1 the FENE-PM model is the same as the FENE-P model. The
properties of the FENE-PM model are numerically much simpler to calculate than those of the
FENE-P model. Using Brownian dynamics simulations, van den Brule [48] compared FENE,
FENE-P and FENE-PM chains with M=9 in shear and uniaxial extensional flow. Both the
start-up and steady-state rheology of the chains were reported. He found that the FENE-P and
FENE-PM models have very similar rheological behavior which is in close agreement with the
FENE model in elongational flow but these models fall to describe FENE shear rheology.
Similar conclusions where drawn by Herrchen and O8 ttinger [44] and Keunings [43] in comparing
FENE and FENE-P dumbbells.

After using the FENE-PM averaging, the resulting set of differential equations for the
polymer stress can be transformed with the same normal coordinates utilized in the Rouse
model to a coupled set of differential equations [47]. The nondimensional constitutive equation
for the FENE-PM chain is

tFENE−PM
ij = %

M

a=1
ta

ij, (28)

l1,R

la,R Zta
ij+

dta
ij

dt
− (ta

ij−1)
d ln(Z)

dt
=kijWi+k†

ijWi, (29)
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Z=1+
3
b
�

1−
tFENE-PM

ii

3M
n

. (30)

The stress has been made dimensionless with npkT and time with the time constant of the
slowest mode in the chain, l1,R. The relaxation spectrum for the FENE-PM chain is the same
as that for the Rouse chain since they are both transformed into the same normal coordinates.
We solved this system of coupled differential equations numerically using a fourth order
Runge–Kutta method [49]. Note that in rigorously modeling a chain with a fixed number of
Kuhn-steps, the number of modes and the extensibility parameter in the FENE-PM springs
should not be varied independently and for large chains are they related by the condition
3b×M=N [45,47].

The dimensionless birefringence for the FENE-PM model is [11,47]

D%=
1
5
�# %

M

a=1
(ta

11−ts
22)Z

$2

+4
# %

M

a=1
ta

12Z
$2n1/2

. (31)

The FENE-PM birefringence has been made dimensionless in the same way as the bead-rod
chain, Rouse model and FENE dumbbell, that is, with np(a1−a2)(4p/3)((n2+2)3/6n) and the
dimensionless stress-optic coefficient is 1/5.

6. Start-up of extensional flow

In this section we will discuss the inception of uniaxial elongational flow. The polymer
contribution to the viscosity is defined by the relation:

hp=
tp

11−tp
22

Pe
, (32)

where the viscosity has been made dimensionless with hpja2.
The instant the flow becomes nonzero, the viscous contribution to the viscosity becomes

nonzero or there is a ‘stress jump’. Since the chains are initially in their equilibrium configura-
tions, this initial viscosity jump is equal to the low Wi steady-state value which we have
previously shown to be 0.124N–0.156 [1]. This value is within 2% of the stress-jump predicted
by the multibead-IV model, 0.126N [17]. In Fig. 1 we show the short-time extensional viscosity
scaled by N−1 versus time. The elastic contribution is initially zero and increases with time.
Both the elastic and viscous contributions for many N and Wi can be collapsed onto universal
curves by scaling the viscosity with N−1. The viscous contributions are relatively constant over
these small times and remain at their initial value. The scaling of the elastic part of the viscosity
can be understood by considering the evolution of the Rouse extensional viscosity (or shear
viscosity since at short times they only differ by a factor of three).

The Rouse model predicts that the stress in each mode will grow like aa= (1−exp(− t/aa))
where aa changes with each mode a [10]. Thus at short times all the modes will contribute an
order t amount to the stress giving a total stress of order Mt. This scaling holds very well for
the elastic component of the stress in the bead-rod chains if we set the number of modes in the
chain equal to the number of rods (M=N−1). The time at which the elastic and viscous
contributions are equal is approximately 0.075 (or equivalently 5.3l1/N2). Note that this is a
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universal result for all N and Wi. For large chains, the time of 0.075 is only a small fraction of
the longest relaxation time of the chain (for N=1000 the longest relaxation time is 14200) and
is on the order of the smallest relaxation time in the chain, i.e. the characteristic relaxation time
of an individual isolated link (0.0833) [11]. Since the magnitude of the short time viscous
contributions are so small and the time scale over which they are larger than the elastic
contributions is also very small, they can be considered insignificant. We have confirmed that
during the start up of the shear flow the viscosity (scaled by a factor of three) will also follow
the same master curves at short times for all N and Wi.

In Fig. 2 we show the polymer Trouton ratio (the polymer extensional viscosity divided by the
polymer steady-state zero-shear viscosity ((N2−1)/36 [10]) versus strain (Pe t) for N=50 and
various Wi. Note that the strain is equal to the dimensional time multiplied by the dimensional
strain rate. For strains B2, the total viscosity at a given strain decreases with increasing Wi and
yet \2, the trend reverses. This same trend is observed in the Rouse and FENE model. We
have also performed non-Brownian simulations in which we have set the Brownian forces equal
to zero and denote these as Wi=�. The viscosity for the non-Brownian simulations, Wi=�
and the Wi=35.5 results are indistinguishable for strains \1. In Fig. 3 we have plotted the
viscous component along with the total viscosity for several values of Wi. Note that at
Wi=35.5 the Trouton ratio is still dominated by the elastic contribution. Thus the collapse of
the data onto a single curve when plotted as Trouton ratio versus strain does not necessarily
mean that the stress is mostly viscous. The transient elastic stress can appear to be viscous in
that it is linear in the strain-rate. If one stops the flow, these elastic stresses will decay with a
finite rate which we will discuss in a companion publication [67]. This is similar to the
steady-state extensional stress for bead-rod chains [1] and FENE dumbbells [10] which at large
Wi scales with Wi but is dominated by the elastic contributions. In Fig. 4 we have plotted the
Trouton ratio versus strain for N=50, 100, 200 at Wi=10.65. As N increases, the Trouton

Fig. 1. Short-time extensional viscosity scaled with N−1 versus time. The empty symbols denote the viscous
contribution and the solid symbols the Brownian contribution.
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Fig. 2. Trouton ratio versus strain for N=50 and Wi=0.355, 1.065, 10.65 and 35.5. The solid line is for a simulation
in which the Brownian forces are set to zero and corresponds to Wi=�.

ratio becomes increasingly dominated by the elastic contributions. For N=200, the purely
viscous contribution to the viscosity is approximately two orders of magnitude smaller than the
total viscosity for strains \1.

In Fig. 5(a) we have plotted the stress-optic coefficient versus strain for N=50 and several
values of Wi. The solid lines are calculations based on the radius of gyration which are discussed
below. Note that in uniaxial extensional flow there is only one nonzero material function, i.e. the
extensional viscosity and hence only one stress-optic coefficient. For small strains the stress-optic

Fig. 3. Trouton ratio and viscous component versus strain for N=50 and Wi=1.065, 10.65 and 35.5.
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Fig. 4. Trouton ratio and viscous component versus strain for N=50, 100, 200 and Wi=10.65.

coefficient is approximately 0.2 which is in good agreement with the steady-state small Wi value
[1]. For Wi]1 the stress-optic coefficient begins to decrease at strains �O(1). This is in
agreement with the recent experimental data of Spiegelberg and McKinley [33]. As the Wi
increases, the stress-optic coefficient decreases at any given strain. In Fig. 5(b) the stress-optic
coefficient is plotted for a fixed value of Wi=10.65 and 255N5200. As N increases, the strain
where the stress-optic coefficient begins to decrease also increases. Note that for all Wi in Fig.
5 the stress is mostly elastic and thus the decrease in the stress-optic coefficient cannot be
attributed to a viscous stress. The decrease is due to the large nonlinear elastic stresses caused
by stretching of the chain and large length scale correlations in the orientation of the connecting
rods. For completely straight chains the elastic stress can be as large as N3/3 [1,24].

A measure of the overall chain stretch is the radius of gyration:

R2
g=

1
N

%
N

n=1
R n

i R n
i . (33)

In the FENE dumbbell, deviations from a constant stress-optic coefficient occur when the
end-to-end distance of the dumbbell is comparable to the maximum dumbbell length. With this
in mind, we have constructed a FENE-like stress-optic coefficient: 0.2[1− (Rg/Rg,�)2] where Rg,�

is the radius of gyration for a straight chain. In the FENE model the birefringence is
proportional to QiQj while the stress is proportional to QiQj/(1−Q2/Q0

2). If the bead-rod chain
were to act as a FENE dumbbell, then 1− (Rg/Rg,�)2 would correspond to the degree of
nonlinearity of the stress and the magnitude of the stress-optic coefficient would be 0.2[1− (Rg/
Rg,�)2]. We have chosen to use the radius of gyration instead of the end-to-end distance because
it contains more information about the internal configuration of the chain and also because the
radius of gyration can be experimentally measured via light scattering [50]. Using the end-to-end
distance did not qualitatively change the results. In Fig. 5 the stress-optic coefficient is compared
to 0.2[1− (Rg/Rg,�)2]. Although the shape of the radius of gyration curves in Fig. 5 are similar
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to those for the stress-optic coefficient, there is no exact match to the transient response of the
stress-optic coefficient. The radius of gyration term responds more slowly to the flow than the
stress-optic coefficient for all N and Wi. If we look at a sample chain as it is unraveled by the
flow we see that it initially forms a series of backloops [8,19,23,38]. The non-linear elastic stress
is created by the correlated alignment of individual rods in the backloops. Thus the correct
length scale for the nonlinear stress is some fraction of the total length of the chain. At longer
times the chain becomes substantially unraveled and the degree of nonlinearity is more closely
correlated with the radius of gyration of the chain. In a sense the chain is acting like a nonlinear
multi-mode model and by describing the nonlinear stresses by the largest length of the polymer,
or slowest mode, we fail to capture the short-time dynamics.

The birefringence versus strain is shown in Fig. 6(a) for N=50 and a range of Wi. For
Wi]1, the birefringence increases to a significant fraction of the maximum value of D%=49.
While the viscosity for Wi=35 and Wi=� were indistinguishable in Fig. 2 beyond a strain of
1, the magnitude of the birefringence is substantially different. For example, at a strain of 2 the
ratio of the Wi=35 to the Wi=� viscosity is 0.99 while the ratio of the birefringence is 0.69.

Fig. 5. The stress-optic coefficient versus strain (symbols) and comparison to the FENE-like term 0.2[1− (Rg/Rg,�)2]
(solid lines). In (a) N=50 and Wi=0.355, 1.065, 2.13, 3.55 and 10.65; and in (b) N=25, 50, 100 and 200 and
Wi=10.65.
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Fig. 6. The birefringence in extensional flow versus strain for (a) N=50 and Wi=0.355, 1.065, 2.13, 3.55 and 10.65;
and (b) Wi=10.65 and N=25, 50, 100 and 200. In (b) the data is plotted in a semilog manner to show the collapse
of the curves at short times which does not occur in (a).

In Fig. 6(b) the birefringence versus strain is shown for Wi=10.65 and a range of N. At small
strains the curves collapse onto a single curve which increases exponentially in time as would be
predicted from the linear Rouse model [10]. Deviations from the exponential behavior occur at
larger strains as N increases due to the finite length of the chain. The point at which the
birefringence deviates from exponential growth can be considered as one indication of the
nonlinear dynamics of the chain. Another indication of nonlinear dynamics is the decrease of the
stress-optic law from the low strain constant value. Comparing the strain at which these occur
in Fig. 6(b) and 5(b) we find that the stress-optic coefficient departs from the linear behavior at
much smaller strains than the birefringence does. For N=100, the stress-optic coefficient begins
to decrease at a strain of 1.5 while the birefringence grows exponentially until a strain of 2.5.

6.1. Comparison between bead-rod simulation and FENE, Rouse, FENE-PM models

In this section the bead-rod chain extensional viscosity is compared to the FENE, Rouse and
FENE-PM models. The polymer viscosity for all the models has been made dimensionless with
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npkTlmodel where lmodel is the longest relaxation time for a given model. Note that the polymer
stress (in units npkT for all models) is the dimensionless viscosity multiplied by Wi.

The start-up of the extensional viscosity for the bead-rod chains with N=50, a FENE
dumbbell with b=150 and a five-mode FENE-PM chain with b=30 are compared in Fig. 7.
Note, the corresponding b for N=50 is 150. We have chosen to use 5 modes in the FENE-PM
model because we are setting b=3N/M and we do not want a small value for b. Ideally, neither
b nor M should be too small [45,47]. The FENE dumbbell underpredicts the bead-rod
extensional viscosity for all strains at Wi=1.065, but is in good agreement with the viscosity at
Wi=3.55 and Wi=10.65 at large strains. The FENE-PM model is in better agreement with the
small strain (below about 1.5) viscosity because of the multiple modes. At intermediate strains
of 1.5–3 the FENE-PM chain underpredicts the viscosity and at large strains shows a more

Fig. 7. Comparison (a–c) of polymer viscosity hp/npkTlmodel versus strain for the bead-rod chain, FENE dumbbell
and FENE-PM model. lmodel is the longest relaxation time for the respective model.
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Fig. 8. Comparison of polymer viscosity hp/npkTlmodel versus strain for FENE dumbbell, FENE-PM model, and
bead-rod chains with N= (a) 25; (b) 100; and (c) 200.

abrupt approach than the FENE dumbbell or bead-rod chain to the high strain viscosity. Previous
studies comparing the FENE dumbbell to a single mode FENE-PM model (FENE-P) have observed
similar trends [44].

In Fig. 8 the FENE (with b=3N) and the FENE-PM model (with M=5 and b=3N/5) are
compared to the bead-rod chain at a Wi=10.65 and varying N from 25–200. At small strains
the FENE-PM model is again in better agreement with the bead-rod chains and the agreement
improves with increasing N. This is to be expected since each mode is representing a larger number
of Kuhn steps as N increases and the original derivation of the entropic spring force is valid in
the limit of large N [25]. At intermediate strains of 2–3 the FENE-PM model underpredicts the
viscosity and shows an abrupt approach to the high strain value. The FENE model underestimates
the viscosity at small strains and agrees well at large strains. For N=200 at strains of 2–3 (Fig.
8(c)), both the FENE and the FENE-PM models underpredict the viscosity.
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To better understand why the entropic spring models fail to describe the bead-rod extensional
viscosity at intermediate strains we show sample chain configurations for N=200 and Wi=
10.65 in Fig. 9. Initially the chain is in the coiled state and later forms a series of backloops
starting at a strain of about 1. At strains of 2–3 the chain has a straight mid-region and the
backloops are concentrated at the chain ends. The tensions in the rods in the straight mid-region
are much larger than those in the backloops and contribute most to the stress. These
configurations are similar to the ‘Yo-Yo’ model proposed by Ryskin [51]. At these strains the
chain is not able to fully sample all configurations for a given end-to-end distance which is the
fundamental basis for the entropic spring models [25]. At large strains the viscosity approaches
the steady state value and the chains adopt almost straight configurations. In these almost
straight configurations the number of configurations for a given end-to-end distance decreases
greatly and the chains can more easily sample their full configuration space resulting in better
agreement with the entropic spring models.

The inability of the FENE dumbbell to capture the short time rheological behavior of the
bead-rod chains follows from the fact that it is a single mode model. In Fig. 10 we show the
bead-rod chain viscosity and Rouse chains with one, two, five and ten modes. The multi-mode
Rouse chain accurately describes the short time rheology but fails to predict a constant long
time viscosity (due to the unbound growth of the chain microstructure). Note that by using
decreasing b in the single mode FENE dumbbell the short time viscosity at a given strain
increases, but the long time viscosity will decrease. This may serve to explain previous studies
[12–15] in which a very small value of b was needed to match experimental data of Lagrangian
unsteady polymeric flows. Ideally then one would want to model the short time (small strain)
dynamics with a multi-mode model but at long times the single-mode FENE model is adequate.
An important consideration is how many modes are necessary to model the short-time rheology
of the bead-rod chains. In Fig. 10 we see that ten modes are enough to quantitatively model the
bead-rod chain at short times and even as few as five modes are satisfactory.

Fig. 9. Sample chain configurations for N=200 and Wi=10.65 at strains of 0 to 6.
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Fig. 10. Comparison of polymer viscosity hp/npkTl1,R versus strain at Wi=10.65 for a bead-rod chain with N=200
and the Rouse model with one, two, five and ten modes.

To better understand the extensional rheology of the multimode FENE-PM chain we show
the viscosity contribution from each mode for M=5, b=120 and Wi=10.65 in Fig. 11. For
short times all the modes contribute to the viscosity, just as in the linear Rouse model.
Eventually at very high strains the viscosity is dominated by the contribution from the slowest
mode and all the other modes decrease to a small magnitude. At intermediate strains of 1–3 the
viscosity has significant contributions from modes 1–3 with mode 1 always the largest. Thus

Fig. 11. Polymer viscosity hp/npkTl1,R versus strain for a five-mode FENE-PM chain at Wi=10.65 and b=120. The
total stress is the solid line and the contribution from each mode is denoted by the dots.
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after deformation at intermediate strain, if the flow were to be switched to some other flow
strength (Wi) or set to zero the total stress would relax over a spectrum of time scales. This
contrasts with the relaxation after deformation at high strains where the stress is dominated by
the slowest mode. The extensional rheology of the FENE-PM model is thus similar to a
multimode Rouse chain at short times and a single mode FENE dumbbell at longer times;
however, the FENE-PM model fails to accurately describe the bead-rod chain rheology at
intermediate strains.

7. Start-up of shear flow

In this section we will discuss the inception of steady shear flow. The polymer shear viscosity
hp and first normal stress coefficient, C1, are defined by the relations

hp=
tp

12

Pe
, (34)

C1=
tp

11−tp
22

Pe2 , (35)

where C1 has been made dimensionless with npja4/kT. In Fig. 12(a) we show the total shear
viscosity scaled by the zero-shear value versus strain and in Fig. 12(b) the viscous contribution
for N=50. The viscous contribution is approximately an order of magnitude smaller than the
total viscosity for all Wi except at very short times. As in extensional flow, initially the viscous
contribution to the viscosity is larger than the elastic for tB0.075. The total viscosity shows an
overshoot for Wi\3.55 whereas the viscous contribution shows an overshoot for Wi\10.65.
The overshoots for Wi=10.65, 35.5 and 106.5 occur at a strain of :7 for the total viscosity
and slightly sooner for the viscous contribution. In Fig. 13 we see that by increasing N we
gradually smooth the overshoots in both the total and viscous contribution to the viscosity. For
N=200 and Wi=35.5 there is a slight overshoot in the total viscosity and no overshoot in the
viscous contribution. In addition, the viscosity becomes increasingly dominated by elastic
contributions as N increases (Fig. 13).

The first normal stress coefficient scaled by the zero-shear value, C1,0=2(N2−1)(10N3−
12N2+35N−12)/(32400N) [10], is shown in Fig. 14 for N=50. Unlike the viscous contribu-
tion to the viscosity, the viscous first normal stress coefficient is initially zero at the inception of
flow. For the range of Wi we have simulated, the viscous contribution to c1 is always much
smaller than the elastic contributions. The total normal stress-coefficient undergoes an overshoot
but one that is smaller than observed for the shear viscosity. The viscous contribution to C1

overshoots at an appreciably smaller strain than the overshoot in the total C1. Both the total
and viscous C1

p overshoots occur at higher strains than for the shear viscosity. In Fig. 15 we see
that by increasing N we smooth the overshoots in both the total and viscous C1 until for
N=200 neither displays any overshoot. The viscous contribution to C1 decreases as N increases
and is three orders of magnitude smaller than the total C1 for N=200 and Wi=35.5 (Fig. 15).

In Fig. 16(a) we show the radius of gyration Rg/Rg,0 versus strain where Rg,0 is the equilibrium
radius of gyration, Rg,0=
N/6. For Wi\3.55 the radius of gyration overshoots the high strain
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Fig. 12. Total (a) and viscous (b) shear viscosity versus strain for N=50 and Wi=3.55, 10.65, 35.5 and 106.5.

value and the magnitude of this overshoot and the strain at which this occurs increases with
increasing Wi. For all Wi, the radius of gyration at large strain is substantially smaller than the
value predicted by the Rouse chain [52], Rg

Rouse/Rg,0
Rouse= (1+0.41Wi2)0.5. The bead-rod chain is

less extended than the Rouse chain at a given Wi due to the nonlinear entropic restoring force
as the bead-rod chain is stretched beyond 50% of its contour length. Note though that at
Wi=10.65 the radius of gyration has not reached the maximum possible value of Rg/Rg,0=5
corresponding to a straight chain with N=50. In Fig. 16(b) we show the radius of gyration
scaled with Rg,0N1/2 versus shear strain for Wi=35.5 and N=50—200. We have scaled Rg with
Rg,0N1/2 to collapse the large strain values onto a single curve. As N increases the overshoot in
the radius of gyration decreases and for N=200 there is no overshoot. The overshoots in the
material properties hp, C1 and Rg

2 decrease in magnitude as we increase N at a fixed Wi because
linear shear flow is a weak flow and as we increase N we expect to recover linear viscoelastic
behavior. We note though that this approach to linear behavior can be slow, for example the
steady-state shear viscosity approaches the linear value as N1/3 [1]. The Rouse chain predicts that
Rg/Rg,0 should be independent of N and equal to 22.8 at Wi=35.5 which is much more than the
value for the N=200 bead-rod chain of 5.9. For large N, we expect the bead-rod radius of
gyration to approach the Rouse value and we can use the N0.5 scaling to estimate this occurrence
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when N:3000 for Wi=35.5. This value corresponds to a Mw=3×106 for polystyrene (where
we have assumed the Kuhn step to be ten repeat units). Steady-state measurements of Rg in
shear flow using light scattering [53–55] and small angle neutron scattering [56] show smaller
deformations than predicted by the Rouse model. For example, Link and Springer found that
for dilute polystyrene solutions in a near-u solvent (Mw=107) Rg/Rg,0= (1+0.017Wi1.4)0.5.
Brownian dynamics simulations of Gaussian multibead-spring chains in shear flow have shown
that the radius of gyration at a fixed Wi and N is decreased by approximately a factor of a half
when hydrodynamic interactions are included [57]. Assuming the N0.5 scaling for Rg holds for
large chains, neither the nonlinear restoring forces in the bead-rod model nor hydrodynamic
interactions inhibit chain extension enough to be in agreement with the experimental data and
we speculate that one needs to account for intra-molecular entanglements in a simulation to
capture this.

In Fig. 17(a) we illustrate the stress-optic coefficient versus strain for N=50 and a range of
Wi. It is remarkable that for a fixed Wi, the stress optic coefficient based on the 1–2 component
of the stress or the difference in the 11–22 components collapse onto a single curve. This
collapse occurs for all N (Fig. 17(b)) and occurs even when the stress-optic coefficient deviates
significantly from the constant weak flow value of 0.2. Thus the nonlinear elastic polymer stress

Fig. 13. Total (a) and viscous (b) shear viscosity versus strain for N=50, 100 and 200 and Wi=35.5.



P.S. Doyle, E.S.G. Shaqfeh / J. Non-Newtonian Fluid Mech. 76 (1998) 43–7866

Fig. 14. Total (a) and viscous (b) first normal stress coefficient versus strain for N=50 and Wi=3.55, 10.65, 35.5 and
106.5.

tensor is proportional to the polymer index of refraction tensor, but must be multiplied by a
scalar quantity which is a function of chain configuration. The modified general stress-optic law
for the bead-rod chains is of the form t ij

p=C(Wi, N)nij
p which is much simpler than the most

general form t ij
p=Cijkl(Wi, N)nkl

p .
The solid lines in Fig. 17 denote the FENE-like gyration term 0.2[1− (Rg/Rg,�)2]. For N=50

and Wi=3.55 in Fig. 17(a), the radius of gyration term is in very good agreement with the
stress-optic coefficient but large deviations occur as the Wi increases. The radius of gyration
term underestimates the decrease in the stress-optic coefficient. As N increases in Fig. 17(b), the
long-time value of the radius of gyration term is in slightly better agreement with the stress-optic
coefficient but significant differences exist for smaller strains. These results suggest that for
moderate Wi in shear flow, the radius of gyration of the a polymer chain can be used in a
modified stress-optic law to predict a non-constant stress-optic coefficient which is in quantita-
tive agreement with the actual value in shear flow for Wi53.55. For larger Wi, the FENE-like
stress-optic coefficient is larger than the actual value but is an improvement over using the
constant low Wi value. Experimentally one can combine light scattering and birefringence
techniques to better estimate nonlinear elastic polymer stresses. Light scattering [53–55] and
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small angle neutron scattering [56] have been used in steady flows to measure Rg though we
know of no studies that have measured Rg, the birefringence and the shear-rate dependent
viscosity.

7.1. Comparison of the bead-rod simulation to the FENE and FENE-PM models

In Fig. 18 hp/h0
p for N=50 is compared to a FENE dumbbell with b=150 and a five-mode

FENE-PM model with b=30. We have chosen to compare the ratio hp/h0
p instead of merely hp

because the FENE dumbbell will underestimate the low Wi shear viscosity (and first normal
stress coefficient) because it is a single mode model [10]. For all Wi, the FENE dumbbell better
describes the position and magnitude of the overshoot in the bead-rod viscosity compared to the
FENE-PM model. The FENE-PM is in better agreement at short times with the bead-rod chain
because it is multimode model, as was the case in extensional flow. In Fig. 19 the shear viscosity
at Wi=35.5 is shown for larger bead-rod chains and compared to the FENE and FENE-PM
models. The FENE and FENE-PM models correctly predict that the overshoot in hp decreases
with increasing N. The agreement between the models does not change as N increases. Note that
in general there is not a large difference in the FENE and the multi-mode FENE-PM viscosity

Fig. 15. Total (a) and viscous (b) first normal stress coefficient versus strain for N=50, 100 and 200 and Wi=35.5.
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Fig. 16. Radius of gyration divided by the equilibrium value, Rg,0= (N/6)0.5, versus shear strain for N=50 and
Wi=3.55, 10.65, 35.5 and 106.5 (a). Radius gyration divided by Rg,0N0.5 versus shear strain for Wi=35.5 and
N=50, 100 and 200 (b).

results; this contrasts with the previous comparisons of a single mode FENE-PM model to
FENE dumbbells [44] in which large differences were observed in the magnitude of the
overshoot. As we increase the number of modes in the FENE-PM model we expect to recover
linear viscoelastic behavior. We have not shown the Rouse model results because at small strain
it will coincide with the FENE-PM model and at large strain monotonically approaches a value
of 1 [10].

The bead-rod chain first normal stress coefficient is compared to the FENE and FENE-PM
models in Fig. 20. As in the viscosity comparisons, we have chosen to compare C1/C1,0 because
the FENE model will underpredict the low shear-rate C1. For Wi510.65 and small strains in
Fig. 20, the FENE and FENE-PM chain are in good agreement with the bead-rod chain. At
large Wi and for small strains, the FENE-PM model is still in good agreement with the bead-rod
chain while the FENE dumbbell slightly underpredicts C1. We can understand the larger
discrepancy in comparing the single mode FENE and bead-rod chain viscosity at short times
versus comparing the respective values of C1 by examining the effect of combining multiple
linear modes via the Rouse model. In the Rouse model, the characteristic time for the viscosity
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and first normal stress coefficient contribution from mode a is la,R/l1,R while weighting of the
viscosity is la,R/l1,R and the weighting of C1 is (la,R/l1,R)2. C1 will thus converge faster than hp

when summing many modes. At larger strains, the FENE dumbbell is in much better agreement
with the bead-rod chains than the FENE-PM model. As the Wi was increased, the FENE and
FENE-PM models show much larger overshoots in C1 than the bead-rod chains and the
location of the overshoot occurs at larger strains. Herrchen and O8 ttinger [44] have shown that
the averaging in the FENE-PM model for single springs (modes) gives rise to large differences
in the transient and steady-state first normal stress coefficient and this is the most likely reason
for the poor comparison of the FENE-PM and bead-rod chains. The agreement between the
models did not change for increasing chain size of N=100–200 at Wi=35.5, therefore we have
not shown these results. Wedgewood and O8 ttinger [58] have shown that including consistently
averaged hydrodynamic interactions, in addition to nonlinear springs, deceases slightly the shear
viscosity and first normal stress coefficient overshoots.

Fig. 17. Stress-optic coefficient versus strain for (a) N=50 and Wi=3.55, 10.65, 35.5 and 106.5; and (b) Wi=10.65
and N=50, 100 and 200. The open symbols are the stress-optic coefficient based on the 12 component of the stress
and the closed symbols are based on the 11–22 components of the stress. The solid lines are the FENE-like term
0.2[1− (Rg/Rg,�)2].
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Fig. 18. Comparison of shear viscosity for a bead-rod chain with N=50, FENE dumbbell with b=150 and five-mode
FENE-PM model with b=30 at Wi= (a) 3.55; (b) 10.65; (c) 35.5; and (d) 106.5.

To better understand the effect of adding multiple modes to the FENE-PM model we show
the contribution of each mode to the shear viscosity and first normal stress coefficient Fig. 21(a)
and (b) respectively for five modes with b=120 and Wi=35.5. The viscosity has time-dependent
contributions from many modes until near the peak of the overshoot after which point all modes
\1 have saturated to a constant value. In contrast, the contributions from modes \1 to the
first normal stress coefficient in Fig. 21(b) are so much smaller than the first mode that they
merely appear to contribute a constant offset for strains \10. Thus, by adding more modes, the
time variation of C1 is not significantly changed. It follows that one should expect to see similar
results for a single mode FENE-PM and thus poor agreement with the FENE dumbbell [44].

8. Comparison to experimental data

Our computational resources limit us to simulating bead-rod chains with N5200, while most
experimental results are for polymers with N=O(3000). We have shown that the FENE and
FENE-PM model can qualitatively describe the bead-rod chain extensional stresses and so we
compare these models to experimental data. We recall that quantitative agreement between the
FENE-PM and bead-rod chain stress was obtained for small strains whereas the FENE model
was in good agreement with the bead-rod chain at large strains.
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Recently Spiegelberg and McKinley have measured the extensional viscosity of dilute
polystyrene solutions using the filament stretching rheometer [59]. We have compared various
elastic polymer models to the data in Fig. 5 in Ref. [59] for a 0.05 wt.% polystyrene solution at
Wi=2.84 [59]. We have subtracted the solvent contribution from the total stress, which for the
filament stretching rheometer is approximately [60]

t s
11−t s

22=
�

3+
1

A0
e−7/3e; tnh s

0e; , (36)

where A0 is the initial aspect ratio of the sample in the rheometer and h0
s is the solvent

contribution to the zero shear viscosity. Spiegelberg and McKinley [59] let A0=0.71 and
h0

s =37.2 Pa s for their experiments. The polymer contribution to the zero shear viscosity is 10.5
Pa s and the longest relaxation time (from the shear stress relaxation) is l1=2.9 s. We have
assumed the polymer has a Zimm spectrum and calculated the contribution from the slowest
mode, or equivalently npkT, to be hp/l1/2.369=1.53 Pa. The simulation stresses are then made
dimensional using npkT=1.53 Pa. The FENE extensibility parameter for the polystyrene is [60]

Fig. 19. Shear viscosity versus strain for bead-rod chains, FENE dumbbells and five-mode FENE-PM model at
Wi=35.5.
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Fig. 20. Comparison of first normal stress coefficient for a bead-rod chain with N=50, FENE dumbbell with b=150
and five-mode FENE-PM model with b=30 at Wi= (a) 3.55; (b) 10.65; (c) 35.5; and (d) 106.5.

b=
6Mw sin2[tan−1(
2)]

C�M0
, (37)

where Mw=2.25×106 g mol−1 is the polystyrene molecular weight, M0=104 g mol−1 is the
monomer molecular weight, C�=10 is the characteristic number of monomer units in a Kuhn
step and 2 tan−1(
2)=u=109.5° is the tetrahedral bond angle. For the polystyrene in Ref.
[59], b=8665.

In Fig. 22(a) we compare the polystyrene stress to a ten-mode FENE-PM model, FENE
dumbbell and a ten-mode FENE-PM model where we have modified the relaxation spectrum to
have the Zimm form l i,Zimm/l1,Zimm= i−3/2 and we denote this model as Zimm-FENE-PM. At
small strains, the multimode models are in much better agreement with the experimental data
than the single mode FENE, with the Zimm-FENE-PM model giving the best fit. At a strain of
3, the polystyrene stress begins to increase much faster than any of the models and the FENE
is in slightly better agreement than the FENE-PM or Zimm-FENE-PM. At large strains all the
models predict similar values for stress. Orr and Sridhar [61] have compared the prediction of
a multimode FENE-P model (where the modes were independent and obtained from fits to
shear data) to extensional stresses for fluid A and also found that it underpredicted the
experimental stresses at large strain. They attribute the discrepancy to a viscous stress.

The FENE and FENE-PM models also unpredicted the bead-rod chain extensional viscosity
at strains of 3–4, but the discrepancy is not as large as that in Fig. 22(a). One feature which we
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have not included in the models is the effects that hydrodynamic interaction will have as the
chains are unraveled by the flow. To incorporate this we have performed additional FENE
simulations in which we have included a conformation dependent drag coefficient [62–64] which
accounts for the additional drag on a uncoiled chain. In our modified FENE simulations we let
the drag on a bead increase linearly with the end-to-end distance as

z(Q)=z0
(Q−
3)(zmax/z0−1)

(
b−
3)
+1, (38)

where z0 is the zero deformation drag and zmax is the maximum drag when the dumbbell is fully
extended. This introduces a new parameter zmax/z0. To estimate zmax/z0, we have calculated the
ratio of the drag on a straight rod to the drag on a Zimm chain [21]

zmax

z0
=

6.28L
ln(L/d)5.11R

, (39)

where L is the length of the chain, d is the diameter and R is the equilibrium root-mean-square
end-to-end separation of the chain. The ratio L/R is equal to 
b/3, d is approximately 0.5 nm

Fig. 21. Shear viscosity (a) and first normal stress coefficient (b) versus strain for a five-mode FENE-PM model with
b=120 and Wi=35.5.
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Fig. 22. Comparison of polystyrene extensional stress (from Spiegelberg and McKinley [59]; Fig. 5) at Wi=2.84 to:
(a) ten-mode FENE-PM b=866.5, ten-mode Zimm-FENE-PM b=866.5, FENE dumbbell b=8665; (b) FENE
dumbbells with conformation dependent drag.

and L= (b/3)×1.54 nm giving (zmax/z0=7.3. Note that this is much smaller than 
b/3 due to
the logarithmic term in the straight rod drag [65]. We consider this as an upper bound for
zmax/z0 since in the simple single-spring dumbbell model we placed all the drag on two beads at
the end of the chain [65].

In Fig. 22(b) the simulation results for the FENE with conformation dependent drag are
compared to the polystyrene extensional stress. We show calculations for a FENE without
conformation dependent drag and for zmax/z0=4, 6 and 8. The conformation dependent FENE
models all collapse onto the same curve for small strain because the dumbbell is not significantly
extended. At a strain of 2.5, the curves begin to appreciably separate with the stress increasing
faster for a larger zmax/z0. The zmax/z0=8 curve is in good agreement with the experimental data
and is a marked improvement over the FENE without conformation drag. By increasing the
ratio zmax/z0 we decrease the strain at which the FENE model begins to show large nonlinearities
in the stress and additionally we change the plateau value of the stress at large strain. In the
conformation dependent drag model we are increasing the effective Wi as the dumbbell extends
which gives rise to the stresses increasing at a smaller strain and an increased value in the stress
plateau at high strains. The stress plateau increases approximately as zmax/z0. Fuller and Leal
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[64] have compared birefringence measurements of dilute polystyrene solutions in linear flows
(measured in the four roll mill device) to a FENE-P model with conformation dependent drag
and internal viscosity. They found very good agreement between the model and experimental
data. We note though that they used a much larger value for the maximum drag on the
dumbbell, zmax/z0=
b/3, than we have used in our comparisons. Experimental studies of DNA
molecules in flow [66] suggest that the increase in zmax/z0 is much smaller than 
b/3. In general
though for the FENE models the stress will be more sensitive to changes in the drag ratio zmax/z0

than the birefringence (or radius of gyration) at large strains where the stress-optic law is no
longer valid (at small strains the birefringence and stress are collinear). In addition, at large
strains (or at steady-state) the stress will increase linearly with zmax/z0 whereas the birefringence
will be nearly constant as it approaches the maximum value corresponding to full extension and
alignment of the dumbbell.

9. Conclusions

The rheological and optical properties for bead-rod chains during the inception of uniaxial
elongational and shear flow have been presented.

The initial viscous viscosity jump is equal to the low Wi steady-state value of 0.124N−0.156
and the elastic contribution to the viscosity becomes equal to the viscous when t/l1=5.3N−2 for
all Wi and N. The elastic stresses quickly become orders of magnitude larger than the viscous
stresses for later times. For a fixed Wi, the stress is dominated by the elastic contribution as N
increases. Additionally, as N increases the overshoots in the shear viscosity, C1 and Rg decrease.
We showed that the transient extensional stress can appear to be viscous, in that they can scale
linearly in strain-rate, but are truly elastic. This is in direct contrast to the previous studies of
Hinch [8] and Rallison [9] which concluded that the transient stresses are mostly viscous for
bead-rod chains in extensional flow.

The stress-optic law is valid in elongational flow for WiB1. At larger Wi, the stress-optic law
is constant up to an O(1) critical strain and the critical strain increases with increasing N. In
shear flow the stress-optic law is no longer valid for Wi\3.55. The failure of the stress-optic law
in both shear and extensional flow is due to nonlinear elastic stresses. In shear flow, the
stress-optic coefficient based the 12 and 11–22 components was the same even when the
stress-optic law was not valid suggesting a general stress-optic relation for dilute polymers of the
form nij=C(Wi, N)t ij

p which is much simpler than the most general form nij=Cijkltkl
p . The

non-constant stress-optic coefficient is in qualitative agreement with the FENE-like term
0.2[1− (Rg

y/Rg,�
y )2] for all Wi and N but only quantitatively in agreement for shear flow at

Wi=3.55.
Having shown that the stress in dilute flexible polymer solutions is mostly elastic, we

compared the bead-rod chains to three elastic bead-spring models: FENE, Rouse and FENE-
PM. For both shear and extensional flow, a multimode model is needed to resolve the small
strain material properties of the bead-rod chains. In extensional flow at large strain, the FENE
model with b=3/N is in good agreement with the bead-rod chains, but underpredicts the
viscosity at small strain. At intermediate strains of 1.5–3 the FENE and FENE-PM models
underpredict the bead-rod viscosity because the bead-rod chains cannot sample all configura-



P.S. Doyle, E.S.G. Shaqfeh / J. Non-Newtonian Fluid Mech. 76 (1998) 43–7876

tions for a given end-to-end distance which is an inherent assumption in the entropic spring models.
At large strains, the FENE-PM model viscosity is dominated by the contribution from the slowest
mode and approaches the single-mode FENE value for the viscosity. A modal decomposition of
stress contributions in the FENE-PM model shows that at intermediate strains the elongational
viscosity has significant contributions from modes 1–3 but is dominated by mode 1 at long times.
Thus, the relaxation of the steady-state stress for the FENE-PM model should be independent
of the number of modes for a fixed b×M. We will report on the stress relaxation in a future
publication [67]. In shear flow the FENE and FENE-PM models gave comparable results for the
shear viscosity with the FENE-PM model always being in better agreement with the bead-rod
chains at small strain. In contrast, the FENE-PM model predicts a much larger overshoot in C1

than the FENE or bead-rod models. The addition of multiple modes to the FENE PM model
changes significantly the shear viscosity but not the first normal stress coefficient.

The elastic dumbbell models were compared to extensional stress measurements of polystyrene
solutions. The FENE-PM model with a Zimm relaxation spectrum was in good agreement with
the experimental data for small strain. At large strain the FENE and FENE-PM models
underpredict the experimental stress. The FENE simulations with conformation dependent drag,
using a modest drag ratio zmax/z0=4–8, were in best agreement with the experimental data. These
results suggest that future Brownian Dynamics studies incorporating hydrodynamic interactions
should be performed to better understand their effect on polymer rheology in strong flows. Fetsko
and Cummings [68] have performed Brownian Dynamics simulations for small (N=7) multibead
FENE chains with excluded volume and hydrodynamic interactions but the effects of hydrody-
namic interactions in their extensional flow calculations are secondary to the excluded volume
effects (simulating a good solvent).

In a future publication we will report on the relaxation of the elastic bead-rod stresses and
compare to the FENE and FENE-PM model [67].
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