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Abstract. This paper describes an algorithm for maintaining an approximating triangu-
lation of a deforming surface inR3. The surface is the envelope of an infinite family of
spheres defined and controlled by a finite collection of weighted points. The triangulation
adapts dynamically to changing shape, curvature, and topology of the surface.

1. Introduction

This paper develops a fully dynamic algorithm for maintaining a triangulation of a surface
embedded inR3 that changes its local and global shape, curvature, and topology with
time.
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Motivation. Deforming surfaces arise in moving boundary problems of physical sim-
ulation, where they act as boundaries of spatial domains that grow and shrink with time.
An example is the boundary between the solid and the liquid portions of metal during
solidification [17]. Another is the phase boundary in a solid alloy that goes through the
nucleation, growth, and coarsening stages [1]. Moving boundaries also arise naturally
in mold filling processes, both for metal and other materials [15]. Such physical pro-
cesses are simulated through numerical computations facilitated by a mesh representing
the boundary and/or domain. This mesh may be a two-dimensional triangulation of the
surface, or a three-dimensional triangulation of space on one or both sides of the surface.
The numerical methods require that the triangles and tetrahedra used in the triangulation
be well-shaped, which usually means they have small aspect ratio, or, equivalently, they
avoid small and large angles.

We are also interested in using deforming surfaces in the modeling of molecules.
Deformations happen naturally, for example in the folding process of proteins [5]. Beyond
natural phenomena, we see a purpose in creating artificial deformations, for example to
interpolate continuously between two time-slices in a molecular dynamics simulation,
or between reconstructions of a protein from two different crystallizations.

Skin Surfaces. The approach to deforming surfaces taken in this paper is based on the
technical notion of skin surfaces, as introduced in [8]. The main reason for this choice
is the existence of fast combinatorial algorithms based on the theory of alpha shapes
[9]. A skin surface is defined by a finite collection of spheres inR3. We can think of
the spheres as points with real weights, and we occasionally prefer this interpretation
to avoid confusion with the various other types of spheres that arise in this paper. We
derive an infinite family of spheres from the finite collection by convex combination
and shrinking. The skin surface is the envelope of this family. Even though the family is
infinite, the surface can be finitely described through a decomposition into a collection
of quadratic surface patches. Each patch is the portion of a sphere or a hyperboloid
lying inside a convex polyhedron obtained by shrinking the Minkowski sum of corre-
sponding Delaunay and Voronoi polyhedra. In each case the sphere or hyperboloid and
the containing polyhedron are defined byk ≤ 4 weighted points (the original spheres).
These polyhedra taken together form a finite tiling of space, which we refer to as the
mixed complex. The correctness of the essentially combinatorial surface triangulation
algorithm relies on the availability of exact geometric information, possibly in symbolic
form. Most important in this context is the maximum curvature at a given surface point,
which we show varies continuously over the surface and in fact can be extended naturally
to a continuous function throughout space. Equally important is the knowledge about
when, where, and how the surface changes its topological type. This and other geomet-
ric information is readily computable from the dual complex, the mixed complex, and
the decomposition of the surface defined by the mixed complex. All this is explained
shortly.

Triangulation. For computational purposes we want to approximate the skin surface
by a two-dimensional triangulation. We follow the convention in topology, where a
triangulation means a simplicial complex whose underlying space is homeomorphic to
the surface. The triangulation also approximates the surface. Specifically, its vertices
lie on the surface and their spacing depends on curvature. The algorithm maintains the
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triangulation through local restructuring operations:

• it moves verticesin space to adapt the triangulation to changing shape,
• it addsand removes verticesto adapt the local density to the local maximum

curvature,
• it adjusts connectivityprovided by edges and triangles to reflect changing topology.

The local operations are automatic and follow the deformation of the surface dictated
by the gradual change of the weighted points defining it. The maximum curvature at
each surface point is a single real number, so our adaptation to local density produces an
isotropic triangulation. We gain flexibility by permitting the triangles to deviate somewhat
from the equilateral shape, and we use that flexibility for obvious geometric reasons but
also for algorithmic efficiency. The deviation is measured as circumradius over length
of the shortest edge, and the algorithm guarantees that this ratio never exceedsQ2/2.
HereQ is one of the constants on which the algorithm depends, the other beingC, which
controls how well the triangulation approximates the surface.Q controls how far local
density can deviate from strict inverse proportionality to local maximum curvature. The
two constants need to be chosen judiciously in order to guarantee the correctness of the
algorithm.

Outline. The technical portion of this paper is divided into three parts and nine sec-
tions. Part I provides the geometric background. It consists of Section 2 describing skin
surfaces, Section 3 showing that normal direction and maximum curvature vary slowly,
and Section 4 introducing a combinatorial method for triangulating the surface. Part II
explains the algorithm. It consists of Section 5 discussing adaptation to changing shape,
Section 6 discussing adaptation to changing curvature, and Section 7 discussing adapta-
tion to changing topology. Part III proves the algorithm is correct. It consists of Section 8
analyzing the adaptation to curvature, Section 9 detailing the various operations of the
algorithm, and Section 10 analyzing the adaptation to changing topology. Section 11
concludes the paper with suggestions for future work.

PART I. GEOMETRY

The three sections here introduce the skin surface, analyze its tangent and curvature
behavior, and show that with a dense sampling we can triangulate the surface using the
restricted Delaunay triangulation.

2. Skin Surfaces

The description of skin surfaces and their properties offered in this section is perhaps
somewhat terse. The reader who wishes more background material is referred to [8] for
the original introduction of skin surfaces, to [7] and [9] for a description of alpha shapes,
and to [16] for a textbook in geometry that talks about a version of the vector space of
spheres used in the construction of skin surfaces.
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Sphere Algebra. Let â = (a, A) be the sphere with centera ∈ R3 and radiusA. We
requireA2 ∈ R. ForA2 < 0 the radius is imaginary and we callâ an imaginary sphere. Its
weighted(square) distance functionπâ: R3→ R is defined byπâ(x) = ‖x − a‖2− A2;
the original sphere is the zero-set of this function. We know how to add functions and
how to multiply them by scalars. If we apply these operations to theπâ we get the vector
space of functions of the form

π(x) = γ (‖x − p‖2− β),

whereβ, γ ∈ R are scalars andp ∈ R3 is a point. The zero-set ofπ is the sphere with
centerp and radius

√
β.

We simplify notation by applying operations directly to spheres. In particular, we
write αâ + βb̂ for the zero-set ofαπâ + βπb̂. Using this notation, we can define what
we mean by theaffine hull and by theconvex hullof a finite collection of spheres
A = {â1, â2, . . . , ân}, namely

affA =
{

n∑
i=1

γi âi |
n∑

i=1

γi = 1

}
,

convA =
{

n∑
i=1

γi âi ∈ affA | γi ≥ 0 for all i

}
.

As an exercise, the reader may want to verify that ifA contains only two spheres and they
intersect in a common circle, then the affine hull contains exactly all spheres passing
through this circle. The convex hull contains the subset whose centers lie on the line
segment connecting the centers of the two given spheres.

Besides adding and multiplying with a scalar, we need to be able to shrink spheres.
For this purpose we define

√
â = (a, A/

√
2), which is the zero-set ofπâ + A2/2.

The application of the shrinking operation to all spheres in a familyF is denoted as√
F = {√â | â ∈ F}. Theskin is the envelope of the spheres in the convex hull after

shrinking,

skinA = env
√

convA.
In other words, the skin is the boundary of thebody, denoted bodyA, which is the union
of the balls bounded by spheres in

√
convA.

Mixed Cells. The mixed cells mentioned in the Introduction are obtained from the
corresponding weighted Voronoi and Delaunay polyhedra. For a given finite collection
of weighted pointsA, theVoronoi polyhedronof â ∈ A is the set of pointsx at least as
close toâ as to any other weighted point,νâ = {x ∈ R3 | πâ(x) ≤ πb̂(x) for all b̂ ∈ A}.
Two Voronoi polyhedra meet at most along a common piece of their boundary, and we
define

νX =
⋂
â∈X

νâ

for every subsetX ⊆ A. It is convenient to assume general position, in which case
the dimension of each non-emptyνX is dimνX = 4− cardX . In particular,νX is a
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Fig. 1. From left to right: a typical Voronoi polyhedron, a Voronoi polygon times a Delaunay edge, a Voronoi
edge times a Delaunay triangle, a Delaunay tetrahedron.

polyhedron, polygon, edge, vertex ifX has cardinality 1, 2, 3, 4, respectively. Each
non-empty intersection of Voronoi polyhedra has a dual, which is geometrically realized
as the convex hull of the (unweighted) points generating the polyhedra:

δX = conv{a | â ∈ X }.
Assuming general position, theδX are simplices, namely vertices, edges, triangles, tetra-
hedra. The collection of these simplices is referred to as theDelaunay complexof A,
although usually in the literature this term is reserved for the case of unweighted points.

Note thatνX andδX have complementary dimensions: dimνX + dimδX = 3. Fur-
thermore, they lie in orthogonal affine subspaces ofR3. We use vector operations inR3

to construct themixed cellas a Minkowski sum,

µX = (νX + δX )/2.
The dimension ofµX is always 3= dimνX + dimδX . Figure 1 shows examples of
the four different types of mixed cells corresponding to different cardinalities ofX . The
collection of mixed cells forms a face-to-face tiling ofR3, which we call themixed
complex. Figure 11 shows the mixed complex defined by four points in the plane.

Skin Patches. Within the mixed cellµX , the skin surface is completely determined by
the (at most four) weighted points inX [8]. Specifically, it is the same as the envelope
of the affine hull after shrinking all spheres, that is,

skinA ∩ µX = env
√

affX ∩ µX .
Let k = cardX − 1. Then fork = 0 or 3 the envelope of

√
affX is a sphere, and

for k = 1 or 2 it is a hyperboloid of revolution. The hyperboloids have asymptotic
double-cones with right opening angles. In each case we define thecenteras the point
zX that is common to the affine subspaces defined byνX and byδX . In the case of a
hyperboloid this is the apex of the asymptotic double-cone, and in the case of a sphere
it is the center. It may or may not belong to the mixed cell, and we havezX ∈ µX iff
νX ∩ δX is non-empty.

If we translate the center to the origin and, in the case of a hyperboloid (k = 1 or
2), rotate so that the axis of symmetry is along thex3-axis, we put the envelope into
standard form. If R is the minimum distance from the origin to the envelope, then the
equations of the sphere and the hyperboloids are

x2
1 + x2

2 + x2
3 = R2, (1)

x2
1 + x2

2 − x2
3 = ±R2. (2)
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Fig. 2. The sphere, the one-sheeted hyperboloid, and the two-sheeted hyperboloid.

The plus sign gives the one-sheeted hyperboloid and the minus sign gives the two-sheeted
hyperboloid. The double-cone arises as the limiting case forR = 0. The three surfaces
are illustrated in Fig. 2.

Metamorphoses. A rather simple kind of deformation of the skin surface is generated
by increasing the weight of every point inA in a uniform manner. We call this thegrowth
modelof deformation and note that the technical results in this paper are restricted to
this model. It is generated by changing the original weightsA2 of the weighted points
â to A2 + t at time t . It is easy to see that this weight change preserves the Voronoi
polyhedra and therefore also the Delaunay simplices and mixed cells. Even though the
mixed complex remains unaffected, we observe all generic types of topological changes
or metamorphoses that arise in general deformations. This is illustrated in Fig. 3. As indi-
cated in Table 1, there are four types depending onk = cardX−1, whereµX is the mixed
cell containing the metamorphosis. By reversing time we get the inverse operations.

We can also reverse the orientation of the skin surface by finding another finite collec-
tion of weighted points that has the same skin and a complementary body. Specifically, we
can define a collection of spheresB = A⊥with skinA = skinB and bodyA ∪ bodyB =
R3. Essentially,B contains a weighted point at every Voronoi vertexb = νX , and the
weight is chosen so thatB2 = ‖a− b‖2 − A2 for every â ∈ X [8]. When we re-
visit the metamorphoses listed in Table 1 and reinterpret them by what they do to the
body ofB, we notice a symmetry between casesk and 3− k. In other words, there
are only two basic types of metamorphoses. The first type is geometrically realized

Fig. 3. Three snapshots of a deforming skin triangulation defined by continuously growing spheres. From
left to center, note in the front twok = 1 metamorphoses, each adding a handle. From center to right, note at
the left ak = 2 metamorphosis, closing a tunnel.
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Table 1. The four types of generic metamorphoses
that happen during growth/shrinking.

k Type of metamorphosis/inverse

0 Creating/annihilating a component
1 Adding/removing a handle
2 Closing/opening a tunnel
3 Filling/starting a void

by a sphere appearing or disappearing. The limit configuration is a point, and in the
growth model this is the center of the appearing or disappearing sphere. The second
type of metamorphosis is geometrically realized by a two-sheeted hyperboloid flipping
over to a one-sheeted hyperboloid, or vice versa. The limit configuration is a double-
cone, and in the growth model this is the shared asymptotic double-cone of the two
hyperboloids.

Time of Change. An interesting question is when exactly the metamorphoses happen.
We answer this in the context of the growth model by introducing certain subcomplexes
of the Delaunay complex. In the literature these subcomplexes are referred to as dual
or alpha complexes [9], but we use different notation and simply denote them byK (t).
Heret ∈ R is time as above. The growth model replaces each weightA2 by A2 + t at
timet . Restrict each Voronoi polyhedron to within the generating sphere at timet , giving

νâ(t) = {x ∈ νâ | ‖x − a‖2 ≤ A2+ t}.

The complexK (t) consists of all Delaunay simplicesδX for which the restricted
Voronoi polyhedra have non-empty intersection, that is,

⋂
â∈X νâ(t) 6= ∅. As t increases,

K = K (t) grows into a progressively larger subcomplex until eventually it is the entire
Delaunay complex. We sort the simplices in the order they enter the complexK . Even
with assumption of general position there are ties, which we leave unresolved, by allow-
ing more than one simplex at a given position in the ordering. The result is a sequence
of collections of Delaunay simplices that captures the evolution of the complex. Every
prefix of the sequence is itself a complex. Because of this property, we also have a fast
algorithm for deciding how and when the homotopy type ofK changes [6].

The underlying space ofK (t)and the body bounded by the skin at timet are homotopy
equivalent [8]. It follows that the metamorphoses for the two structures happen at exactly
the same moments in time, and these moments can be computed from the sequence of
simplices. Assuming general position, there is a metamorphosis for every position in the
ordering occupied by a single Delaunay simplexδX , and the type of metamorphosis is the
dimension ofδX . Whenever there are two or more simplices tied at any one position, their
effects on the homotopy type ofK cancel and the body does not change its topological
type.

Sandwiching Spheres. We close this section by stating a rather special and important
property of skin surfaces, from [8], which is heavily exploited in this paper. We mentioned
already that the skin is the envelope of two families of spheres, one inside and the other
outside the surface. As always we writeB = A⊥.
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Sandwich Property. For every pointx on the skin ofA, there are unique spheres
Sx ∈
√

convA andTx ∈
√

convB that pass throughx. These two spheresSx andTx are
externally tangent, and have equal radius. The skin surface stays outside both spheres,
and is thus tangent to them atx.

We refer toSx andTx as thesandwiching spheresatx because they squeeze the surface
flat in a neighborhood ofx. They also limit the normal curvatures atx, and we will see in
Section 3 that they in fact determine the maximum curvature. The fact thatSx andTx are
equally large follows from Lemma 7 in [8]. In a nutshell, the reason is that all spheres
S ∈ convA are orthogonal or further than orthogonal to all spheres inT ∈ convB. If
we shrinkSandT each to

√
2/2 of the original size, then the two shrunken spheres are

necessarily disjoint, unlessS andT are orthogonal and of the same size, in which case
the two shrunken spheres touch at a point. Since the skin is the common envelope of√

convA and
√

convB, the two spheres passing throughx must be derived from equally
large spheres, which stay equally large after shrinking.

3. Continuity of Curvature

This section proves that the maximum curvature is continuous and satisfies a Lipschitz
condition. We use this to control local density in the triangulation. This section also
proves a one-sided Lipschitz condition for the normal direction.

Maximum Curvature. Given a surfaceF , a pointx on F , and a tangent vectortx, the
normal curvatureof F is that of a geodesic passing throughx in the directiontx. The
maximum curvatureis the functionκ: F → R that mapsx ∈ F to the maximum normal
curvature atx. For a hyperboloid of revolution, the minimum curvature is measured
within planes containing the symmetry axis (along meridians), and the maximum cur-
vature is measured in the orthogonal direction (along latitudes). Explicit expressions for
κ are easy to compute [12, Chapter 14]. For the sphere and the hyperboloids in standard
form (1) and (2), the maximum curvatures are

κ = 1/R, (3)

κ = 1/
√
±R2+ 2x2

3, (4)

where we take the plus sign for one-sheeted hyperboloids and the minus sign for two-
sheeted hyperboloids. By plugging±R2 = x2

1+x2
2−x2

3 into (4) we see that the maximum
curvature atx is one over the distance ofx from the origin. This implies that points with
constant maximum curvature lie on spherical shells around the origin.

Iso-curvature Lemma. Every point x∈ R3 belongs to exactly one hyperboloid in
standard form, and the maximum curvature of that hyperboloid at x isκ(x) = 1/‖x‖.

For either type of hyperboloid, 1/R is the maximum of the curvature over the whole
surface. For the one-sheeted hyperboloid,R is also the radius of the smallest circle
around the neck of the hourglass. For the two-sheeted hyperboloid,R is also half the
smallest distance between the two sheets.
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Fig. 4. The circlesSx and Tx sandwich the hyperbola. Depending on whether we revolve the hyperbola
around the vertical or the horizontal axis, we get a one-sheeted or a two-sheeted hyperboloid.

Curvature Continuity. To prove thatκ varies continuously over the skin surface, we
consider the two infinite families of spheres that define the skin as their common envelope.
For a finite set of spheresA, let S= √convA andT =

√
convA⊥. The skin ofA is

F = envS= envT . The familyS definesF from the inside, andT defines it from the
outside. For a pointx ∈ F , there are unique spheresSx ∈ SandTx ∈ T that pass through
x. We make essential use of the Sandwich Property stating thatSx andTx have the same
size. It is convenient to define%(x) = 1/κ(x), and for reasons that will become clear
later we refer to%: F → R as thelength scale.

Curvature Sandwich Lemma. For every point x∈ F , the local length scale, %(x), is
the common radius of Sx and Tx.

Proof. If x belongs to a sphere patch, then that patch either lies onSx or onTx and%(x)
is obviously the radius. Now supposex belongs to a hyperboloid patch. The hyperboloid
is obtained by revolving a hyperbola around one of its two symmetry axes. As indicated
in Fig. 4, the hyperbola is the common envelope of two families of circles, one centered
along each of the two symmetry axes. By the Sandwich Property,Sx andTx have equal
radii. Becausex is halfway between the centers ofSx and Tx, that radius is equal to
the distance ofx from the origin. By the Iso-curvature Lemma, this distance is‖x‖
= %(x).

The sandwiching spheres, and their common radius, vary continuously with the point
x ∈ F . This is easy to see for points in the interior of a sphere or hyperboloid patch,
and the tangent continuity ofF implies the same for points on the boundary common to
two or more patches. The Curvature Sandwich Lemma thus implies that the maximum
curvature varies continuously over the skin surface (except at centers, where it blows
up). In fact, at every pointx the local length scale%(x) equals the distance fromx to the
centerzX of the mixed cellµX that containsx.
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Curvature Variation. We strengthen the result thatκ(x) is continuous by showing that
it varies rather slowly. In fact, we extend its reciprocal%(x) to a function defined on all
ofR3 and show that%(x) has Lipschitz constant one. As we have seen, within any mixed
cell µX , % is simply the distance to the centerz = zX . By the definition of the mixed
complex, this is a continuous function onR3. Within µX , the triangle inequality gives
the Lipschitz bound,

|%(x)− %(y)| = |‖x − z‖ − ‖y− z‖| ≤ ‖x − y‖.

By applying this to the pieces of the line segment fromx to y contained in different
mixed cells, we obtain the result.

Curvature Variation Lemma. For all points x, y in space we have|%(x)− %(y)| ≤
‖x − y‖.

We note that the extension of% to a functionR3 → R describes the length scale of
all surfaces in the family defined by the growth model of deformation.

Normal Variation. The tangent orC1-continuity of the skin surface follows from the
Sandwich Property. We strengthen this result by proving a one-sided Lipschitz condition
for the normal vectors. Specifically, we prove an upper bound that relates the angle
between two normal vectors at pointsx, y to the Euclidean distance between them and
to their length scales. The outward unit normal vector atx ∈ F is denoted asnx, and
the angle between two normals is∠nxny = arccos(nx ·ny). In proving the upper bound,
we consider again the one-parameter family of skin surfaces generated by increasing
square radii with time. For pointsx = (x1, x2, x3) on a sphere in standard form the unit
normals arenx = ±x/‖x‖, and for pointsx on a hyperboloid in standard form they are
nx = ±(x1, x2,−x3)/‖x‖. In both cases, the normals are the same along a line passing
through the origin, and they vary with the speed of the angle as we rotate the point about
the origin. The formulas imply that the normals of pointsx andy in two adjacent mixed
cells are the same ifx andy are mirror images of each other across the separating plane.
This property is illustrated in Fig. 5.

Fig. 5. Two mixed cells with dotted circles around their centers and parallel normals of points mirrored
across the separating edge. The illustration shows the case where the cells havek = 0 and 1.



Dynamic Skin Triangulation 535

Normal Variation Lemma. Let x and y be points on F with distance‖x − y‖ < %(x).
The angle∠nxny between the surface normals at x and y is at mostarcsin‖x − y‖/
%(x).

Proof. Consider first the case wherex and y belong to the same mixed cell, and
translate the coordinates so that the center is at the origin. Givenx and the distance
‖x − y‖ between the two points, the angle subtended at the origin is a maximum if
‖x‖2 = ‖x − y‖2+ ‖y‖2. We thus have

∠nxny ≤ arcsin
‖x − y‖
%(x)

,

as claimed.
Consider second the case wherex and y lie in different mixed cells. The directed

line segment fromx to y passes throughi ≥ 1 planesh1, h2, . . . , hi separating adjacent
mixed cells. Letpj = xy ∩ hj be the intersection points ordered fromx to y. We
construct a polygonal path that starts atx and whose length is‖x − y‖. It is obtained
from xy by reflecting the portion afterpj across the planehj , for j = i, i − 1, . . . ,1
in this order. The endpointy′ of the path is contained inside the sphere with radius
‖x − y‖ aroundx, which implies that the angle betweenx andy′ subtended at the origin
is ϕ < arcsin(‖x − y‖/%(x)). Sinceny is normal to the sphere or hyperboloid defined
for the mixed cell ofx that passes throughy′, ϕ is also the angle betweennx andny. The
claim follows.

The proof of the Normal Variation Lemma does not require thatx andy belong to the
same skin surface. The claimed inequality holds more generally for any pointsx, y ∈ R3

with normals defined by the one-parameter family of skin surfaces mentioned above.
Suppose the distance betweenx andy is ‖x − y‖ < ε%(x). Then the Normal Variation
Lemma implies

∠nxny < arcsinε,

which is the form used most often in this paper.

4. Triangulation

A finite setV ⊆ F is anε-samplingif for every pointx ∈ F there is a vertexa ∈ V
whose distance fromx is ‖x − a‖ < ε%(x). The goal of this section is to prove that the
restricted Delaunay triangulation defined by anε-sampling is homeomorphic to the skin
surface, provided the following condition holds:

(I) 0 ≤ ε ≤ ε0,

whereε0 = 0.279. . . is a root of

f (ε) = 2 cos

(
arcsin

2ε

1− ε + arcsinε

)
− 2ε

1− ε .

Note that f (ε) is defined for−1≤ ε ≤ 1
3, and that it is non-negative for 0≤ ε ≤ ε0.
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Restricted Delaunay Triangulation. Let V be a finite set of points on the skin surface.
We refer to these points as vertices and we denote the Voronoi polyhedron of a vertex
a ∈ V inR3 byνa. The correspondingrestricted Voronoi polygonis the intersection with
the skin surface,F ∩ νa, which is non-empty becausea ∈ F anda ∈ νa. Therestricted
Delaunay triangulationis the nerve of the collection of restricted polygons:

DV =
{

convU | U ⊆ V, F ∩
⋂
a∈U

νa 6= ∅
}
.

We assume general position and in particular that there are no four restricted Voronoi
polygons with non-empty common intersection. It follows thatD = DV is a collection of
vertices, edges, and triangles but contains no tetrahedra. By construction,D is a simplicial
complex. The goal of this section is to prove that, forε satisfying Condition (I),D is
a triangulation ofF . Following the standard topology terminology [2], this means the
underlying space ofD is homeomorphic toF . As shown in [10], it suffices to prove
that every non-empty common intersection of restricted Voronoi polygons is a closed
topological ball of the appropriate dimension, namely 3 minus the number of polygons.
If this is the case we sayD has theclosed ball property.

We formulate this property in terms of the (unrestricted) Voronoi polyhedra. By
assumption of general position, the intersection ofk+ 1= 2, 3, 4 Voronoi polyhedra is
a polygon, edge, vertex. Depending on the case, the intersection with the skin surface is
to be

casek = 0: a closed disk,
casek = 1: empty or a closed interval,
casek = 2: empty or a single point,
casek = 3: empty.

The casek = 0 corresponds to a single Voronoi polyhedron, which has non-empty
intersection withF because its generating point lies onF . We establish four technical
lemmas in preparation of proving thatD has the closed ball property.

Distance Claims. If two surface points lie in the same Voronoi polyhedron, then they
cannot be far from each other, and if they lie on a line that is almost normal to the surface,
then they cannot be close to each other. We quantify the first claim under the assumption
thatV is anε-sampling.

Short Distance Claim. If points x and y on F belong to a common Voronoi polyhedron
defined by a vertex in anε-sampling V⊆ F , then‖x − y‖ < (2ε/(1− ε))%(x).

Proof. Let a be the generating point of the common Voronoi polyhedron. By theε-
sampling assumption we have‖x − a‖ < ε%(x) and ‖y− a‖ < ε%(y). Using the
triangle inequality we get‖x − y‖ < ε(%(x)+ %(y)). The Curvature Variation Lemma
now implies

%(x) ≥ %(y)− ‖x − y‖
> (1− ε)%(y)− ε%(x),
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and hence(1+ ε)%(x) > (1− ε)%(y). The distance betweenx andy is therefore

‖x − y‖ < ε

(
1+ 1+ ε

1− ε
)
%(x)

= 2ε

1− ε %(x),

as claimed.

We get a better bound on the distance if one of the points generates the Voronoi
polyhedron. Assumingx = a we get‖a− y‖ < ε%(y) ≤ ε%(a) + ε‖a− y‖, which
implies

‖a− y‖ < ε

1− ε %(a).

We need this version of the Short Distance Claim in the proof of the Voronoi Polyhedron
Lemma below.

Next we quantify the second claim, which is independent ofV .

Long Distance Claim. Suppose a line meets F in two points x and y and forms an
angle smaller thanξ with the surface normal at x. Then‖x − y‖ > 2%(x) cosξ .

Proof. By the Sandwich Property, there are two spheres of radius%(x) that both pass
throughx and locally sandwich the surface. The line meets the two spheres atx and
at points at distance larger than 2 cosξ%(x) on both sides. The skin surface contains
no points inside either sandwiching sphere, which implies the claimed lower bound for
‖x − y‖.

We play the Short and Long Distance Claims against each other and thus reach
contradictions proving various claims.

Normal Lemmas. If the vertices of a short edge or a triangle with small circumcircle
lie on the skin surface, then the edge or triangle lies almost flat. We quantify both claims.
For an edgeab let tab = (b− a)/‖b− a‖ be the unit tangent vector. The first result is
an immediate corollary to the Long Distance Claim:

Edge Normal Lemma. The angle between an edge ab and the surface normal at its
vertex a is∠tabna > π/2− arcsin(‖a− b‖/2%(a)).

A common use of the Edge Normal Lemma is whenab belongs to the restricted
Delaunay triangulation of anε-sampling. Then%(a) > (1− ε)%(x), wherex is a point
in the intersection of the dual Voronoi polygon with the skin surface. Hence‖a− b‖ <
2ε%(x) < (2ε/(1− ε))%(a). The angle betweenab and the surface normal ata is then

∠tabna >
π

2
− arcsin

ε

1− ε .
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Fig. 6. The dashed sandwiching spheres meet the solid sphere arounda in two parallel dotted circles. Vertices
b andc are placed to maximize the angle between the triangle normal and the surface normal ata.

Next we consider the triangle normal lemma. We assume the angle ata inside the
triangle abc is no smaller than the angles atb and c. Let Rabc be the radius of the
circumcircle and letnabc be the outward unit normal vector ofabc.

Triangle Normal Lemma. If a is a vertex of the triangle abc with greatest angle,
then the angle between the normal of abc and the surface normal at a is∠nabcna <

arcsin(2Rabc/%(a)).

Proof. Consider the two spheres of radius%(a) that locally sandwich the surface ata, as
shown in Fig. 6. The face angle ata is at leastπ/3 and the length of the edgesabandac
is at most 2Rabc each. To compute a bound on the angle betweenna andnabc we assume
‖a− c‖ ≤ ‖a− b‖ and consider the sphere with radius‖a− b‖ arounda. It intersects
the sandwiching spheres in two parallel circles. Let 2X be the distance between these
two circles and note thatX/‖a− b‖ = ‖a− b‖/2%(a) by dropping a perpendicular
from z to the midpoint ofab and using similar triangles. Hence 2X = ‖a− b‖2/%(a).
Since the angle ata is greater than or equal to the ones atb andc, bc is the longest
edge ofabc. The angle between the edgebc and the planes of the intersection circles is
therefore less than

arcsin
‖a− b‖2/%(a)
‖b− c‖ ≤ arcsin

2Rabc

%(a)
.

This is an upper bound for the angle between the two normal vectors ata.

Suppose thatabcbelongs to the restricted Delaunay triangulation of anε-sampling.
Then%(a) > (1−ε)%(x), wherex is a point of the intersection between the dual Voronoi
edge and the skin surface. HenceRabc< ε%(x) < (ε/(1− ε))%(a). The angle between
the two normals ata is then

∠nabcna < arcsin
2ε

1− ε .

Closed Ball Property. We are now ready to prove the closed ball property for the
restricted Delaunay triangulation, assumingV is anε-sampling ofF satisfying Condi-
tion (I). We assume general position and consider the three cases in turn: first Voronoi
edges, then Voronoi polygons, and finally Voronoi polyhedra.
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Fig. 7. A Voronoi polygon intersecting the skin in a circle to the left and two intervals to the right.

Voronoi Edge Lemma. A Voronoi edge of V intersects the skin surface in at most one
point.

Proof. Assume there is a Voronoi edge that intersectsF in at least two points,x and
y. Let abc be the dual triangle in the restricted Delaunay triangulation. The Triangle
Normal Lemma gives an upper bound for the angle between the normal ofabcand the
surface normal ata. The Normal Variation Lemma gives an upper bound for the angle
between the surface normals ata andx. Together they imply an upper bound for the
angleξ betweennabc andnx:

ξ ≤ ∠nabcna + ∠nanx

< arcsin
2ε

1− ε + arcsinε.

The angleξ is also the angle between the Voronoi edge andnx. The Long Distance
Claim implies‖x − y‖ > 2%(x) cosξ , which by Condition (I) contradicts the upper
bound‖x − y‖ < (2ε/(1− ε))%(x) implied by the Short Distance Claim.

Voronoi Polygon Lemma. The intersection of a Voronoi polygon of V with the skin
surface is either empty or a closed topological interval.

Proof. Assume there is a Voronoi polygon whose intersection with the skin surface
contains a topological circle or two topological intervals, as shown in Fig. 7. Letab be
the dual edge in the restricted Delaunay triangulation, and letx be an arbitrary point of
the intersection. Ifx lies on a circle, then letL be the line in the plane of the polygon
that intersects the circle in a right angle atx. We have∠Lnx ≤ ∠L ′nx for any lineL ′

in the same plane and passing throughx. ChooseL ′ to minimize the angle withna. The
Edge Normal Lemma implies an upper bound for the angle betweenL ′ and the surface
normal ata. The Normal Variation Lemma implies an upper bound on the angle between
the surface normals ata andx. Together these inequalities imply

∠Lnx < arcsin
ε

1− ε + arcsinε.

This angle is less than the upper bound forξ in the proof of the Voronoi Edge Lemma,
which implies a contradiction between the two distance claims.
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In the case of two intervals letL be a line connectingx to the closest pointy on the
other interval. Ify lies in the interior, thenL intersects the interval in a right angle at
y. In this case we get a contradiction with the same argument as above only withx and
y interchanged. Otherwise,y is an endpoint of the interval and lies on a Voronoi edge.
The angle betweenL andny is less than that between the Voronoi edge andny. We thus
get a contradiction with the same argument as used in the proof of the Voronoi Edge
Lemma.

Voronoi Polyhedron Lemma. The intersection of a Voronoi polyhedra of V with the
skin surface is a closed topological disk.

Proof. Assume there is a Voronoi polyhedron whose intersection with the skin surface
contains a closed 2-manifold (without boundary), a 2-manifold with boundary other than
a disk, or two disks. In the first case we letL be a line that intersects the 2-manifold in
two points,x and y, and forms a right angle atx. We get a contradiction between the
two distance claims as before.

For the rest of the proof, leta be the generating vertex of the Voronoi polyhedron and
assume the intersection between this polyhedron and the skin surface is a 2-manifold
with boundary,F ′. This 2-manifold with boundary can be different from a disk either
because it is non-orientable, it contains a handle, or it has at least two boundary circles.
The non-orientability ofF ′ contradicts the orientability ofF . If F ′ has a handle but only
one boundary circle, then homology theory gives us a pair of simple closed curves inF ′

that intersect each other transversely exactly once. Along either one of these curves, there
is a point such that the line normal toF ′ that passes through that point meets the other
curve, and henceF ′ again. This gives a contradiction to the two distance claims. A more
elaborate argument is needed for the case where there are two or more boundary circles.
Then eitherF ′ is connected, and in the simplest case is an annulus, or it is disconnected,
and in the simplest case consists of two disks.

By the remark after the Short Distance Claim, the distance betweena and a point
y ∈ F ′ is ‖a− y‖ < (ε/(1− ε))%(a). Let L be the normal line ata and note that it
contains the line segment of length 2%(a) that connects the centers of the two spheres
sandwiching the surface ata. This line segment is contained in the Voronoi polyhedron,
which implies that the polyhedron is fairly tall and slim. Consider a plane that containsL
and intersects at least two boundary circles ofF ′. Such a plane exists for else we can find
a plane throughL that intersects no boundary circle at all. However, thenL meetsF ′ in at
least two points, and we again get a contradiction to the two distance lemmas. The plane
that meets two boundary circles intersects the Voronoi polyhedron in a convex polygon
andF ′ in at least two connected curves. One of the curves containsa. We may assume
that the second curve lies on one side ofL. Let L ′ be the line passing through its two
endpoints, which both lie on the boundary of the convex polygon. The lineL ′ intersects
the sphere with radius(ε/(1−ε))%(a) arounda and it does not intersect the line segment
connecting the centers of the two sandwiching spheres. The angle betweenL ′ and the
surface normal ata is therefore∠naL ′ ≤ arcsin(ε/(1− ε)). By the intermediate value
theorem there is a pointy on the second curve whose curve normaln′y is also normal to
L ′. Hence∠nan′y ≥ π/2−arcsin(ε/(1−ε)). Since the surface normal aty is also normal
to the tangent line parallel toL ′, its angle withna is at least this large. From the Normal
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Variation Lemma we get∠nany < arcsin(ε/(1− ε)). Putting both inequalities together
we getπ/2 < 2 arcsin(ε/(1− ε)). This is equivalent toε >

√
2− 1 = 0.414. . . and

contradicts Condition (I). This completes the proof of the Voronoi Polyhedron Lemma
for the final case whereF ′ has at least two boundary circles.

Summary. The three Voronoi lemmas establish that forε satisfying Condition (I), the
restricted Voronoi diagram of anε-samplingV has the closed ball property. The result
of [10] implies that the underlying space of the restricted Delaunay triangulation is
homeomorphic to the skin surface.

General Homeomorphism Theorem. The restricted Delaunay triangulation of anε-
sampling triangulates the skin surface, for ε satisfying Condition(I).

For the purpose of changing the topology of the skin surface we rely on point dis-
tributions that locally violate theε-sampling condition. We give a separate proof of the
closed ball property in Section 10 and thus obtain a Special Homeomorphism Theorem
for such distributions.

PART II. A LGORITHM

The algorithm maintains the triangulation of a deforming skin surface dynamically by
adapting geometric position to shape, density to curvature, and connectivity to topology.
It can be used to construct a triangulation by starting with the empty triangulation and
growing components from nothing.

5. Shape Adaptation

This section describes the overall algorithm and presents the details for adapting the
triangulation to the changing shape of the surface. We restrict the deformation to the
growth model, where the weightA2 of every sphere is changed toA2 + t at timet . Let
t0 < t1 be moments in time and letD0, D1 be the corresponding restricted Delaunay
triangulations. The algorithm updatesD0 locally and changes it toD1.

Moving Vertices. The intuition for moving vertices is taken from Morse theory, which
considers structures that arise in sweeping out a smooth manifold [14]. The skin surface
is the cross section at a moment in time during the sweep, and the manifold is the stack
of cross sections in the time direction. In other words, the manifold is the graph of
M : R3 → R that maps a pointx to the timet at whichx belongs to the surfaceF(t).
HenceF(t) = M−1(t). A metamorphosis ofF corresponds to a critical point ofM . For
cross sections in a time interval [t0, t1] that is free of critical points, we can construct a
one-parameter family of diffeomorphisms from the integral lines of the gradient vector
field gradM(x). These diffeomorphismsϕi : F(t0) → F(ti ), with ti ∈ [t0, t1], can be
composed to connect diffeomorphically any two cross sections in the time interval,

ϕi j = ϕj ◦ ϕ−1
i : F(ti )→ F(tj ).
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Fig. 8. Dotted integral lines of a solid growing circle and a solid growing hyperbola.

The step from timeti to time tj thus amounts to moving each vertexa ∈ Di along its
integral line toa′ = ϕi j (a) ∈ Dj . In the growth model the integral lines are pieces of
straight lines and hyperbolas, as illustrated in Fig. 8. To see this, note that(2x1,−2x3) are
the normal vectors of the family of hyperbolasx2

1−x2
3 = ±R2, and that(2x3,2x1) are the

normal vectors of the family 2x1x3 = ±R2 obtained by rotating the first family through
an angle ofπ/4. The three-dimensional picture is obtained by revolving the hyperbolas
in Fig. 8 about thex3-axis. The first family of hyperbolas turns into the one-parameter
family of hyperboloids described by (2). The second family turns into a two-parameter
family of hyperbolas each orthogonal to each of these hyperboloids.

For deformations more general than the ones in the growth model, we may not be
able to determine the integral lines explicitly. Fortunately, moving vertices along integral
lines is convenient but not necessary for the algorithm, and an approximation of that
movement will in general suffice. For small time steps, the triangulation changes only a
small amount and can be maintained with the methods described in this and the following
two sections.

Parametrization. It is convenient to parametrize the integral lines by time so that points
can be moved by evaluation. Each integral line is decomposed by the mixed complex
into pieces of lines and hyperbolas. We first consider the case of a line inside a mixed cell
constructed from a Delaunay vertex and its dual Voronoi polyhedron. After translating the
center to the origin, the mixed cell is swept out by a sphere in standard formx2

1+x2
2+x2

3 =
s, for s ≥ 0. We thus get integral lines that start at the origin and go to infinity, and we
clip each such half-line to within the mixed cell. If the origin lies inside the mixed cell,
then it is the source of an entire sphere of integral lines. We follow the usual convention
and parametrize that sphere by longitude and latitude,θ ∈ [0,2π) andϕ ∈ [−π, π ]. For
each pair of angles we have a half-lineγθ,ϕ : R+ ∪ {0} → R3 defined by

γθ,ϕ(s) =
cosθ cosϕ

√
s

sinθ cosϕ
√

s
sinϕ
√

s

 .
The case of a mixed cell constructed from a Delaunay tetrahedron and its dual Voronoi
vertex is symmetric, with the integral lines ending rather than starting at the origin. If the
origin lies inside the mixed cell, then it is the sink of an entire sphere of integral lines.

We next consider the case of a mixed cell constructed from a Delaunay edge and its
dual Voronoi polygon. We assume the hyperboloid sweeping out the mixed cell is in
standard formx2

1+x2
2−x2

3 = s, for s ∈ R. The integral lines are hyperbolas that fall and
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rise along thex3-axis and turn a total of 90◦ before reaching thex1x2-plane, which they
approach as they disappear to infinity. We parametrize the family with the longitudinal
angle,θ ∈ [0,2π), and the minimum distance to the origin,R ≥ 0. For each pair of
parameters we get a hyperbolaγθ,R: R→ R3 defined by

γθ,R(s) =
± cosθ

√
u

± sinθ
√

u
± R2

2
√

u

 ,
with u = (s+√s2+ R4)/2. To check the correctness of the parametrization note that the
pointsγθ,R(s) satisfy the equation of the hyperboloid and the equations of the orthogonal
hyperbola. The case of a mixed cell constructed from a Delaunay triangle and its dual
Voronoi edge is symmetric, with the integral lines moving in above and below thex1x2-
plane and turning a total of 90◦ before reaching thex3-axis, which they approach as they
go to infinity.

In either case we obtain a parametrization in time by settings = R2 + t . Note that
in all four cases of integral lines, the speed of the parametrization depends only on the
distance to the center of the mixed cell,‖∂γ /∂s‖ = 1/(2‖γ (s)‖). This is consistent
with the length of the gradient ofM(x) = ±x2

1 ± x2
2 ± x2

3 being independent of the
choice of signs,‖gradM(x)‖ = 2‖x‖.
Algorithmic Time-Warp. Vertices move continuously along their integral lines, but
updating them continuously is computationally infeasible. The common escape from
this dilemma is the time-slicing method, which takes discrete time steps and advances
all vertices from timet0 to timet1 without intermediate stop. There are drawbacks to time-
slicing related to the difficulty of choosing the right step size. We follow an alternative
approach and take different time steps at different locations. This is done by prioritizing
the four types of operations that occur at discrete moments in time, which are edge flips,
edge contractions, vertex insertions, and metamorphoses. Edge flips are described below.
Edge contractions and vertex insertions arise in curvature adaptation, and are described in
the next section, while metamorphoses are the operations that allow topology adaptation.

Coordinate updates are done lazily, moving a vertex when and only when it is used
by one of the other four operations. This results in a time-warped surface with different
pieces reflecting the state at different times. To bring the entire surface to the present
time, we simply update all the vertex coordinates, and by assumed correctness of the
prioritization this requires no other changes in the triangulation.

At any moment in timet , we consider the collection of possible next operations. Let
ti > t be the time at which such an operationτi would happen if the vertices moved
along integral lines and no other operations precededτi . We store theτi in a priority
queue ordered by time. The overall algorithm is a simple infinite loop:

loop τi = NEXTOP; D = APPLY(τi ) forever .

Function APPLYchangesD according toτi , and simultaneously updates the priority queue
by inserting new operations made possible by the changes caused byτi . The changes may
make some of the operations in the priority queue inapplicable. For example, the edge of
an edge flip may disappear fromD. Instead of deleting these operations immediately, we
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Fig. 9. Head-on view of the edgebc. The dotted line represents the skin and the shading indicates the side
of the body. To the leftbc is convex and to the right it is concave.

use a lazy strategy that checks an operation when it reaches the top of the priority queue.

Operation NEXTOP:
repeat τ = EXTRACTMIN until ISOK(τ );
return τ .

Determining when exactly an operationτi matures in the future is computationally fairly
expensive, and so is the correct ordering of operations in time. We plan to discuss
approximate ordering methods that alleviate the cost in a later paper.

Edge Flipping. Let bc be an edge of the restricted Delaunay triangulationD at time
t . It is shared by two triangles,abcandbcd. By the Voronoi Edge Lemma, the Voronoi
edges dual toabc andbcd meet the skin surface in a point each. LetLa and Ld be
the lines that contain the two Voronoi edges and orient them from where they meetF
towards the pointx = La ∩ Ld where they cross. The pointx may or may not be a
Voronoi vertex. Callbc convexor concavedepending on whether the dihedral angle
betweenabc andbcd measured on the side of the body is less than or greater thanπ .
As illustrated in Fig. 9, in the convex case the two lines pass from outside to inside the
body, and in the concave case it is the other way round. Flipping the edgebc means
replacing it by the other diagonal of the quadranglebc defines. The operation can be
performed unlessad is already an edge in the triangulation, in which case eitherb or c
belongs to only three edges. The flip would then decrease that number to two edges and
contradict the closed ball property of the restricted Delaunay triangulation. The three
Voronoi lemmas thus imply that the flip ofbc would not be attempted ifad is already
in the triangulation.

void EDGEFLIP(bc):
assert ad 6∈ D;
substitutecad,ad,adb for abc,bc,bcd.

The edge flip operation is a response to the event that the Voronoi edges dual toabcand
bcd stop meeting the skin surface. This happens whenx passes throughF , and in this
casex is necessarily a vertex of the Voronoi diagram. Ifbc is convex, thenx passes from
inside to outside the body andad is concave. Symmetrically, ifbc is concave, thenx
passes from outside to inside the body andad is convex. The timeti when the flip happens
depends on the pointsa,b, c,d and the surfaceF , all of which move continuously with
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time. In other words,ti is a root of a continuous function int . It is used as the priority of
the edge flipτi stored in the event scheduling priority queue.

6. Curvature Adaptation

This section focuses on the density adaptation algorithm, implemented through edge
contraction and vertex insertion. The method is straightforward, but we need some
geometric analysis to convince ourselves that it is correct.

Invariants. The goal of the algorithm is to triangulate locally with edges and triangles
of size roughly proportional to the length scale, which Section 3 defined as one over the
maximum curvature,%(x) = 1/κ(x). Thesizeof an edgeab is defined to be half its
length,Rab = ‖a− b‖/2. Thesizeof a triangleabcis the radiusRabcof the circumcircle,
which length scale they should follow exactly. For edges we worry about them getting
too short, so we compare size with the maximum length scale, and for triangles we worry
about them growing too large, so we compare size with the minimum length scale:

%ab = max{%(a), %(b)},
%abc = min{%(a), %(b), %(c)}.

The algorithm is formulated using two positive constants,C andQ. Roughly,C controls
how closely the triangulation approximates the skin surface, andQ controls the quality
of the triangles. The following two inequalities are maintained as invariants, which we
refer to as the Lower Size Bound and the Upper Size Bound:

[L] Rab/%ab > C/Q for every edgeab∈ D.
[U] Rabc/%abc< C Q for every triangleabc∈ D.

It is not necessary to check for long edges and small triangles explicitly. This is because an
edge of sizeRab ≥ C Q%ab belongs to two triangles that both violate [U]. Symmetrically,
a triangle of sizeRabc≤ (C/Q)%abc has three edges that violate [L]. Appropriate values
of C, Q will be determined in the analysis of the algorithm but we can already anticipate
C = 0.08, Q = 1.65 as a feasible assignment.

Minimum Angle. The smallest angle is a measure of triangle quality. It achieves its
maximum,π/3, for the equilateral triangle. Triangles that satisfy both Size Bounds
cannot have arbitrarily small angles.

Minimum Angle Lemma. A triangle that satisfies[L] and [U] has minimum angle
larger thanarcsin(1/Q2).

Proof. Let abcbe a triangle, withbc its shortest edge andR its circumradius. We get
%abc/%bc ≤ 1 by definition of length scale. Using [L] and [U] we get

R

‖b− c‖ <
C Q%abc

2(C/Q)%bc
≤ Q2

2
.

The minimum angle is∠bac, and ‖b− c‖ = 2Rsin∠bac. Hence∠bac = arcsin
(‖b− c‖/2R) ≥ arcsin(1/Q2), as claimed.
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The Minimum Angle Lemma suggests that we chooseQ as small as possible, contin-
gent upon satisfying all constraints needed to prove the algorithm correct. ForQ = 1.65
the minimum angle is larger than 21.54. . .◦, and the maximum angle is smaller than
180◦ − 2 · 21.54◦ = 136.90. . .◦.

Enforcement. The algorithm enforces the two invariants by contracting short edges and
inserting vertices near the barycenters of large triangles. Letabcbe a triangle that gets
too large, that is,Rabc= C Q%abc at timeti . The timeti depends on the pointsa,b, c and
their length scales%(a), %(b), %(c), which all change continuously with time. To remedy
the violation of the Upper Size Bound, we add the restricted Voronoi vertexx dual to
abcas a new vertex to the triangulation. A vertex insertion may cause new violations of
the Upper Size Bound and thus trigger additional vertex insertions. We thus apply them
in a loop until no offending triangles remain:

void VERTEXINSERTION:
while ∃ triangleabcviolating [U] do

ADD(x,abc)
endwhile .

The details of the algorithm for addingx are discussed below.
Consider next an edgeab that gets too short, that is,Rab = (C/Q)%ab at timetj . The

moment in timetj depends on pointsa,b and their length scales%(a), %(b), which all
change continuously with time. To remedy the violation of the Lower Size Bound, we
contractabby removing the vertexb with larger length scale from the triangulation. The
removal ofb may possibly create new edges violating [L], and it can certainly create
triangles violating [U]. We repair the triangulation in two nested loops.

void EDGECONTRACTION:
while ∃ edgeab violating [L] do

if %(a) > %(b) then a↔ b endif ;
REMOVE(b); VERTEXINSERTION

endwhile .

We note that edge contractions and vertex insertions can also be used to modify the
restricted Delaunay triangulation of an oversampling until it satisfies both Size Bounds.
This is because every oversampling is also anε-sampling and thus the General Home-
omorphism Theorem applies. However, if we start with an undersampling, then
the algorithm may fail because conditions needed for its correct operation can be
violated.

Vertex Insertion. Let L be the line of points at equal distance froma, b, c. It intersects
the plane ofabc in the circumcenterz of the triangle, and it intersectsF in two or more
points of which we add the pointx ∈ L ∩ F closest toz. We prove in Section 8 that
the distance betweenx andz is necessarily small compared with%abc. However, even
thoughx andz are rather close, they may lie in different mixed cells. To findx, we start
atz, determining the mixed cell that contains it by walking froma. Then we walk along
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L to at most the distance specified in the Circumcenter Lemma in both directions from
z. Each step in the walk enters a new mixed cellµ. Let y be the point closest toz that
belongs both toL and the sphere or hyperboloid ofµ. If y lies outsideµ the search
continues. Otherwise,x = y and we addx to the triangulation by connecting it to the
edges ofabc.

Adding x to D as described is likely to compromise the dual correspondence to
the restricted Voronoi diagram. Inspired by the incremental algorithm for constructing
Delaunay triangulations inR2 [13], we repair the correspondence by edge flipping. More
specifically, we push each edge in the link ofx on an empty stack and then process the
stack until it runs empty. Letpq be the top edge on the stack shared by trianglesxpq
inside andpqyoutside the star ofx. Depending on a local geometry test, we either leave
pq as an edge in the triangulation or we flip it as described in Section 5. In the latter
case we push the new link edgespy, yq on the stack.

void ADD(x,abc):
assert INSPHERE(x,abc);
substitutexab, xb, xbc, xc, xca, xa, x for abc;
PUSH3(ab,bc, ca);
while not ISEMPTY do

pq = POP;
if INSPHERE(x, pqy) then

EDGEFLIP(pq); PUSH2(py, yq)
endif

endwhile .

Let z be the dual vertex ofpqy in D beforex was inserted. FunctionINSPHEREdecides
whether or notx lies inside the sphere with centerz that passes throughp,q, y. If it
does, thenpqy loses the reason for its existence which justifies the flip.

Edge Contraction. We contract an edgeab by removingb from the triangulation, as
illustrated in Fig. 10. The operation removesb together with all edges and triangles in
its star, and it covers the thus created hole by a triangulation without interior vertices.
The boundary of the hole is a topological circle, which we refer to as a polygon. For
each vertexp let p− andp+ be its predecessor and successor in an ordering around the
polygon. The algorithm converts the star ofb into the new triangulation by creating a
triangle p−pp+ at a time by flipping. When only three triangles remain in the star ofb

a b

Fig. 10. The removal ofb replaces the star ofb by the dotted polygon triangulation.
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we replace its star by a single triangle. To get started, we push all vertices in the link of
b on an empty stack.

void REMOVE(b):
for all p in link of b do PUSH(p) endfor ;
while stack contains more than three verticesdo

p = POP;
if IND(p−pp+) then

EDGEFLIP(bp); drop p from polygon;
if p− not on stackthen PUSH(p−) endif ;
if p+ not on stackthen PUSH(p+) endif

endif
endwhile ;
p,q, r = POP3;
substitutepqr for bpq,bq,bqr,br,brp,bp,b.

FunctionIND returnstrue iff all other vertices of the current polygon lie outside the
circumsphere ofp−, p, p+ whose center is the dual restricted Voronoi vertex.

7. Topology Adaptation

The way the skin surface is connected can change during deformation. This section
studies when, where, and how these changes happen in the growth model. It also de-
scribes how we locally modify the general sampling strategy to avoid the computational
impossibility of sampling infinitely many points accumulating at locations of infinite
curvature.

Growth Model. We recall that the growth model of deformation is defined by changing
the square radius of a sphere(a, A) from A2 at time 0 toA2+ t at timet ∈ R. Compu-
tationally, this is the simplest kind of deformation because it keeps the mixed complex
invariant. Each mixed cell contains a possibly empty sphere or hyperboloid patch of the
skin surface. After normalization, the equation of the sphere or hyperboloid at timet is

x2
1 + x2

2 ± x2
3 = ±R2+ t

2
.

Compare this with (1) and (2) in Section 2. A metamorphosis happens when the right-
hand side vanishes at timet = ∓2R2, and it happens at the center but only if the center
lies in the interior of its mixed cell. If the center lies outside, the portion of the sphere
or hyperboloid that passes through the center is not part of and thus does not affect the
skin surface. The special case where the center lies on the boundary of its mixed cell is
interesting. We will see that in this case the metamorphosis does not happen, but we still
have to modify the sampling strategy because the curvature grows beyond any bound.

Using local considerations, we can reduce the list of metamorphoses to the four given
in Table 1, Section 2. Casesk = 0,3 correspond to an appearing/disappearing sphere.
Casesk = 1,2 correspond to switching a hyperboloid from two sheets to one, or vice
versa. In each case we can interpret the center as a critical point of the mapM : R3→ R
whose level setsM−1(t) are the skin surfaces at timet . Casesk = 0,3 correspond to
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minima and maxima, and Casesk = 1,2 to two types of saddle points. The gradient
of M vanishes at all these points and also at centers that lie on the boundary of their
mixed cells. The latter centers correspond to degenerate critical points in the sense that
an arbitrarily small perturbation ofM suffices to turn them into regular points.

Hot Spots. Common to every metamorphosis is the local drop in length scale, which
reaches zero at the moment and point of the metamorphosis. We analyze the situation in
some detail. LetH be a positive real number. Thehot portionof the skin surfaceF is
the set of points with length scaleH or smaller,

FH = {x ∈ F | %(x) ≤ H}.
By the Iso-curvature Lemma, we have%(x) ≤ H only if x is sufficiently close to the
center of a sphere or hyperboloid. LetzX be such a center. We call the ballβX = {y ∈
R3 | ‖y− zX ‖ ≤ H} thehot ballof X . A hot ball is relevant only inside its mixed cell.
The union of hot balls, each clipped to within its mixed cell, is thehot portionof space,
denoted asR3

H .

Hot Spot Lemma. FH = F ∩ R3
H .

In words, a pointx ∈ F belongs to the hot portion of the skin surface iff it belongs to
the hot portion of space. In the growth model the hot portion of space is constant, while
the hot portion of the skin changes as the surface moves through that portion of space.
The Hot Spot Lemma follows directly from the Iso-curvature Lemma and does not need
a separate proof.

Depending on whether centers lie inside or outside their mixed cells, the hot portion of
space is locally a union or intersection of hot balls. The mixed complex decomposes this
union and intersection into convex pieces, as illustrated in Fig. 11. The common radius
of all hot balls isH . As long as none of the centers lies on the boundary of its mixed
cell, we can eliminate any overlap by decreasingH while keeping it positive. We will

1

2 1 2 0

0

0

1

0

1

1

Fig. 11. Dotted Voronoi diagram, dashed Delaunay triangulation, solid mixed complex, solid data points,
hollow other centers, and shaded hot portion of space. Each label shows the dimension of the Delaunay simplex
involved in the construction of the mixed cell.
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shortly discover that an even stronger separation property between hot balls is needed
to prevent edges reaching from one to another, which can be achieved, e.g., by choosing
H equal to half the value that guarantees pairwise disjointness. A center on a mixed cell
boundary has probability zero and is considered a degenerate case. For now, we simplify
the discussion by assuming the non-degenerate case, whereH is small enough such that
hot balls are pairwise disjoint. We will return to the degenerate case shortly.

Time for Change. The hot portion is more difficult to triangulate than the rest of the
skin surface. One reason is the metamorphosis, another is the accumulation of vertices
in a small region. The sphere case is relatively harmless, because the area decreases at
the same rate as the density requirement increases. Indeed, a constant number of vertices
suffices to shrink a sphere to an arbitrarily small size. The case of a hyperboloid that
approaches its limiting double-cone is more problematic, because the number of vertices
near the center grows beyond any bound. To circumvent the computational impossibility
of sampling infinitely many points, we change the sampling strategy inside the hot
balls. We give up onε-sampling to get a sparse sampling, but we preserve the closed
ball property. The triangulation algorithm remains oblivious to the changed sampling
density and keeps constructing the restricted Delaunay triangulation.

Consider a two-sheeted hyperboloid and translate time such that the metamorpho-
sis happens at timet = 0. The hyperboloid enters its hot ball at time−2H2, turns
into a double-cone at time 0, and leaves the hot ball as a one-sheeted hyperboloid at
time 2H2. The special sampling strategy that allows us to go through this motion de-
pends on a parameter 0< h < 1. Special sampling begins at timet0 = −2H2h2

when the two-sheeted hyperboloid enters the ball of radiusHh, and it ends at time
t1 = 2H2h2 when the one-sheeted hyperboloid leaves that ball, as shown in Fig. 12.
At time t0, the hyperboloid intersects the boundary of the hot ball in twohot cir-
cles. The shape adaptation algorithm moves these circles along their integral lines,
which implies that they grow from radiusR0 = H

√
(1− h2)/2 at time t0 to radius

R1 = H
√
(1+ h2)/2 at time t1. Simultaneously, the distance between the two cir-

cles decreases from 2R1 to 2R0. We define thehot sphereto pass through the two
hot circles. At timet0 and t1, it is the boundary of the hot ball, but in the open time
interval betweent0 andt1, it is cocentric and smaller than that boundary. General sam-
pling applies outside the hot sphere and special sampling applies on and inside that
sphere.

w 1

a’

0 w

a

u

1bb0

0 1u

Fig. 12. Head-on view of start, middle, end configurations generated by special sampling taking a two-
sheeted to a one-sheeted hyperboloid. The hot sphere is solid and the sphere that triggers the metamorphosis
is dotted.
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Extreme Configuration. At timet0, we kick off special sampling by creating thedouble-
cupas the start configuration of the metamorphosis representing the intruding portion
of the two-sheeted hyperboloid, as shown in the left drawing of Fig. 12. Consider one
sheet of the hyperboloid and leta be its intersection point with the symmetry axis. Let
b0,b1, . . . ,b`−1 be the vertices of a regular̀-gon along the hot circle in this sheet.
We mirror these points across the symmetry plane of the hyperboloid and get points
a′,b′0,b

′
1, . . . on the other sheet.

ADD2(a,a′);
for i = 0 to `− 1 do ADD2(bi ,b′i ) endfor ;
EDGECONTRACTION.

Recall that Function ADD really takes two parameters, namely a point and a triangle
whose circumsphere centered at the dual restricted Voronoi vertex encloses the point.
Each call to the function must therefore be preceded by a search for such a triangle.
Whenever we contract an edge by removing one of its endpoints we make sure that the
endpoint is not one of the newly added vertices. Section 10 derives sufficient conditions
for h and` that guarantee the above algorithm successfully constructs the double-cup as
the start configuration of the metamorphosis. By this we mean that

(i) a,a′ are the only vertices inside andbi ,b′i , for 0 ≤ i < `, are the only vertices
on the hot sphere,

(ii) the link of a in D is the regular̀ -gon of verticesbi , and symmetrically the link
of a′ is the`-gon of verticesb′i .

AssumingC = 0.08, Q = 1.65 we will see thath = 0.98 and̀ = 5 are feasible values
for the two constants. For ease of reference we say the vertices and edges in the links of
a,a′ arehot and the vertices, edges, and triangles in the stars ofa,a′ arevery hot.

The end configuration of the metamorphosis is similar to the start configuration of
the inverse metamorphosis. As shown in the right drawing of Fig. 12, it consists of
two rings of triangles forming acylinder-with-a-waistrepresenting the intruding portion
of the one-sheeted hyperboloid. Letu0,u1, . . . ,um−1 be the vertices of a regularm-
gon along the waist where the hyperboloid intersects its symmetry plane. Similarly, let
w0, w1, . . . , wm−1 be the vertices of another regularm-gon along one of the two hot cir-
cles, rotated byπ/m relative to them-gon along the waist. Finally, letw′0, w

′
1, . . . , w

′
m−1

be the vertices of the mirrorm-gon on the other hot circle.

for j = 0 to m− 1 do ADD3(uj , wj , w
′
j ) endfor ;

EDGECONTRACTION.

As before we search for an offending triangle before we add a point, and we make sure
that the removed vertex of every contracted edgepq is not one of the newly added
ones. Section 10 derives sufficient conditions forh and m that guarantee the above
algorithm successfully constructs the cylinder-with-a-waist as the start configuration of
the inverse metamorphosis. What precisely we mean by this should be obvious. Assuming
C = 0.08, Q = 1.65 we will see thath = 0.98 andm = 40 are feasible values for the
two constants. For ease of reference we again say that the vertices and edges along the
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two hot circles arehot and that the vertices, edges, and triangles between the two hot
circles arevery hot.

In the forward direction we switch from the double-cup to the cylinder-with-a-waist
at time 0, and in the backward direction we do it the other way round. The latter is easier
because we just need to meld them-gon of the waist into a single vertex and then split
that vertex into two. In the forward direction we first melda anda′ into a single vertex
and then expand that vertex into a regular polygon (interleaving angularly between the
bi ). The expansion creates two new rings of triangles between the new polygon and the
polygons representing the two hot circles. This is done following the angular order of
the involved vertices around the symmetry axis.

Special Sampling. The main difference between special and general sampling is that
the former gives up on the Lower Size Bound for hot edges and on the Upper Size Bound
for very hot triangles. The length of hot edges is bounded from above because the Upper
Size Bound applies to the incident triangles outside the hot sphere. A more detailed
analysis of edge and triangle sizes including a proof of the closed ball property in spite
of special sampling is given in Section 10.

The goal of special sampling is to maintain the double-cup and the cylinder-with-
a-waist during the first and the second halves of the time interval. It acts primarily
by modifying general sampling for points on and inside the hot sphere. As a general
rule, an edge is contracted by removing an endpoint that is not hot. Cases where both
endpoints are hot occur only at the end of the metamorphosis (or its inverse) and will
be discussed separately. There are two ways in which general sampling can intrude into
the hot sphere: by adding a point inside that sphere and by flipping a hot edge. In both
cases we prevent the intrusion by bisecting the endangered hot edgebc, as illustrated in
Fig. 13. Specifically, we add the midpointq of the shorter hot circle arc that connectsb
with c. The addition ofq may create edges that violate the Lower Size Bound. Of these
we contract the ones that are not hot, always making sure we remove the endpoint that is
not hot. As discussed above, we chooseH small enough so that hot spheres cannot get
too close to each other and every non-hot edge has at least one non-hot vertex. Infinite
loops cannot occur because each iteration leaves an additional hot vertex behind. The
hot circle gets denser and intrusions into the hot sphere get progressively more difficult.

Special sampling maintains the special configuration, but it does not guarantee the
two Size Bounds. They must therefore be enforced algorithmically at the end of the
metamorphosis.

SPECIALVERTEXINSERTION;
EDGE CONTRACTION.

Fig. 13. The hot edgebc is bisected either because the dual restricted Voronoi vertex ofbcd lies inside the
hot sphere or edge flipping attempts to changebc to da.
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The clean-up operation is correct if we maintain the closed ball property, which is initially
guaranteed by special sampling. While maintaining that property might be difficult in
general, we can use the insights gained from the proofs of the two Persistence Lemmas
in Section 10 and add points only on the two hot circles. This is the difference between
the above function and Function VERTEXINSERTIONintroduced earlier. The size analysis
in Section 10 implies that we can satisfy the Upper Size Bound even with this restriction
on new vertex locations.

Degenerate Centers. Recall that a degenerate center is one that lies on the boundary
of its mixed cell. Each facet lies half-way between the centers of the two mixed cells
that share it. If it contains one center, then it also contains the other, which implies
that a degenerate center is also a multiple center. In a non-degenerate mixed complex
(which may still have degenerate centers) every facet is shared by two, every edge by
four, and every vertex by eight mixed cells. In the Morse theoretic view of centers
as critical points, each degenerate center is the location where several critical points
collide and cancel each other. This is why there is no metamorphosis at those loca-
tions. When the surface moves through such a degenerate center, its curvature does
blow up momentarily, but the surface then becomes smooth again, with no topology
change.

The remainder of this section describes the various types of degenerate centers. The
enumeration exhausts the cases that occur in non-degenerate mixed complexes. Consis-
tent with Table 1, the label of a mixed cell isk if it is constructed from ak-dimensional
Delaunay simplex and its dual(3− k)-dimensional Voronoi polyhedron. We label the
facets, edges, and vertices by concatenating the labels of the mixed cells that share them.
There are three facet types labeled 01, 12, 23, two edge types labeled 0112, 1223, and
one vertex type labeled 01112223.

The case where the degenerate center lies in the interior of a 01 facet is illustrated
in Fig. 14. Reading the top row of the figure from left to right we see the skin surface
passing through the center. The bottom row shows the hot ball around the degenerate
center and its intersection with the evolving surface and the body it bounds. The case of a
degenerate center on a 23 facet is symmetric. The shrunken Voronoi polygon is replaced

Fig. 14. Degenerate center in the interior of a 01 facet. Evolution of skin surface at the top and of hot ball at
the bottom. The shaded regions on the hot spheres show the intersection with the body.
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1 12 2 21

Fig. 15. Degenerate center in the interior of a 12 facet. Evolution of skin surface at the top and of hot sphere
at the bottom. The hyperboloid in the type-2 cell has a vertical symmetry axis, while the hyperboloid in the
type-1 cell behind it has a horizontal one.

by a shrunken Delaunay triangle, and we read Fig. 14 from right to left. Furthermore,
the body lies on the other side of the skin surface.

The case of a degenerate center in the interior of a 12 facet is different and geometri-
cally more interesting. Both mixed cells contain hyperboloids, and their symmetry axes
pass orthogonally through the common center. Each symmetry axis lies in the symmetry
plane of the other hyperboloid, which forms a right angle with the plane of the facet. The
evolution of the skin surface passing through such a degenerate center is illustrated in the
top row of Fig. 15. As shown in the bottom row, the skin surface intersects the boundary
of the hot ball around the degenerate center in a curve consisting of four half-circles.
Instead of a pair of hot circles, we have a hot curve consisting of four half-circles.

The case of a degenerate center in the interior of an edge labeled 0112 is illustrated in
Fig. 16. The two pairs of facets common to a type 1 cell form a right dihedral angle each,
and the remaining two dihedral angles add up toπ but are otherwise arbitrary. As shown
to the right, the skin surface intersects the boundary of the hot ball in four circular arcs,
two of which are half-circles. The angles remain the same during the entire transition

21

0 1

Fig. 16. Degenerate center in the interior of a 0112 edge. Snapshot of skin surface and hot ball at the moment
the surface passes through the center.
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in which the skin surface sweeps through the hot ball. The case of a degenerate center
on an edge labeled 1223 is symmetric, and Fig. 16 applies, except that the body lies on
the other side of the surface. In the case of a degenerate center at a vertex, the hot curve
consists of three pairs of circular arcs. The angles of the arcs remain the same during the
transition in which the skin surface sweeps through the hot ball.

PART III. A NALYSIS

The next three sections analyze the algorithm and the triangulations it creates. Section 8
studies questions related to sampling density, Section 9 focuses on scheduling, and
Section 10 examines the topology adaptation algorithm.

8. Sampling Density

We derive conditions for the constantsC andQ in order to prove the curvature adaptation
algorithm in Part II is correct.

Conditions. We prove that point insertions do not generate edges that violate the Lower
Size Bound. That proof requires thatQ is not too large. We also prove that the restricted
Voronoi vertex dual to a triangle can be found near the circumcenter of that triangle. That
proof requires that the vertices of the triangulation form anε-sampling. Finally, we prove
that the vertices indeed form anε-sampling, withε satisfying Condition (I). The closed
ball property established in Section 4 then implies that the triangulation produced is
homeomorphic to the skin surface. That proof relies on the quality of the approximation,
which is guaranteed by the algorithm providedC Q is not too large. For ease of reference
we collect the conditions before deriving them.

(II) Q2− 4C Q− 2> 0.
(III) δ2/(1+ δ)2− δ4/4> C2Q2,

whereδ = ε−2C(ε + 1)/(Q+2C). We get (II) and (III) as sufficient conditions for the
proofs of the No-Short-Edge Lemma and the Sampling Lemma below. Condition (II)
is equivalent toQ > 2C + √4C2+ 2. Assumingε = ε0 = 0.279. . . , we can satisfy
Conditions (II) and (III) by settingC = 0.08 andQ = 1.65. In this caseδ = 0.166. . . .
Small improvements are possible.

Short Edges. An edge contraction may perhaps cause other edge contractions, but this
cannot go on forever because we eventually violate the Upper Size Bound. Similarly, a
vertex insertion may cause other vertex insertions, but this cannot go on forever because
we eventually violate the Lower Size Bound. It is possible that an edge contraction
causes vertex intersections, but a vertex insertion cannot cause edge contractions. This is
because a vertex insertion cannot create edges of size below the allowed threshold. This
is what prevents infinite loops in spite of the algorithm’s partially conflicting efforts to
avoid short edges and large triangles simultaneously. Letabcbe the triangle that causes
the addition of the dual restricted Voronoi vertexx ∈ F .
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No-Short-Edge Lemma. Every edge xy created during the addition of x has size
larger than(C/Q)%xy.

Proof. We haveRabc ≥ C Q%abc. The sphere with centerx that passes througha, b,
c has radiusX ≥ Rabc and it contains no vertex other thanx inside. Every new edge
xy has therefore length‖x − y‖ ≥ X ≥ C Q%abc. Assume without loss of generality
that%abc= %(a). We use the Curvature Variation Lemma to derive upper bounds for the
length scales atx andy:

%(x) ≤ %(a)+ X ≤
(

1

C Q
+ 1

)
‖x − y‖,

%(y) ≤ %(x)+ ‖x − y‖ ≤
(

1

C Q
+ 2

)
‖x − y‖.

Hence

Rxy = ‖x − y‖
2

≥ max{%(x), %(y)}
4+ 2/C Q

.

Condition (II) impliesC/Q < C Q/(4C Q+ 2), and thereforeRxy > (C/Q)%xy, as
claimed.

Close Dual Vertices. Consider the point addition triggered by the triangleabcviolating
the Upper Size Bound. As before, we denote the line of points at equal distance froma,
b, c by L, the circumcenter ofabc by z, and the point ofL ∩ F closest toz by x. We
prove an upper bound on the distance betweenx andz assuming anε-sampling ofF .

Circumcenter Lemma. The distance between x and z is‖x − z‖ < (ε2/2)%abc.

Proof. Assume%abc = %(a) ≤ %(b), %(c). We have‖x − a‖ ≤ ε%(x) by assump-
tion of ε-sampling and therefore(1/(1 + ε))%abc ≤ %(x) by the Curvature Varia-
tion Lemma. We get an upper bound on the distance betweenx and z by assuming
%(x) is as small as possible anda, b, c lie on the sandwiching sphere with radius
%(x) = (1/(1+ ε))%abc passing throughx. This configuration is sketched in Fig. 17.
Note that‖x − z‖/‖x − a‖ = ‖x − a‖/2%(x) by equality of angles formed by orthog-
onal sides. Therefore,

‖x − z‖ = ‖x − a‖2
2%(x)

≤ ε
2

2
%(x),

as claimed.

Fig. 17. Dashed sphere of radius%(x) passing througha, b, c, x and bold circle with centerzpassing through
a, b, c.
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The relevance of the Circumcenter Lemma to the curvature adaptation algorithm
should be obvious. When the triangleabcviolates Condition (III), we need first to find
its dual vertex in the restricted Voronoi diagram and then add this vertex toV . This
vertex is the pointx, and the Circumcenter Lemma gives a bound on how far fromz we
have to search before we are guaranteed to findx. As shown in the proof of the Voronoi
Edge Lemma, each additional pointy ∈ L ∩ F is too far fromz to possibly belong to
the Voronoi edge dual toabc.

Maintaining Density. We show that the algorithm for curvature adaptation maintains
the ε-sampling property of the vertex set. Recall that this means that for every point
x ∈ F there is a vertexa ∈ V whose distance fromx is ‖a− x‖ < ε%(x). The constant
ε is to be chosen so it satisfies Condition (I).

It is interesting to see that the two Size Bounds by themselves are too weak to imply
ε-sampling. We can put four points near each other on a sphere in such a way that
all four triangles and six edges satisfy [L] and [U]. Nevertheless, the boundary of the
tetrahedron is a miserably inadequate approximation of the sphere surface. We argue
that the algorithm cannot get to this problematic state, because of the way it would
temporarily have to violate the two Size Bounds. In other words, we use continuity in
time to prove the claim on sampling. In stating the result, we assume the skin surface
deforms continuously with time. For now we disallow metamorphoses. Lett0 < t1 be
two points in time so the topological type is constant within [t0, t1]. We write F(t) for
the skin surface at timet andV0,V1 for the vertex sets at timest0, t1.

Sampling Lemma. If V0 is anε-sampling of F(t0), then V1 is anε-sampling of F(t1).

Proof. Assume the opposite and lett ∈ [t0, t1] be the first moment in time when the
skin surface is notε-sampled. Then there is a pointx ∈ F(t) such that no vertex lies
inside the sphere with centerx and radiusX = ε%(x). By minimality of t , the sphere
passes through at least one vertex,a, but we need three. To get two more, we continuously
increase the sphere while keeping its center on the surface. Vertexa remains on the sphere
at all times and we permit no vertices inside the sphere. Lety ∈ F(t) be the center when
we reach the other two vertices,b andc. The radius of the new sphere isY ≥ X because
the radius can only increase fromx to y. Using the Curvature Variation Lemma, we get
%abc ≤ %(x)(1+ ε) and therefore(ε/(1+ ε))%abc ≤ ε%(x) ≤ Y. Assume without loss
of generality that%abc = %(a), and letz be the circumcenter ofabc. The Upper Size
Bound implies‖z− a‖ = Rabc< C Q%(a). Using the Circumcenter Lemma, we get an
upper bound on the square distance betweeny anda,

Y2 = ‖y− z‖2+ ‖z− a‖2

<
ε4

4
%2

abc+ C2Q2%2
abc.

This implies
ε2

(1+ ε)2 <
ε4

4
+ C2Q2,

which contradicts Condition (III).
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For example forC = 0.08, Q = 1.65 the Sampling Lemma holds for allε in an
interval with endpoints 0.15. . . and 0.98. . . .

The algorithm explained in Section 7 maintains anε-sampling across metamorphoses.
More precisely, it violates the required sampling density inside the hot sphere of each
metamorphosis. As proved in Section 10, the special sampling strategy repairs theε-
sampling property before the skin surface comes out of the hot sphere, and it maintains
the closed ball property at all times. The Sampling Lemma thus generalizes to any time
interval, including those that contain metamorphoses.

Denser Sampling. Even though the Sampling Lemma proves that the vertices form an
ε-sampling between all operations, it allows for momentary violations of the density
requirement during the contraction of an edgeab. Specifically,ε-samplings are not
guaranteed right afterb is removed and before appropriate vertex insertions repair the
Upper Size Bound. The contraction happens only if the Lower Size Bound is violated,
which implies‖b− a‖ ≤ (2C/(Q)%ab. Since such an edge contraction always removes
the vertex with larger length scale we have%(b) ≥ %(a) and therefore%ab ≤ %(x) +
‖x − b‖. For every pointx ∈ F whose only vertex within distanceε%(x) isbwe thus have

‖x − a‖ ≤ ‖x − b‖ + ‖b− a‖
≤ ε%(x)+ 2C

Q
(%(x)+ ε%(x))

=
[
ε + 2C

Q
(ε + 1)

]
%(x).

In words, the vertices still form anε-sampling, but for a somewhat larger value ofε. To
say the same thing in reverse we defineδ = ε − (2C/(Q + 2C))(ε + 1) and note that
ε = δ + (2C/Q)(δ + 1). If we choose the constantsC and Q such that the Sampling
Lemma implies the maintenance of aδ-sampling, then we have anε-sampling at all
times, even during the execution of an edge contraction. Condition (III) enforces such a
choice of constants.

9. Scheduling

The overall algorithm deforms the skin surface by executing operations ordered in time.
Some of these operations require others to repair the damage, and these others are
executed following a partial rather than a total order. As a general rule, total ordering
is more expensive but easier to prove correct than partial ordering. This section reviews
all operations and discusses their treatment by the scheduling algorithm. It also provides
correctness proofs for the flipping algorithms used to restore the restricted Delaunay
triangulation after vertex insertions and edge contractions.

Total and Partial Ordering. Operations triggered by the motion of the skin surface are
ordered in time. We have five types:

1. coordinate updates,
2. edge flips,
3. edge contractions,



Dynamic Skin Triangulation 559

4. vertex insertions,
5. metamorphoses.

Vertex coordinates change continuously with time, and we avoid most of the related
computational expense by updating coordinates when and only when they are used by
other operations. The last four operations are discrete events that are stored in a priority
queue ordered by time. The moment in time when an edge flip, edge contraction, or vertex
insertion matures is a root of a continuous function. In the growth model of deformation,
the moment in time when a metamorphosis matures is predictable from the ordering of
Delaunay simplices described in Section 2. For more general deformations, the time of
a metamorphosis is also a root of a continuous function.

Each operation other than the coordinate update and the edge flip is further decom-
posed into a sequence of operations. For example a vertex insertion relies on point
additions and edge flips to achieve the desired effect locally and restore the restricted
Delaunay triangulation. Conceptually, such a sequence is executed at an instant, while
time stands still. We cannot therefore resort to time for a global ordering mechanism.
The operations in each sequence are therefore scheduled following a partial rather than
a total order. The most frequently executed operation is the edge flip. The choice of
constantsC and Q guarantees that the restricted Voronoi diagram has the closed ball
property at all times, even in the middle of an edge contraction. We would therefore
expect that a simple iteration of edge flips will suffice to restore the restricted Delaunay
triangulation. While this is easy to prove for point additions, it is possibly incorrect for
point removals. This is why we resort to the more complicated edge flipping algorithm
for point removal described in Section 6.

Flipping after Point Addition. A vertex insertion operation is recursive and unwinds
into a sequence of point additions (usually just one), each followed by a sequence of
edge flips. LetD0 andD1 be the restricted Delaunay triangulations immediately before
and after adding the vertexx. We focus on the sequence of flips following the addition
of x and argue that this sequence successfully constructsD1.

As explained in Section 6, the algorithm maintains a subset of the edges in the link
of x on a stack. Each edgepq in the link belongs to two triangles,xpq inside andpqy
outside the star ofx. Thus pqy exists inD0 and it remains inD1 iff x lies outside the
circumscribed sphere ofpqy whose center is the dual restricted Voronoi vertex. The
INSPHEREtest used to decide whether or not to flippq captures exactly that information.
If the decision is negative we know thatpqyandpq remain inD1. Otherwise, the flip of
pq increases the star ofx by one triangle, and it decreases the portion of the triangulation
outside the star by one triangle. The monotonicity of the transfer implies that the loop
of edge flips halts. There are no obstacles to flippingpq other than ifxy is already an
edge of the triangulation, which is the case iff eitherp or q belongs to only three edges.
Say p belongs topx, pq, py and to no other edges. By the closed ball property of the
restricted Voronoi diagram,p belongs to at least three edges ofD1, and becausep can
only lose edges during flipping, theINSPHEREtest forx, pqy must be negative and the
flip of pq will not be attempted. Another conceivable reason for failure is that the link of
x does not reach a triangle that should be removed. However, this is impossible because
the closed ball property implies thatD0−D1 is an open disk, and the link ofx, which is a
topological circle, is adjacent to triangles inD0−D1 until it has swept out that entire disk.
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Flipping after Point Removal. An edge contraction unwinds into a sequence of point
removals and point additions, each followed by a sequence of edge flips. LetD0 and
D1 be the restricted Delaunay triangulations immediately before and after removing a
point b. We argue that the sequence of edge flips following the removal successfully
constructsD1.

As explained in Section 6, only the polygon bounded by the link ofb requires retrian-
gulation. The algorithm flips one diagonal and recurses for the remaining star ofb until
only three triangles remain. It thus halts after a number of edge flips that is less than the
number of triangles in the initial star. To see that the algorithm is correct, we observe
that each flip generates a triangle that is guaranteed to belong toD1. The membership in
D1 is guaranteed by FunctionIND, which checks all remaining vertices of the polygon
and not just one as for the flips following a point addition. Edge flips that cannot be
executed because one of the endpoints has degree 3 will again not be attempted because
they contradict the closed ball property of the restricted Voronoi diagram.

10. Metamorphoses

This section analyzes the point configurations generated by special sampling. Recall that
Hh < H is the length scale threshold that triggers the start and end of special sampling.
In the forward direction we start with a two-sheeted hyperboloid that enters the ball with
radiusHh around its center, and we end with a one-sheeted hyperboloid that exits the
same ball. In the backwards direction the events are the same in reverse order.

Sizes at Transition. Refer to the double-cup shown in Fig. 12. The`+ 1 points on one
sheet form a regular̀-sided cup. Thè vertices of the base lie on the hot circle with
radius R0 = H

√
(1− h2)/2, which lies in a plane at distanceR1 = H

√
(1+ h2)/2

from the center. Note thatR2
0 + R2

1 = H2. Defineb = bi andc = bi+1, with indices
modulo`. Independent of the indexi , the lengths of the edges ofabcare

2Rab =
√

2R1(R1− Hh),

2Rbc = 2R0 sin
π

`
.

Any isosceles triangle with sides of lengthE and heightL has circumradiusE2/2L.

The height ofabc is La,bc =
√

4R2
ab− R2

bc. The circumradius is therefore 4R2
ab/2La,bc,

which is

Rabc= R1(R1− Hh)√
2R1(R1− Hh)− R2

0 sin2(π/`)

.

Next refer to the cylinder-with-a-waist shown in Fig. 12. The 3m points form three
parallel regularm-gons. The distance between two contiguous planes isR0, and the
circumradii of the threem-gons areR1, Hh, R1. Defineu = ui , v = ui+1, w = wi ,
x = wi+1, with indices modulom. Independent of the indexi , the lengths of the edges
uv andwx are

2Ruv = 2Hh sin
π

m
,
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Fig. 18. Portion of cylinder in Fig. 12 projected onto plane parallel tom-gons.

2Rwx = 2R1 sin
π

m
.

To computeRvw, Ruvw, Rvwx, we consider the projection of the middle and outerm-gons
onto a plane parallel to the twom-gons, as shown in Fig. 18. The distance between the
projections ofw and(u+ v)/2 is R1− Hh cos(π/m), and that between the projections
of v and(w + x)/2 is R1 cos(π/m) − Hh. We get the heightsLw,uv andLv,wx of the
two triangles by taking the distances to three dimensions, which means squaring, adding
R2

0, and taking square roots. The length of an edge connecting the middlem-gon with
one of the two outerm-gons is the root ofR2

uv + L2
w,uv, which is

2Rvw =
√

2R1(R1− Hh cos(π/m)).

We compute the circumradii of the two isosceles triangles again from their edges and
heights. In particular, the circumradius ofuvw is 4R2

vw/2Lw,uv, and that ofvwx is
4R2

vw/2Lv,wx. Hence,

Ruvw = R1(R1− Hh cos(π/m))√
H2− 2R1Hh cos(π/m)+ H2h2 cos2(π/m)

,

Rvwx = R1(R1− Hh cos(π/m))√
R2

1 − 2R1Hh cos(π/m)+ R2
1 cos2(π/m)

.

Smooth Transition. We derive necessary and sufficient conditions forh, `,m that guar-
antee a smooth transition from the general to the special sampling strategy. By this we
mean that the configurations at the start of a metamorphosis is anε-sampling and satisfies
both Size Bounds. At the end of the metamorphosis, the Size Bounds are enforced by
eliminating offending edges and triangles through edge contraction and vertex insertion.
The result is a triangulation whose vertex set is anε-sampling of the surface; see also
the remark immediately following the proof of the Sampling Lemma.

The length scale at the verticesa, u, v is Hh, and that atb, c,w, x is H . The Lower and
Upper Size Bounds are therefore equivalent toRab, Rbc, Ruv/h, Rwx, Rvw > (C/Q)H
and Rabc, Ruvw, Rvwx < C QHh. The inequalities forRvw, Ruv, Ruvw are redundant
becauseRab < Rvw, Rwx < Ruv/h, Ruvw < Rvwx for all h < 1. In addition to requiring
that the trianglesabc,uvw, vwx satisfy the Upper Size Bound, it is convenient to require
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also that their radii are less than the locally allowed minimum edge length. This extra
requirement implies that after adding points on and inside the hot sphere, all old points
inside or on the hot sphere are too close to at least one new point and thus get deleted.
It follows that all remaining old vertices lie outside the hot sphere. We thus have the
following two conditions:

(IV) Rab/H , Rbc/H , Rwx/H > C/Q,
(V) Rabc/H , Rvwx/H < min{Q,2/Q}Ch.

Conditions (I)–(V) are satisfied forε = 0.279,C = 0.08, Q = 1.65,h = 0.98,` = 5,
m= 40. We summarize the results assuming this assignment of constants.

Transition Lemma. The triangulation at the start of a metamorphosis satisfies the
two Size Bounds and its vertex set is anε-sampling of the skin surface.

As mentioned earlier, the same does not automatically hold for the end configurations
of metamorphoses, but it can be enforced algorithmically. The purpose of bounding the
size of triangles in Condition (V) by(2/Q)Ch is to guarantee that the algorithm given
in Section 7 constructs the special configurations without having to search for remaining
old vertices inside the hot sphere. To prove this algorithm correct, we also need to show
that these configurations are part of the restricted Delaunay triangulation, which follows
from the Persistence Lemmas proved below.

Persistence of Triangulation. We show that the special configurations exist as sub-
complexes of the restricted Delaunay triangulation during the entire time interval of a
metamorphosis. Consider the simplices in the Delaunay complex spanned by hot vertices
and their dual Voronoi polyhedra. Fig. 19 sketches both for the double-cup before and the
cylinder-with-a-waist after the middle of the time interval. During the first half of the time
interval, the hot vertices span two pyramids, one being the reflection of the other across the
symmetry plane of the hyperboloid. The points are in degenerate position, which implies
that the Delaunay complex11 of the hot points contains polyhedra that are more com-

w x
a

vu

b c

Fig. 19. Solid restricted Delaunay triangulations and dotted Voronoi polyhedra of hot ball configuration
before and after the double-cone.
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plicated than tetrahedra. Specifically,11 consists of the two pyramids joined by an edge
connecting their apices and a ring of five-sided polyhedra and quadrangles around that
edge. As usual,D denotes the restricted Delaunay triangulation of the entire vertex setV .

Persistence Lemma A. At any time in[−2H2h2,0), the intersection of11 and D
consists of the two rings of triangles forming the double-cup and of their edges and
vertices.

Proof. We first show that the edges, polygons, and polyhedra in11 that do not belong
to the double-cup also do not belong toD. The edges connecting the two cups have
dual Voronoi polygons which lie in the symmetry plane separating the two sheets and
therefore cannot intersect the hyperboloid. To see that they do not intersect any other part
of F , we consider the sandwiching spheres defined for points ofF inside the hot sphere.
The Voronoi polygons are contained in the union of balls bounded by these spheres, else
they would imply an empty sphere that intersects the hyperboloid in a patch outside the
hot sphere that is large enough to contradict theε-sampling property. Detailed compu-
tations of a lower bound for the size of such an implied patch are omitted. SinceD is a
complex, it also does not contain the Delaunay polygons and polyhedra incident to the
excluded edges. The base polygons of the two pyramids in11 have their dual Voronoi
edges on the symmetry line of the hyperboloid. For the same reason as above, these
edges are contained in the union of balls bounded by the sandwiching spheres of points
of F inside the hot sphere.

We second show that the trianglesabc of the double-cup belong toD. At time
t0 = −2H2h2 this is true because these triangles have circumspheres that are small
enough that every point ofF inside these spheres would belong to edges that violate the
Lower Size Bound. At timest0 < t < 0 this is true because any violation is prevented
by the algorithm before it occurs.

During the second half of the time interval, the hot vertices form three convex polygons
in three parallel planes. The middle polygon is a regularm-gon in the symmetry plane
of the hyperboloid, and the other two are reflections of each other across that plane and
are inscribed in the two hot circles. The Delaunay complex12 of the hot points is again
degenerate, consisting of the above mentioned three polygons, which form the top and
bottom facets of two drum-like polyhedra. The two drums are surrounded by a ring of
four-sided pyramids alternating with tetrahedra.

Persistence Lemma B. At any time in(0,2H2h2], the intersection of12 and D con-
sists of the two rings of triangles forming the cylinder-with-a-waist and of their edges
and vertices.

Proof. The edges, polygons, and polyhedra in12 that do not belong to the cylinder-
with-a-waist have their dual Voronoi polygons, edges, and vertices either in the symmetry
plane or the symmetry axis of the hyperboloid. For the reason mentioned in the proof
of the Persistence Lemma A, these polygons, edges, and vertices are contained in the
union of balls bounded by sandwiching spheres of points ofF inside the hot sphere. The
corresponding edges, polygons, and polyhedra of12 thus do not belong toD.
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The remainder of the proof establishes that the trianglesuvw andvwx belong to
D. Immediately after timet = 0 this is true because the triangles in the double-cup
belonged toD immediately before timet = 0. At times 0< t ≤ t1 this is true because
any violation is prevented by the algorithm before it occurs.

The two Persistence Lemmas also hold for the reverse metamorphosis, which changes
a one-sheeted into a two-sheeted hyperboloid. To see this, run time backwards and ex-
change the arguments that establish that the two special configurations are subcomplexes
of D when they are first created. These arguments are contained in the respective last
paragraphs of the two proofs.

Summary. The two Persistence Lemmas establish that the closed ball property of the
restricted Voronoi diagram is maintained even inside the hot spheres that guide the
algorithm through the various metamorphoses.

Special Homeomorphism Theorem. The restricted Delaunay triangulation of the
points chosen by special sampling triangulates the skin surface inside each hot sphere.

Together with the General Homeomorphism Theorem this implies that we have a
triangulation of the skin surface at all times.

11. Discussion

This paper describes a dynamic algorithm for maintaining the triangulation of a deform-
ing skin surface by adapting it to changing shape, curvature, and topology.

Abstract Interface. The algorithm uses detailed knowledge about the skin surface to
avoid pitfalls, such as insufficient quality of approximation, small angles, and wrong
connections. In an effort to understand the extent to which the algorithm can be general-
ized, we may ask how much knowledge about the surface the algorithm really needs. Can
we list axioms for a deforming surface that imply the applicability of the algorithm? To
make this a worthwhile exercise, one would of course hope that the class of surfaces and
deformations defined by the axioms is significantly larger than the class of skin surfaces
and the growth model.

A key idea of the algorithm is to keep the density of vertices roughly proportional to
one over the maximum curvature. This is only possible if that measure of curvature
satisfies a one-sided Lipschitz condition, like that stated in the Curvature Variation
Lemma. It is conceivable that the sampling density can be based on other expressions of
curvature that satisfy a one-sided Lipschitz condition. The local feature size proposed in
[3] is a candidate for such an expression, but it is usually not easy to compute. Another
important cornerstone of the algorithm is the predictability of metamorphoses. Without
knowing when and where a metamorphosis will happen, we would have to resort to
relatively expensive collision detection and resolution algorithms.

Implementation. Where do we go from here? The first job on the agenda is the rigorous
implementation of the dynamic skin triangulation algorithm. The first author of this paper
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has already taken steps in that direction, partially reusing prior software on alpha shapes
[9] and on computing Betti numbers [6]. It will be interesting to study the algorithm
experimentally and measure the influence of design decisions on its performance. For
example, the bounds on the constantsC, Q controlling the curvature adaptation algorithm
derived in this paper are all conservative. Perhaps it is possible to relax the requirements
a fair amount without compromising the correctness of the algorithm.

It would be interesting to modify the algorithm to sample points with local density
roughly proportional to

√
1/κ rather than to 1/κ. A density like that would lead to a

uniformly approximating triangulation. In other words, the distance between the trian-
gulation and the skin surface would be bounded by a constant independent of curvature.
As another bonus, the vertices would be distributed without accumulation points at sin-
gularities with infinite curvature. As a corresponding drawback, the triangulation would
suffer from violations of the closed ball property, which is crucial to the algorithm as
described in this paper.

Deformation. Recall that the skin surface is defined by a finite set of spheres inR3. It
is deformed by manipulating this set. The simplest type of deformation is plain growth,
which is generated by increasing all radii continuously and simultaneously in a way that
preserves the mixed complex. The next more complicated type of deformation is the one
described in [4]. It can be used to morph one skin surface into any other skin surface
by a combination of moving and growing/shrinking of spheres. This is done in a way
that preserves the combinatorics but not the geometric realization of the mixed complex.
Metamorphoses in the morphing model are only slightly more difficult to predict than
in the growth model. The maintenance of the skin triangulation is however made more
complicated by the occurrence of new types of degenerate metamorphoses, such as the
ones that progress to the critical point and are then reversed. In any physical simulation,
where the deformation depends on forces unrelated to the combinatorics of the mixed
complex, we will also have to maintain that complex dynamically. The computational
overhead is negligible if we use a dynamic algorithm for maintaining the Delaunay
complex [11]. Note that a single time step in the simulation may jump over any number
of metamorphoses and other changes. A reasonable approach to bridging the gaps in
time is to connect any two contiguous time slices with a deformation in the morphing
model mentioned above.

An important question in this context is the inverse problem. How do we construct
the skin surface that best approximates a given shape, and how do we maintain such
an approximation? We need modeling operations that allow us to increase or decrease
the complexity of the surface locally. The former can be done by doubling spheres and
continuously moving them apart. The latter can be done by the inverse operation, which
moves spheres together and merges them into one.
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Appendix

Figure 20 gives an overview of the proof structure used in this paper. Nodes represent
properties, lemmas, invariants, and conditions. Arcs represent logical dependencies di-
rected from top to bottom. All abbreviations are explained below. Table 2 provides a list
of notation used in this paper.

(I) Condition onε Section 4
(II) Condition onC andQ Section 8
(III) Condition onC andQ Section 8
(IV) Condition onh, `,m Section 10
(V) Condition onh, `,m Section 10
[L] Lower Size Bound Section 6
[U] Upper Size Bound Section 6
CcL Circumcenter Lemma Section 8
CSL Curvature Sandwich Lemma Section 3
CVL Curvature Variation Lemma Section 3
ENL Edge Normal Lemma Section 4
GHT General Homeomorphism Theorem Section 4
HSL Hot Spot Lemma Section 7
IcL Iso-curvature Lemma Section 3
LDC Long Distance Claim Section 4
MAL Minimum Angle Lemma Section 6
NSL No-Short-Edge Lemma Section 8

Fig. 20. Logical structure of the proof that the algorithm in this paper constructs a triangulation of the skin
surface.
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Table 2. Notation for important geometric concepts, functions, variables,
and constants.

x1, x2, x3 Coordinates
πâ: R3→ R Weighted (square) distance function
â = (a, A) Zero-set ofπâ, sphere with centera and radiusA
αâ+ βb̂ Zero-set ofαπâ + βπb̂√

â = (a, A/
√

2) Zero-set ofπâ − πâ(a)/2
F = skinA Skin surface, env

√
convA

bodyA Body bounded by skinA
νX Intersection of Voronoi polyhedra
δX Delaunay simplex
k Dimension of Delaunay simplex
µX Mixed cell,(νX + δX )/2
zX Center, affνX ∩ aff δX
κ: F → R Maximum curvature function
%: F → R Length scale function, 1/κ
nx,nxyz Normal vector atx, of xyz
txy Tangent vector,(y− x)/‖y− x‖
Sx, Tx Sandwiching spheres atx ∈ F
Rab, Rabc Radius or size of edge, triangle
%ab Target size, max{%(a), %(b)}
%abc Target size, min{%(a), %(b), %(c)}
ε Constant controlling sampling density
Q Constant controlling triangle quality
C Constant controlling approximation
M : R3→ R Trajectory of skin surface
ϕi j Diffeomorphism between skins
V ε-Sampling ofF
D Restricted Delaunay triangulation
1 Delaunay complex
H Radius of hot ball
R3

H Hot portion of space
FH Hot portion of skin surface,F ∩ R3

H
h Constant triggering a metamorphosis
`,m Constant numbers of hot vertices
t0, t1 Start/end time of a metamorphosis
R0, R1 Start/end radius of hot circles

NVL Normal Variation Lemma Section 3
PLA Persistence Lemma A Section 10
PLB Persistence Lemma B Section 10
SDC Short Distance Claim Section 4
SgL Sampling Lemma Section 8
SHT Special Homeomorphism Theorem Section 10
SwP Sandwich Property Section 2
TNL Triangle Normal Lemma Section 4
TsL Transition Lemma Section 10
VEL Voronoi Edge Lemma Section 4
VGL Voronoi Polygon Lemma Section 4
VHL Voronoi Polyhedron Lemma Section 4



568 H.-L. Cheng, T. K. Dey, H. Edelsbrunner, and J. Sullivan

References

1. H. I. Aaronson, ed.Lectures on the Theory of Phase Transformation. American Institute of Mining,
Metallurgical and Petroleum Engineer, New York, 1975.

2. P. S. Alexandrov.Combinatorial Topology. Dover, New York, 1956.
3. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.Discrete Comput. Geom. 22 (1999),

481–504.
4. H.-L. Cheng, H. Edelsbrunner, and P. Fu. Shape space from deformation. InProc. 6th Pacific Conf.

Comput. Graphics Appl., Singapore, 1998, pp. 104–113.
5. T. E. Creighton.Proteins. Structures and Molecular Principles. Freeman, New York, 1984.
6. C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial com-

plexes on the 3-sphere.Comput. Aided Geom. Design12 (1995), 771–784.
7. H. Edelsbrunner. The union of balls and its dual shape.Discrete Comput. Geom. 13 (1995), 415–440.
8. H. Edelsbrunner. Deformable smooth surface design.Discrete Comput. Geom. 21 (1999), 87–115.
9. H. Edelsbrunner and E. P. M¨ucke. Three-dimensional alpha shapes.ACM Trans. Graph. 13(1994), 43–72.

10. H. Edelsbrunner and N. R. Shah. Triangulating topological spaces.Internat. J. Comput. Geom. Appl. 7
(1997), 365–378.

11. M. A. Facello. Geometric techniques for molecular shape analysis. Ph.D. thesis, Report UIUCDCS-R-96-
1967, Dept. Comput. Sci., Univ. Illinois, Urbana, Illinois, 1996.

12. A. Gray.Modern Differential Geometry of Curves and Surfaces. CRC Press, Boca Raton, Florida, 1993.
13. L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of

Voronoi diagrams.ACM Trans. Graph. 4 (1985), 74–123.
14. J. Milnor.Morse Theory. Princeton University Press, Princeton, New Jersey, 1963.
15. T. E. Morthland, P. E. Byrne, D. A. Tortorelli, and J. A. Dantzig. Optimal riser design for metal castings.

Metall. Material Trans. 26B (1995), 871–885.
16. D. Pedoe.Geometry: a Comprehensive Course. Dover, New York, 1988.
17. N. Provatas, N. Goldenfeld, and J. A. Dantzig. Adaptive grid methods in solidification microstructure

modeling.Phys. Rev. Lett. 80 (1998), 3308–3311.

Received July19, 2000,and in revised form January6, 2001.Online publication March26, 2001.


