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A general method is presented for simulating the dynamical behavior of a suspension of particles
which interact through both hydrodynamic and nonhydrodynamic forces. In the molecular-
dynamics-like simulation there are two different procedures for computing the interactions
among particles: a pairwise additivity of forces and a pairwise additivity of velocities. The pairwise
additivity of forces is the preferred method as it preserves the hydrodynamic lubrication forces
which prevent particles from overlapping. The two methods are compared in a simulation of a
monolayer of identical rigid non-Brownian spherical particles in a simple shear flow. Periodic
boundary conditions are used to model an infinite suspension. Both methods predict the presence
of a shear induced anisotropic local structure whose form and strength depend on the
concentration of particles, the nonhydrodynamic forces, and the shear rate. Increasing the
particle concentration up to near the maximum fraction that can still flow results in a transition to
a layered structure in which planes of particles slide relative to one another. The anisotropic local

structure and transition to a layered structure predict a non-Newtonian suspension rheology.

I. INTRODUCTION

Interest in suspension mechanics has experienced a
marked increase in recent years, with contributions coming
from many different fields, e.g., engineering, chemistry,
physics, and mathematics. The basic problem is to predict
the macroscopic transport properties of a suspension—elec-
trical or thermal conductivity, viscosity, sedimentation rate,
etc.—from the microstructural mechanics, i.e., from the in-
teractions among the suspended particles and from their dis-
tribution in space. The articles by Batchelor,' Brenner,” Jef-
frey and Acrivos,® and Russel* provide a comprehensive
review of the theoretical and experimental work in this area.
For the most part, theoretical studies have been limited to
dilute concentrations at zero particle Reynolds number
where single- or two-particle interactions dominate and have
sought to determine the macroscopic properties by an ex-
pansion in number density or volume fraction. Unfortunate-
ly, agreement with experiment is generally found up to only
a few volume percent. Nevertheless, these theories have
identified the fundamental mechanisms operating in suspen-
sions and provide an important foundation upon which to
base further studies.

Extending dilute suspension analyses to higher concen-
trations poses two problems. The first is the determination of
the many-body interactions among particles, particularly,
the many-body hydrodynamic interactions. While extreme-
ly complex, using various renormalization and diagrammat-
ic-type techniques progress can be, and has been, made in
computing many-body hydrodynamic interactions.>® These
calculations are by no means exact for all particle~particle
separations, but they do give some indication of the impor-
tance of three-body and higher-order effects.”

The second problem is the determination of the spatial
distribution of particles—the configuration of the micro-
structure. To date, no progress has been made beyond the
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dilute two-particle limit. This is due in large part to the fact
that in suspensions in which particles undergo relative mo-
tion, as in response to an externally imposed driving force
(bulk shear flow e.g.), the configuration cannot be specified a
priori, but must be found as part of the problem. This aspect
sets the viscosity and sedimentation problems apart from the
conductivity ones, for in the latter the distribution of parti-
cles can be supposed known or given at the outset. Indeed,
the configuration of the microstructure in a flowing suspen-
sion is a dynamic rather than static entity. The dilute suspen-
sion theories have all assumed or calculated stationary con-
figurations and are therefore applicable only to the time
averaged behavior. Our principle interest in this work lies in
the dynamic and configurational aspects of suspensions.

The only rigorous analyses of concentrated suspensions
have assumed the particles are distributed in a regular array
or lattice.®-'? Although the many-body interaction problem
can now be solved exactly, the assumption of perfect regular-
ity is highly restrictive and is at best only an approximation
for flowing suspensions.

These notions and problems are quite familiar to statis-
tical mechanicians who deal with the equilibrium and trans-
port properties of dense gases and liquids, and indeed many
analogies can be made. Molecular dynamics has proved an
effective means for determining the configuration of parti-
cles, in particular, the pair distribution function g(r), from
which most properties of dense systems can be calculated.
With the recent advances in the hydrodynamical aspects of
suspensions, it seems appropriate to try to apply some of the
molecular-dynamics ideas to suspensions. We are not aware
of any study which has attempted a molecular-dynamics-
like simulation of sheared suspensions, although several pa-
pers have appeared on Brownian dynamics with hydrody-
namic interactions which has some features in common with
the present problem.'>'* It is the purpose of this paper to
present a general method for performing such simulations
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and to present results for some model suspensions.

In Sec. II we shall outline a method for simulating the
dynamic behavior of a suspension of rigid, non-Brownian
particles subjected to a bulk, macroscopic, shear flow when
the particle Reynolds number is small. The particles are al-
lowed to interact both hydrodynamically and through inter-
particle forces, the form of which is arbitrary. A procedure is
also presented for overcoming the convergence difficulties
associated with the long-range hydrodynamic interactions
between particles—the velocity disturbance for a force-free
particle decays as 1/r°—allowing one to simulate a system
with periodic boundary conditions. As has been done in
most molecular dynamics calculations, in order to reduce
computation time, pairwise additivity of the interactions is
assumed. It will be seen below that pairwise additivity of
hydrodynamic interactions can be carried out in two, very
different, ways. The first method entails superposing veloc-
ity disturbances, or said differently using pairwise additivity
in the so-called mobility matrix. The second method is a
superposition of forces rather than velocity disturbances, or
a pairwise additivity in the resistance matrix. Although it is
clear that these two methods are not the same, there has been
no study which has examined the predictions of one over the
other, and a major component of this work is to carry out
such a comparison. We shall show that the superposition of
forces follows more closely the proper physics in that the
hydrodynamic lubrication forces that prevent particles from
touching are preserved. These lubrication forces are not pre-
served with the superposition of velocities and particles can
freely overlap unless strongly repulsive interparticle forces
are present. It will also be seen that the superposition of
forces includes more than a strict pairwise additivity and in
some sense many-body interactions are taken into account.
Hence, it is the preferred method. The Brownian-dynamics
simulations referred to previously all used a superposition of
velocities.

Following the general method, in Sec. III we shall apply
this technique to the simulation of a monolayer of identical
rigid spherical particles freely suspended in a simple shear
flow. In the monolayer all particles centers lie in the plane of
shear (cf. Fig. 2), reducing the number of degrees of freedom
for each sphere from six to three with an obvious saving in
computation time. While an idealization, a monolayer is a
realizable suspension flow and experiments have been per-
formed on such systems.'>'® More importantly, however, it
is felt that the flow induced structure in the plane of shear, as
measured by the pair distribution function, should not differ
significantly from that in a fully three-dimensional shear
flow. In addition to hydrodynamic interactions, the particles
also interact through repulsive DLVO-type colloidal forces.

In Sec. IV we present the results of the numerical simu-
lations principally in terms of the pair distribution function
g(r). Simulations were performed with both 25 and 100 parti-
cles, and the results show that 25 particles yield accurate
distribution functions. It will be seen that the shear flow
induces a pronounced anisotropic local structure which has
in general both radial and angular dependence. The precise
form of this structure depends on the concentration of parti-
cles, the interparticle force, and the shear rate. The angular

structure that develops can be traced to the repulsive inter-
particle force—it is absent when there is no such force—
while the radial structure is primarily an excluded volume
effect. The local structures found by both simulation meth-
ods agree qualitatively, but there are quantitative differ-
ences. It will also be seen that increasing the particle density
up to near the maximum areal fraction that can still flow
results in a transition to an ordered layered structure.

We do not discuss in any depth the macroscopic trans-
port properties that can be determined from the dynamic
simulations, as the purpose of this paper is to demonstrate
the method and indicate the types of behavior to be expected
in sheared suspensions. We can say, however, that the aniso-
tropic local structure that is induced by the shear flow gives
rise to non-Newtonian rheological behavior—the fluid can-
not be characterized by a simple scalar viscosity. Subsequent
papers will give results for the bulk rheological properties as
a function of concentrtion, interparticle force, and shear
rate. Future work will also show how to extend the present
method to include the effects of rigid boundaries and Brow-
nian motion.

Il. SIMULATION METHOD

We consider solid rigid particles suspended in a Newto-
nian fluid of viscosity 2 and density p. The equations of mo-
tion for the fluid are the familiar Navier-Stokes equations
for an incompressible constant property fluid, while those
for the particles can be written in the following matrix form:

ML —Fy + F. (1)
In Eq. (1) U is a column vector of dimension 6V containing
the translational and angular velocities of all N particles un-
der consideration. The particle and fluid velocities are relat-
ed by the no slip condition at the particle surfaces. M is a
generalized mass/moment of inertia matrix of dimension
6N X 6N.F,;, and F,, also of dimension 6, are respectively
the hydrodynamic and nonhydrodynamic force-torque vec-
tors. When an appropriately defined particle Reynolds num-
ber is small (see below) and in the absence of Brownian mo-
tion, i.e., an appropriately defined Péclet number is large (see
below), the particle inertia may be neglected in comparison
with the hydrodynamic and nonhydrodynamic force tor-
ques. Then, Eq. (1) becomes simply

F, +F,=0. 2)

As shown by Brenner and co-workers,'”'®'? because of
the linearity of the governing Stokes equations for the iner-
tia-free particle motion, the hydrodynamic force-torque vec-
tor for particles suspended in a fluid undergoing a bulk linear
shear flow characterized by the constant traceless {from in-
compressibility) symmetric rate of strain tensor E and con-
stant vorticity o can be written as

F, = RU* + ®E. (3)
In Eq. (3) U* is the particle translational-angular velocity
relative to the bulk fluid translational-angular velocity eval-

uated at the particle’s center. For example, suppose particle
a is located at the point X, relative to the origin for the bulk
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flow. The fluid’s bulk translational velocity evaluated at the
particle center X, is then E-X, . The bulk angular velocity at
the particle center is simply the constant . Hence, for parti-
cle a its translational velocity u,, is given by

u, =u*+EX,
and its angular velocity about its center X,, is
Q,=0*+o.

The translational-angular velocity for particlea, U,,, is com-
posed of the above as U, = (u,, £2,). For the case of steady
simple shear flow with shear rate ¢ in the (x,y) plane, the bulk
rate of strain tensor and vorticity are given by

0 1 0
E=%1 0 0
0 00
and )
w=—%(0,0,1).

We have used the word “bulk” in characterizing the
linear shear flow to indicate that E ad o are constant (in
space, although they may vary in time) macroscopic quanti-
ties. How these relate to the actual mechanism causing the
homogeneous shear flow will be discussed below when we
consider the periodic boundary conditions. For the moment,
we are simply interested in the structure of the hydrodynam-
ic force torque as given by Eq. (3).

The matrix R in Eq. (3) is known as the grand resistance
matrix and is a purely geometric quantity that depends on
the instantaneous configuration—relative position, orienta-
tion, etc.—of all NV particles. The 6N X 6N matrix R relates
the force torque exerted by the suspending fluid on each
particle due to the translational-angular motion of all NV par-
ticles (including the designated one) relative to the fluid. The
6V X 3 X 3 matrix @ is known as the shear resistance matrix
and it too is a purely geometric, configuration dependent
entity. ® gives the force torque on a particle in the suspen-
sion due to the bulk shear flow. Both R and @ possess many
symmetry properties resulting from the Lorentz reciprocal
theorem for Stokes flow.!®'"~2® More details of the structure
of R and & will be given below when we discuss the pairwise
additivity assumption. The inverse of R is known as the mo-
bility matrix.

We have so far left the nonhydrodynamic force F, un-
specified. F, stands for any interparticle forces that might be
present, e.g., colloidal forces, and for any externally imposed
forces such as those arising from gravitational and electrical
fields. In general, F, will also depend on the instantaneous
configuration of particles.

In the linear shear flow where " sets the time scale,
the condition for neglect of particle inertia is that the particle
Reynolds number Re = p(ya*/u) be much less than unity.
Here a is a characteristic size of the particles. In order that
Brownian motion be neglected, the particle Péclet number
Pe = 6muay/kT must be much larger than unity. Here, T is
the absolute temperature, k is Boltzmann’s constant, and we
have made use of the Stokes—Einstein relation for the parti-
cle diffusivity D = kT /6mua. For water at room tempera-
ture, spherical particles in excess of 5 um in diameter have

Péclet number of 0(100) for shear rates of 0{1s~?). Under the
same conditions, the particle’s Reynolds number is 0(107°).
Thus, only for very small prticles or at very low shear rates is
Brownian motion important. If the particle motion were de-
termined by an external force rather than the shear flow, this
force would set the characteristic velocity from which to
estimate the particle Reynolds and Péclet numbers. Note,
this limitation on the particle Reynolds number does not
mean that the Reynolds number for the bulk motion must be
small.

To simulate the dynamics of a suspension we determine
the particle velocities from Eq. (2), along with Eq. (3) for the
hydrodynamic force torques and whatever nonhydrodyna-
mic force torques F, are appropriate, i.e.,

RU* + ®:E+F,=0. (4)
Or, solving for the velocities
U*= —R ' {D:E+F;}, (5)

where R™! is the inverse of the matrix R. Equation (5) is
deceptively simple because R, ® and F are all configuration
dependent and thus implicit functions of time. Having found
the velocities at a given instant, the new particle positions
can be found a short time At later, but then the configuration
will have changed, and R, ®, and F, must be recomputed
before the particle trajectories can be continued. We shall
present a scheme for doing this in the next section, but first
we must address two important questions: periodic bound-
ary conditions and pairwise additivity. Note that by neglect-
ing the particle inertia, we have first order differential equa-
tions to solve for the particle positions rather than second
order as is customary in molecular dynamics.

In order to simulate a suspension of “infinite” extent,
periodic boundary conditions are needed to restrict the num-
ber of particles whose motion is followed. Figure 1 shows a
periodic box of length L and height H for simple shear flow
in the (x, y) plane. (We shall only consider simple shear flow
in this paper; different conditions may be needed in other
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/
/
/
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e

FIG. 1. Diagram of the periodic boundary conditions showing the location
of the images a’ and a’’ in the x and y directions. The image a” is translated
in x by the amount Hy ¢. This preserves the shear flow in the y direction.
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situations.) The image a’ of particle a outside the box in the x
or z direction is just the usual translation by L. In the y
direction, however, a particle which leaves the top of the box
does not enter the botom at the same x coordinate. As shown
by Evans,”! the image a” of particle a in the y direction is
translated as illustrated in Fig. 1 by an amount Hyt where ¢ is
time. This translation reproduces the shear flow in the y di-
rection.

By periodic boundary conditions we represent an infi-
nite suspension as a spatially periodic array of identical cells.
It is easy to see that for such an array the rate of strain E and
vorticity o used in deriving Eq. {3) are indeed well defined
macroscopic constants. In fact, this has been proven by Ad-
ler, et al.'® Thus, simple shear flow with periodic boundary
conditions is well posed and is intended to model the behav-
ior of a suspension in regions far removed from the boundar-
ies creating the simple shear. To include boundary effects the
formulation in Eq. (3) cannot be used because a bulk linear
shear flow does not necessarily exist. For this case a well
posed problem is one in which the boundaries move with
prescribed velocities rather than imposing an average shear
rate. In a subsequent paper we shall show how to incorporate
boundary effects in the simulation method.

In using periodic boundary conditions, we assume that
a particle in the center of its periodic cell interacts only with
other particles that are also within the cell. Interactions with
particles outside the cell are neglected, and this step must be
justified because the hydrodynamic interactions between
particles are very long ranged. For force-free particles in a
linear shear flow the velocity disturbance due to a particle
decays as 1/72. (The particles act like force dipoles.) To show
that we can neglect the particles outside the periodic cell
when determining the trajectory of a given particle, we ap-
peal to the work of O’Brien.*? By using Green’s theorem for
Stokes flow one can show, as O’Brien has for Laplace’s equa-
tion, that force-free particles outside a volume of character-
istic radius R in total contribute zero to the velocity of a
particle at the center of this volume with an error 0{1/R 2.
Thus, as the volume of the periodic cell increases (R— ),
the effect of the particles outside cell can be made arbitrarily
small.

Although this can be proven rigorously, there is also a
simple physical explanation. As far as the particle at the
center of the periodic cell is concerned, particles outside this
volume appear, not as discrete particles, but as continuous
distribution of force dipoles whose dipole strength depends
on the bulk rate of strain E. This uniform distribution of
dipoles gives zero contribution to the translational-angular
velocity of the central particle. The principal errors come in
representing the discrete distribution of particles as a contin-
uous one and in assuming the dipole strength of the contin-
uous distribution is just its bulk average value. The latter
error is at most 0{1/R ?) and the former depends on precisely
how fast the discrete distribution approaches the continuous
one. Our simulations indicate that this approach is suffi-
ciently fast for the above error estimate to be valid. The
above derivation (or argument) was developed for force-free
particles, i.e., F, =0, but it can be carried through un-
changed in the presence of purely interparticle forces. If an

external force such as gravity acted on the particles, a similar
argument can be employed to justify the use of periodic
boundary conditions.

Having established the particle evolution Egs. (4) or {5)
and shown how to implement the periodic boundary condi-
tions, we now turn to the remaining problem of determining
the form of the grand resistance and shear resistance matri-
ces and the assumption of pairwise additivty.

Exact solutions for many-body hydrodynamic prob-
lems are not available, and it is only within the last ten years
that a complete solution for two arbitrarily sized rigid
spheres in a linear shear flow has been developed.'”'®*-%
As the number of references indicate (and this is surely not
an exhaustive set) the two sphere results are scattered
throughout many papers. Only very recently have they been
recomputed and compiled in a single location by Jeffrey an
Onishi.® Thus, for two spheres all elements of the grand
resistance and shear resistance matrices are known exactly
for all separations of the two spheres. This is possible because
the geometry of the two sphere problem is completely deter-
mined by a single vector—the relative separation vector. It is
not the purpose here to present a long list of the elements in
the matrices and their symmetry properties as they are avail-
able elsewhere, and in particularly concise form in Jeffrey
and Onishi,® but some brief comments about the important
properties of these matricies are appropriate.

Although exact results are available, there is no closed
form analytic solution for all relative separations of the two
spheres. At large separations far-field analytical expressions
are known via the method of reflections'” as a series in in-
verse powers of the separation distance. At intermediate sep-
arations, tabulated numerical results are available>*** and at
small separations analytical results are available from lubri-
cation theory.?® The lubrication results are particularly im-
portant because many of the elements of R and @ are singu-
lar as the separation distance shrinks to the minimum
distance for two touching spheres. For example, the force
required to push two spheres together at constant relative
velocity is proportional to 1/4, where 4 is the minimum dis-
tance between the sphere surfaces. The lubrication force be-
comes infinite as #—0 and prevents from touching. Or
viewed alternatively, at constant force the relative velocity
diminishes proportionally with 4. The boundaries between
these different forms for the matrix elements do not, of
course, occur at precise separation distances, but it is neces-
sary to use all three, particularly the lubrication forms, to
obtain accurate particle trajectories. Similar exact two-
sphere results are available for the mobility matrix R™".
Three- and #-body effects that have been determined have all
been in the form of far-field expansions and have little influ-
ence on the singular behavior at small separations.

As discussed in the Introduction, there are two differ-
ent ways in which to add particle interactions in a pairwise
fashion: in the resistance matrix R or in the mobility matrix
R—!. Since the ultimate goal is to determine the particle ve-
locities, R~ ! must be computed in going from Eq. (4) to Eq.
(5) and there is an obvious saving if R~ can be determined
explicitly. Pairwise additivity in the resistance matrix corre-
sponds to a superposition of forces, while in the mobility
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matrix it is a superposition of velocities [cf. Eq. {5)]. It should
be clear that these two methods are not the same. Superim-
posing velocities may be considered a strict pairwise additi-
vity in that the interaction between any two particles @ and 5
is the same as if they were alone in the fluid. Interactions
with a third particle ¥ are carried out as if the pairs a-y and
-y were alone in the fluid, and so on for all N particles. This
method of superposition may, and in general does, lead to
relative velocities between a and S which do not vanish as
their separation becomes small, i.e., as ~—0. Thus, particles
can (and do) freely overlap unless there are strong repulsive
interparticle forces. Pairwise additivity in the mobility ma-
trix cannot be used at all to simulate a suspension if there are
no repulsive interparticle forces, and its use with repulsive
forces is debatable since it misses some essential physics.

Superimposing forces by pairwise additivity in the resis-
tance matrix is quite different. Rather than considering pairs
of particles alone in the fluid, when the matrix R is inverted
to obtain the velocities, all particles are considered simulta-
neously. Thus, many-body interactions are included in find-
ing the particle trajectories by superposition of forces. The
singularities in R due to the lubrication forces are main-
tained in the method and particles do not overlap.?’ This
method follows much more closely the proper physics and is
to be preferred. This is unfortunate, however, because the
computational times associated with solving anew the simul-
taneous equations embodied in Eq. (5) at each time step
greatly exceed those required from the superposition of ve-
locities. We shall present a comparison of the two methods in
Sec. IV. In both methods, the same pairwise additivity is
used in the shear resistance matrix ®.

Pairwise additivity in whatever form is an approxima-
tion, but one which has proved useful (if not accurate) in
conventional molecular dynamics and one we feel will be
useful in suspension problems. In dense suspensions, the lu-
brication forces are the most important and these are mo-
deled correctly by the pairwise superposition of forces.
Three-body and higher order effects found from far-field ex-
pansions will fade in comparison with the lubrication forces
as the separation distances become small. In dilute suspen-
sions most interactions are pairwise, and again the pairwise
additivity should be an accurate approximation. Thus, pair-
wise additivity of forces seems to contain the essential phys-
ics. Only by simulation with three-body effects, however,
can one truly assess their importance.

Having presented the general method, we can now turn
to some of the important details of actvally implementing
this scheme. We first tested the procedure by computing the
trajectories of two identical spheres in the absence of inter-
particle forces and without the periodic boundary condi-
tions. As discussed previously, asymptotic lubrication for-
mulas were used for nondimensional center—center
separations 7 between 2 and 2.02; 2 is the minimum separa-
tion distance. (For some elements of R the asymptotic for-
mulas were found to be accurate up to 2.1. See Arp and
Mason.?*) Tabulated results were used from 2.02 to 3 or 4
depending on the matrix element, and then the farfield re-
sults were used for larger separations. The far-field formulas
were accurate to at least 0(1/7°). These results were pieced

together from Refs. 17, 18, 24, 33, and 34. The recent compi-
lation by Jeffrey and Onishi*® was not available at the time
we performed the simulations.

At a given time step the velocities were found by solving
the simultaneous linear equation (4) using a standard library
routine, and new particle positions were found by stepping
forward in time using a fourth order Runge-Kutta scheme.
Predictor—corrector methods can also be used for the time
stepping, but are not necessary if the time step is sufficiently
small. The time step is chosen so that the relative separation
does not change significantly in one step; generally, a step
size of order 10~ (made nondimensional with the shear rate
¥) gave accurate results. In this way, we were able to repro-
duce precisely both the open and closed two-sphere trajec-
tories computed by Batchelor and Green.>°

Tests were also carried out with more than two spheres.
Both open and closed trajectories were found for three, four,
and five spheres depending on the initial conditions. In cal-
culations without repulsive colloidal forces, numerical error
can cause particles to try to overlap. This can be prevented
by reducing the time step, but it becomes very costly. Fur-
thermore, some of the lubrication formulas involve the loga-

rithm of (r — 2), and attempting to take the logarithm of a

negative number brings the computations to a halt. To over-
come this problem, we let particles overlap slightly by fixing
the minimum separation in the computation of R and ® at
r=2+ 107% Note, we are not preventing particles from
overlapping, rather we are insuring that the program does
not stop executing by taking the logarithm of a negative
number. With this procedure, in the absence of interparticle
forces, particles would overlap from time to time, but the
minimum separation distances found in these tests and in the
simulations presented in Sec. IV were never less than 1.99,
an overlap of at most 1%, and generally were much beter
~0(1.9999). This overlapping is a numerical problem and
not due to pairwise additivity—it can occur equally well for
two spheres if the time step is not sufficiently small. There is
thus a tradeoff between computation time and numerical
accuracy as is to be expected. It is also worth noting that
separation distances of the order » — 2 ~0(10~8) occur quite
frequently in trajectory calculations in absence of any repul-
sive interparticle forces. For millimeter size spheres this im-
plies surface separations the order of Angstroms; clearly,
surface roughness and molecular forces may be important,
and the validity of the continuum approximation is question-
able. This is significant because it suggests that surface
forces, no matter how small, may be important even for large
particles.

ll. SIMULATION OF A SHEARED MONOLAYER

In this section we apply the general method to the simu-
lation of a monolayer of identical rigid non-Brownian
spherical particles of radius a in a simple shear flow. Figure 2
is a schematic diagram of the sheared monolayer showing
that all particles lie in the plane of shear—the (x, y) plane.
The number of degrees of freedom for each sphere is reduced
from six to three, resulting in an eightfold saving in compu-
tation time. Inverting the matrix R consumes the most time,
growing as N *; computing R grows only as N 2. While an
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FIG. 2. Schematic diagram of a sheared monolayer. All spheres are of the
same radius and lie in the plane of shear.

idealization, a monolayer is a dynamically possible suspen-
sion motion and experiments have been performed on such
systems. >16

In addition to the hydrodynamic interactions, the parti-
cles also interact through pairwise repulsive DLVO-type
colloidal forces. There is a considerable body of literature on
the nature of colloidal forces between particles in solution,
and a valuable starting point is the classical work by Verwey
and Overbeek.?8 A simplified version of the presently accept-
ed theory known as the DLVO theory holds that the colloi-
dal forces are of two types: (1) a London—van der Waals at-
tractive force; and (2) an electrostatic repulsive force due to
the interaction between the particle double layers. In these
simulations we have only included the repulsive double-lay-
er forces because we wish in this first study to keep to a
minimum the number of parameters to be varied. It is a sim-
ple (almost trivial) matter to include any type of interparticle
force, and the effects of various forces on the local structure,
on the suspension’s rheology, and on problems of coagula-
tion and flocculation can easily be investigated. It should be
noted, however, that colloidal forces are most important for
submicron size particles and, except at the highest shear
rates, Brownian motion forces must also be considered.

For particles larger than a micron in size, the double
layers are usually small compared with the particle radius,
and following Takamura, Goldsmith, and Mason® [their

Eq. (6)] we can write the pairwise electrostatic repulsive force

e~ ™

1—e=™ ©
where A = r — 2 is the separation between the sphere sur-
faces and r is their center to center separation. Both have
been made nondimensional with the sphere radius a. 7 = xa
and ! is the Debye length. F,, is the amplitude of the force

and is given by
|Fo| = 2mey?, (7

where ¢ is the electrical permittivity of the fluid and ¢ is the
surface potential of the particles when ~— o . The derivation
leading to Eq. (6) assumes the surface potentials ¢ for the two
particles are the same and the surface charge densities re-
main constant as the particles move relative to each other.
The important characteristics of this repulsive force are
that it varies as 1/4 as A—0 and decays to 0(10~2|F,|7) when
h ~0(4.577"). F, sets the magnitude of the force and 7 sets its
range in space. At separations greater than 4.57 ! the inter-

Frep = FO
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particle force will generally be negligible compared with the
hydrodynamic force, and as 7— o there is essentially no
interparticle. Typical values of ¥ and 7 taken from Taka-
mura, et al.* for polystyrene latex spheres of 2 um radius in
a 50% glycerol in water mixture containing 10~> M KCl
are: y~4x 10" Vandx~'~88 A, giving 7 ~227. The total
interparticle force F,, is built up from Eq. (6) by considering
all pairs of particles.

Alllengths have been made nondimensional by the par-
ticle radius a. The elements of the grand resistance matrix
are made nondimensional by 6m7ua when relating force to
translational velocity, by 67ua® when relating force to angu-
lar velocity, by 6mua® when relating torque to translational
velocity and by 67ua” when relating torque to angular veloc-
ity. The elements of the shear resistance matrix are made
nondimensional in the same way, except there is an addi-
tional power of @ in all elements because ® multiplies E rath-
er than U*. There are two choices for the velocity (and/or
time) scale. The first comes from the shear rate and is ya. The
second is due to the interparticle forces F,, and is |Fy|/
6mua. We have chosen the latter scaling, and U* is made
nondimensional with 277€y?/6mua and the time with 67ua®/
27rey”. This scaling introduces the ratio of the shear to inter-
particle forces 6mua’y/2mey?, from which we define a di-
mensionless ‘‘shear rate”

-\ bmuaty
Tl et S0y 8
V= 7 (8)
Thus, in dimensionless form, Eq. (5) becomes
U*= —R .{y*®:E+F,}, (9)

where all quantities are nondimensional. One can of course
choose ya as velocity scale and ¥~ ! as time scale, and this
simply removes y* from in front of ® and places 1/y* in
front of F,. This scaling is appropriate in the absence of any
interparticle forces. From the experiments of Takamura, et
al.* for the polystyrene latex spheres in the 50% glycerol in
water mixture 6mua®/2mey? ~6 s; thus, y* = 1 corresponds
to a shear rate of 1/6 s~ 1.

There are three dimensionless parameters which char-
acterize the suspension: the areal fraction of particles ¢ de-
fined as ¢ =Nwa?/LH, where N is the number of particles in
the periodic cell, L is the length of the cell in the x direction,
and H thelengthin the y direction (cf. Fig. 2); the range of the
interparticle force 7; and, the ratio of the shear to interparti-
cle forces y*. In addition to these physical parameters, there
are two different pairwise additivity methods we wish to
compare—superposition of forces and superposition of ve-
locities. Since the superposition of forces entails inverting
anew at each time step the resistance matrix, we shall refer to
this method as “inversion.” The superposition of velocities
will be referred to simply as “superposition.”

In all simulation runs the periodic cell was chosen to be
square (L = H ). The particle trajectory equations were inte-
grated in time in an explicit fashion. The simulations all
started at ¢ = O with the particles located randomly in the
periodic cell. The random initial positions were determined
by first placing the spheres in a regular array and then dis-
placing them a small random distance. The only constraint
placed on the random displacements was that they not be so
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TABLE I. Presented are the relevant parameters for the 10 simulation runs that are discussed. Two simulation
methods were employed: inversion—superposition of forces, and superposition—superposition of velocities.
The other parameters are: the number of particles whose motion was followed, either 25 or 100, the areal
fraction &, the dimensionless ratio of shear to interparticle forces 7, the range of the interparticle forces 7, the
time step used Az and the total number of steps taken. A “2X” in front of the number of steps means that the

run was repeated from different random initial positions.

Number Number
of of

Run Method particles ) ¥ T At steps

A inversion 25 0.4 0.5 227 4x1073 2X20 000
B superposition 25 04 0.5 227 2x1073 2X 40 000
c superposition 100 0.4 0.5 227 2x107? 2X 40 000
D inversion 25 0.4 0.5  no force 4x1073 2% 20 000
E inversion 25 0.4 0.5 10 4x1073 20 000
F inversion 25 0.57 0.5 10 2x1073 2 500
G inversion 25 0.57 0.5 50 4x 1073 16 000
H inversion 25 0.1 1 227 4x107% 220000
I superposition 25 0.1 1 227 2x1073 80 000
J superposition 100 0.1 1 227 2x107? 2X40 000

large as to cause particles to overlap initially. The particle
motions were followed in time until a stationary state was
reached. The stationariness was determined by monitoring
the average of the square of the x and y components of the
particle velocities relative to the bulk fluid, i.e., (U %) and
(U, — v*y)*), where the averages are over both particles
and time. Generally, 20 000 time steps yielding a dimension-
less time of 0(80) were used, and most simulations were run
twice from different random initial conditions in order to
estimate the magnitude of the statistical errors. Most runs
were carried out with 25 particles, as this number yields af-
fordable computation time and still contains enough parti-
cles to include all second nearest neighbors. (Assuming hex-
agonal close packing in a plane, a central particle has six
nearest neighbors and 12 next nearest neighbors.} For an
areal fraction ¢ = 0.4 and 25 particles the edge of the period-
ic cell is 3.5 particle diameters from a central particle which,
as we shall see, is greater than the range of g(r). All computa-
tions were carried out in double precision on an IBM 3033.

A summary of the 10 runs to be discussed in Sec. IV is
shown in Table I, giving the method used—superposition or
inversion, the number of particles, the physical parameters
&, 7, and ¥ (the * on ¥ has been dropped for convenience), the
time step, and the number of steps taken. A “2 X in front of
the number of steps means the run was repeated from a dif-
ferent random initial condition. Computation times for in-
version are significantly greater than those for superposi-
tion. The total computation time required to reach a
dimensionless time of 80 in run 4 was 135 min, whilein run B
it was 4.5 min. In the superposition method it was necessary
to use a smaller time step and a predictor-corrector method
to insure nonoverlapping of particles. Hence, for the same
total dimensionless time there is at least a factor of 30
between the two methods.

IV. RESULTS AND DISCUSSION

The simulation results will be presented principally in
terms of the pair distribution function g(r). g(r) is defined as
the probability of finding a particle center at position r given

that there is a particle center at the origin r = 0 divided by
the number density. Thus, g{r)~ 1 as |[r|-— . In the statisti-
cal mechanics literature g(r) is often called the pair correla-
tion function and g of scalar 7 is known as the radial distribu-
tion function. In sheared suspensions g{r) has in general both
an angular and a radial structure, i.e., g{r} = g(7, €), where
r=|r| and @ is the angle measured from the x axis. § =0
corresponds to the downstream side of the reference particle
and 8 = 180° to the upstream side. The inset in Fig. 3 should
help clarify the meaning of 8. The symmetry of the simple
shear flow is such that

8lr, 0) =glr, 6 + m).

T
Pair Distribution Function :

6-dep. ¢=04, y=1/2,7=227
——a superposition 100 —
~—~e superposition 25
—-—a inversion 25

30+

20

N (8)

I
|
|
|
[
|
|
!
|
|
|
|
|
;
|
1
|

0 l |
(80 135 90 45 0
8

FIG. 3. The angular dependence of the pair distribution function. g, (8 ) is
the probability of finding a particle center in the range 2 < < 2.03 given that
there is a particle center at the origin. All three curves are at the same condi-
tions of ¢ = 0.4, ¥ = 1/2, and 7 = 227, but correspond to different simula-
tion methods or to a different number of particles. From Table 1, the runs
are as follows: ———A 4, - - - B, and —8 C. The inset defines the angle
relative to the x axis. 0° < @ < 90° corresponds to the downstream side of the
reference sphere and 90° < 8 < 180° to the upstream side. The angular struc-
ture is a result of the repulsive interparticle forces.
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To determine the pair distribution function the region
about the reference particle was divided into ten angular
wedges each spanning 18°, with the first wedge centered at 9°
and the last at 171°. The radial dependence has an excluded
volume region for r < 2, followed by a very pronounced peak
close to the minimum separation distance of r =2 and a
much weaker peak corresponding to the second nearest
neighbors. To resolve these two disparate peaks, g(r, ) was
determined twice with two different Ar increments, 0.01 and
0.05. The value of g{r, 8) in a given region of size Ar46 was

-———e
——a

“t p

determined by averaging over time the number of particle
centers found in this region. The time averaging was done
after the system had reached a stationary state. Because of
both the & and r dependence, presenting g(r, 6 ) in a concise
format is difficult. We have chosen to present an overall view
of the angular structure near the minimum separation dis-
tance and radial distributions at four values of 8, 8 = 9°, 27",
99°, and 171°.

Figure 3 shows the angular distribution g4, (6 ) for runs
A, B, and Cin Table L. g, (@) is the probability of finding a

Pair Distribution Function: r -dep.
¢ =04, y=1/2, v =227
———a& superposition 100

superposition 25

inversion 25

60| “ 8=i71° 60
g(r,8} o}' alr,8)

40

§=99°

FIG. 4. The radial dependence of the
pair distribution function for the same
runs as in Fig. 3 at four values of
6:0 = 9°,27°,99°, and 171", The inserts

r ’ show the detail of the first nearest
neighbor peak, while the larger scale
shows the peak due to the second near-
est neighbors.
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I T I
. | Pair Distribution Function:
}/ | 8-dep. $=01,5:1/2,1=227
15H \ | —a superposition 100 —
\| ——-o superposition 25
\ = —-—a inversion 25
|
g 10O} —
Q
o
51 4
0 -~
180 135 90 45 0
L}

FIG. 5. The angular dependence of the pair distribution function as in Fig. 3
but at a lower areal fraction ¢ = 0.1. From Table I the runs are as follows:
A H, el and —M1J.
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second particle in the region 2 <r<2.03. A 4r of 0.03 was
chosen because this distance extends out past the range of
the interparticle force (4.57~'~0.02) and encompasses the
first nearest neighbor peak. An areal fraction of ¢ =0.4isa
reasonably concentrated suspension. The maximum flowing
fraction is @,,, = 7/4=~0.785. At ¥ = 1/2 the shear and
interparticle forces are of the same magnitude. The error
bars shown in Fig. 3 were determined by comparing the two
separate runs at different random initial positions. The solid
points are the average values and if no error bars are shown
they are no larger than the symbol size.

Figure 3 shows that there is quite good agreement
between superposition with 25 and 100 particles, indicating
that 25 particles give accurate distribution functions. While
not quantitative the agreement between inversion and super-
position with 25 particles is qualitatively good. In all cases
there is a pronounced angular structure with a very few par-
ticles on the downstream side, 0° < 8 < 90°, of the reference
sphere and a high concentration on the upstream side
90° <« 8 < 180°. The explanation of this angular structure is

50 }
Pair Distribution Function: r-dep
- . - 1]
$=0.1, y=1, v =227 .
——-—o superposition 25 40~ \
—.—a inversion 25
g(r,8) 'Y
30— (e
",
‘l
1:“
L‘
20 ) 8 =99°
]
81710 L

g(l’,e) 6 =9° g(r,s) g=27°
15
f'.. :“"t‘
| | P \'L'_'Y
’:);:i_.-( d
0.5 };,,4’ o5} /;[
PYocs ’
/’,’ /
Le---g" ]
P O l I Kd | | | !
3 4 5 6 3 P 5 6
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FIG. 6. The radial dependence of the
pair distribution function for the runs
H and I of Fig. 5.
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FIG. 7. A comparison of the angular dependence of the pair distribution
function for different ranges of interparticle force. Each g 4, (6 ] has been nor-
malized by its maximum value and the Ar ranges vary with 7: 7= 10,
2<r<2.3; 7 =227, 2 <r<2.03; and in the absence force, 2 <7 <2.01. Ta-
bie I runs are: ---M E, —— A 4, and —e D. Without interparticle forces
there is no angular structure.

quite simple. On the upstream side the shear forces are push-
ing the two particles together while the repulsive force is
typing to keep them apart. On the downstream side both the
shear and repulsive forces are acting to separate the parti-
cles. A similar “depletion” region is observed in two-sphere
trajectories.® The asymmetry in the angular structure is due
to the repulsive interparticle force, as the pair hydrodynamic
forces have symmetry about 8 = 90°. The apparent lack of
agreement of g, at 0°and 180’ is a statistical error due to the
way in which the interval 0°<0<180° has been subdivided
and to the depletion region on the downstream side.

Figure 4 shows the radial dependence of the distribu-
tion function for the same runs A, B, and C as in Fig. 3.
Starting in the lower left-hand corner and proceeding in a
counter clockwise direction moves around in 6 from the
downstream to the upstream side. Two different scales are
shown in order to resolve both the first and second nearest
neighbor peaks. Again, a comparison is made between su-
perposition with 25 and 100 particles, the agreement gener-
ally being quite good. Note, this is a more stringent test than
in Fig. 3 as the comparison is on a pointwise basis. Agree-
ment between inversion and superposition is again qualita-
tive, but the quantitative differences become more evident.
In particular, the intensity of the first nearest neighbor
peaks, their width and location are all slightly different. In
general the inversion peaks occur at larger 7; 2.025 as com-
pared with 2.02. This is due to the fact that the lubrication
forces are properly represented by inversion but not by su-
perposition. This may seem a small matter, but the slight
variations in the location and width of the peak may have a
large effect on the rheological properties of this suspension.

G. Bossis and J. F. Brady: Simulation of sheared suspensions. |

We also see that the first nearest neighbor peaks are much
weaker on the downstream side. The minimum intensity
usually occurs near = 45° where the shear forces change
from pulling particles apart 90° < 8 < 45° to bringing them
together 45° <8 <0°% the hydrodynamic forces vary as
sin 26. The second nearest neighbor peaks are all very weak
and occur at the second excluded volume distance r = 4.
Note the rapid approach of the pair distribution function to
unity.

Superposition of velocities and superposition of forces
(inversion) give qualitatively the same behavior at ¢ = 0.4.
To see if this agreement would improve at lower densities
where the lubrication forces would not be as important, sim-
ulations were performed at ¢ -= 0.1, runs A, I, and Jin Table
1. Figure 5 shows the angular dependence of the distribution
function for the same Ar of 0.03 as in Fig. 3. There is again a
large angular structure, although not as pronounced as at
¢ = 0.4. Figure 6 shows the radial dependence for runs H
and I. The structure here is radically different from that at
¢ = 0.4, there being a first nearest neighbor peak only near
6 = 90°. Clearly, density has a profound effect on the local
structure. It is also apparent that the agreement between
superposition and inversion has not improved markedly at
the lower density. This is important from a computation
time point of view, and we have not as yet determined the
precise conditions under which one can use with confidence
and accuracy the superposition of velocities. These condi-
tions may very well depend upon what property is being
computed.

Figures 7 and 8 show the importance of the range of the
interparticle force. These results correspond to runs A4,
D,and E. The g,,(6) in Fig. 7 are all normalized by their
respective maximum values for comparison. The ranges 4
are different, as each is chosen to encompass the first peak:
=10, 4r=0.3; 7 =227, 4r = 0.03; and with no force
Ar = 0.01, the minimum increment used in computing
g(r, 8). As mentioned in Sec. III, when there is no interparti-
cle force particles overlap slightly from time to time. Thus,
the probability of finding a particle center in the range
1.99 « 7 < 2.00 is nonzero, and these overlapped particles are
considered to be at r = 2.

Figure 7 shows there is a dramatic change in angular
structure with interparticle force. In the absence of any such
force there is essentially no angular structure, reflecting the
symmetry of the hydrodynamic forces. The error bars are
the same order as the variation observed from 0° to 180°. The
1 = 227 results are the same as in Fig. 3 and show clearly
that the angular structure is caused by the repulsive forces.
As the range of the interparticle force increases (7 = 10), the
angular distribution appears to develop more structure. This
evolution in structure is related to the transition to an or-
dered layered structure that occurs at high ¢ and/or low 7
(see below).

The radial dependence is shown in Fig. 8. Without in-
terparticle forces the first peak occurs right at 7 = 2 and is
quite large, on the order of 100. As the interparticle forces
increase in range the nearest neighbor peak is pushed away
from the excluded volume surface r = 2. Somewhat surpris-
ingly, the first peak at 7 = 10 is more pronounced than that

J. Chem. Phys., Vol. 80, No. 10, 15 May 1984
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at 7 = 227, whereas in a classical liquid a less abrupt (smaller
1) force gives rise to a weaker peak. The second nearest
neighbor peaks are relatively unaffected. At @ = 99° we can
also see the presence of the third nearest neighbor peak at
r=6. Figure 8 shows the absence of an angular structure
without interparticle forces, and the large effect the repulsive
forces have on the downstream side.

In a sheared suspension the maximum volume fraction
that can flow is always less than the maximum packing frac-
tion. Near the maximum flowing fraction the suspension is

in a highly ordered state, as planes of particles slide over one
another. This layered structure can be approached either by
increasing the number density of particles or by increasing
the range of the interparticle force or by both. The interparti-
cle forces create a larger “effective” particle radius which
leads to a larger effective volume fraction. Figure 9 shows
what happens on increasing the concentration and range of
interparticle force; the results are from runs 4, G, and F. g(y)
is defined as the probability of finding a particle center in the
plane y = const. parallel to the x axis given that there is a
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FIG. 9. Results showing a transition to an ordered layered structure upon
increasing areal fraction and range of interparticle force (decreasing 7). The
maximum areal fraction able to flow is @,..., = 7/4. g(y) is the probability of
finding a particle center on the line y = const. parallel to the x axis. All
results are at ¥ = 1/2. (a) ¢ = 0.4, 7 = 227, run 4 showing no layered struc-
ture. {b) $=0.57, 7=50, run G. A layered structure is forming. {c)
¢ = 0.57, 7= 10, run F. The layered structure is completely formed. The
repulsive interparticle force results in an effective particle size and areal
fraction near the maximum allowable even though the actual ¢ is only 0.57.

particle center at the origin. In Fig. 9(a) we see clearly the
first nearest neighbor peak at y = 2, but there is no structure
beyond that. Increasing the areal fraction to ¢ = 0.57 and
the range of the interparticle force [Fig. 9(b)], we see the
development of a layered structure with particles regularly
spaced in the y direction. By increasing the range of the inter-
particle force still further [Fig. 9(c)], the transition to a
layered structure is complete. Figure 10 shows the instantan-
eous configuration of the suspension in Fig. 9(c) at a dimen-

FIG. 10. Instantaneous particle configuration corresponding to the condi-
tions of Fig. 9(c). The particles outside the periodic cell are some of the
closest images. Careful observation will reveal the layered arrangement in
the y direction.

sionless time of approximtely five. Viewed carefully one can
see the layers of particles in the y direction.

The “effective” particle radius due to the repulsive
forces can be estimated by finding the separation 4 at which
the shear and interparticle forces balance, i.e.,

Te~™

i = 1Pualh) (10
Here, @,,,(# ) is the component of the shear resistance matrix
acting along the line of centers between two particles aver-
aged over the upstream side 90° < 6 < 180°.4° With ¥ = 1/2,
7 = 10, estimating 4 from Eq. (10) gives 4 ~0.36. Hence, the
particles have an effective radius of 1.18, and hence an effec-

tive areal fraction
dr = (0.57)(1.18)* = 0.794.

This is to be compared with the maximum flowing areal
fraction

Grax = T/4=0.785.

® Oloe@
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FIG. 11. Typical particle configuration for ¢ = 0.4, ¥ = 1/2 in the absence
of interparticle forces (run D). Note the region devoid of particles and the
presence of a cell spanning cluster.
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FIG. 12. Same as Fig. 11 but with interparticle forces, 7 = 227 (run 4 ). Note
the lack of any void regions and the much smaller cluster size.
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While highly simplified, the effective radius given by Eq. (10)
seems to contain the essential physics. The change from a
purely local to a layered structure on increasing @, is remi-
niscent of a phase transition, but it is not known whether
there exists a well-defined critical areal fraction. This transi-
tion can also have a profound effect on the suspension ““vis-
cosity.” Experiments of Hoffman*' have shown a discontin-
uous viscosity behavior with shear rate (changing the
relative magntiude of the shear and interparticle forces) and
volume fraction which he interpreted as due to a layered-
disordered transition.

As a final illustration of the behavior of concentrated
suspensions, in Figs. 11 and 12 we show typical instantan-
eous configurations at arbitrarily chosen times for two dif-
ferent runs. Figure 11 corresponds to run D in which there
are no interparticle forces, and Fig. 12 is at the same ¢ and 7,
but with interparticle forces, run 4. One is struck by the large
void regions in Fig. 11 and by what appears to be a cell
spanning cluster. In Fig. 12 there are also clusters of parti-
cles but their characteristic size is consideraby smaller and
none span the periodic cell. These clusters are dynamic with
particles continually breaking off, forming new clusters, and
rejoining the original cluster in a different region. It should
be noted that the large cluster in Fig. 11 evolves but persists
in time; it is not an artifact of the specific instant in time we
have chosen to represent. These large clusters are intriguing
because we are seeing structure on a much larger scale than
the local structure we have been discussing up to this point.
The dynamics of these large structures and their influence on
the macroscopic behavior of suspensions are not known.
Analogies with percolation ideas come to mind, and it has
been conjectured that an infinite cluster may occur at a criti-
cal volume fraction.> Unfortunately, periodic boundary
conditions are not proper for investigating “infinite” clus-
ters, because a cell spanning one is necessarily infinite. Fur-
thermore, the imposed bulk linear shear flow necessitates
that all particles move in accordance with the bulk velocity
gradient and thus no “plug” flow region may form. To inves-
tigate the possible transition with volume fraction to an infi-
nite cluster and the resulting suspension rheology, a simula-
tion with boundaries must be performed.

V. CONCLUSIONS

In this paper we have presented a rather general method
for simulating the dynamical behavior of a suspension of
hydrodynamically interacting particles. The method uses
periodic boundary conditions to represent an infinite sus-
pension and two methods were used for treating the hydro-
dynamic interactions among particles. Both the pairwise su-
perposition of forces and pairwise superposition of velocities
are in qualitative agreement as regards the shear induced
anistropic local structure. The superposition of forces is the
preferred method because it models properly the lubrication
forces which prevent particles from overlapping. The super-
position of velocities cannot be used at all if there are no
strong repulsive interparticle forces.

In the numerical simulation of a monolayer of spheres,
it was seen that the shear induced local structure has, in
general, both an angular and a radial dependence. The angu-
lar dependence was shown to be caused by the repulsive in-
terparticle forces, while the radial structure is primarily an
excluded volume effect. Both the angular and radial struc-
ture depend strongly on the concentration of particles, the
range of the interparticle forces and the shear rate. It was
also shown that by increasing the concentration of particles
up to near the maximum areal fraction that can flow and/or
by increasing the range of the interparticle force results in a
transition to a layered structure.

The details of the local structure depend on a delicate
balance of shear and ipterparticle forces. It was shown that
the transition to the layered structure with increasing range
of interparticle force could be explained in terms of an “ef-
fective” particle radius given by the point where the average
shear and interparticle forces just balance. This notion of an
effective radius has a good physical basis and can be applied
to estimate the location of the first nearest neighbor peaks
shown in Fig. 8. For 7 =227, Eq. (10) gives a separation
r = 2.017, while the first peak is at r = 2.025. The agreement
is reasonable but not complete. For = 10, however, Eq. (10)
gives a separation of » = 2.36, while the first peak is at
r = 2.1. Here the agreement is quite poor and really indicates
that without the layered structure (none was observed for
run E), particles are on average closer together than their
effective radius would predict. They are actually closer to-
gether at ¢ = 0.4 than at ¢ = 0.57. This last example shows
that the location of the first peak involves a more subtle in-
terplay of shear and interparticle forces than represented by
Eq. (10).

In this paper we have not discussed the rheological
properties of suspensions which can also be determined by
this simulation method. Our purpose was to present a meth-
od and to illustrate the types of structural behavior to be
found in sheared suspensions. Our preliminary calculations
on the “effective” viscosity show general agreement with
experiment, but the detailed results must await a future
study in which we address this question. Work is also in
progress on the transition to a layered structure and the dy-
namics of the cell spanning cluster. It should be evident that
the generality of the method allows one to investigate many
different suspension problems. And its extension to include
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Brownian motion and boundary effects opens up even
further possibilities.
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