
Dynamic SLA-negotiation based on WS-Agreement

Antoine Pichot
Antoine.Pichot@alcatel-lucent.fr

Alcatel-Lucent
Route De Villejust

91620 Nozay, France

Philipp Wieder
ph.wieder@fz-juelich.de

Research Centre Jülich, Central Institute for Applied Mathematics (ZAM)
D-52425 J̈ulich, Germany

Oliver Wäldrich, Wolfgang Ziegler
{Oliver.Waeldrich, Wolfgang.Ziegler}@scai.fhg.de

Fraunhofer Institute SCAI, Department of Bioinformatics
D-53754 Sankt Augustin

CoreGRID Technical Report
Number TR-0082
June 24, 2007

Institute on Resource Management and Scheduling

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265



Dynamic SLA-negotiation based on WS-Agreement

Antoine Pichot
Antoine.Pichot@alcatel-lucent.fr

Alcatel-Lucent
Route De Villejust

91620 Nozay, France

Philipp Wieder
ph.wieder@fz-juelich.de

Research Centre Jülich, Central Institute for Applied Mathematics (ZAM)
D-52425 Jülich, Germany

Oliver Wäldrich, Wolfgang Ziegler
{Oliver.Waeldrich, Wolfgang.Ziegler}@scai.fhg.de

Fraunhofer Institute SCAI, Department of Bioinformatics
D-53754 Sankt Augustin

CoreGRID TR-0082

June 24, 2007

Abstract

A typical task of a grid level scheduling service is the orchestration and coordination of resources in the grid.
Especially the co-allocation of resources makes high demands on this service. Co-allocation requires the grid level
scheduler to coordinate resource management systems located in different domains. Provided that the site autonomy
has to be respected negotiation is the only way to achieve theintended coordination. Today, it is common practice to
do this by using web service technologies. Furthermore, service level agreements (SLAs) emerged as a new way to
manage usage of resources in the grid and are already adoptedby a number of management systems. Therefore, it is
natural to look for ways to adopt SLAs for grid level scheduling. In order to do this, efficient and flexible protocols are
needed, which support dynamic negotiation and creation of SLAs. In this paper we propose and discuss extensions
to the WS-Agreement protocol addressing these issues.

1 Introduction

Service Level Agreements (SLAs) are contracts between a service provider and their customers that describe the
service, terms, guarantees, responsibilities and level ofthe service to be provided. They have been widely used
by network operators and their customers. They can be used byany service provider for computing, storage, data
transport, etc. In this article we will consider SLA dynamically negotiated and created by software programs. A
dynamic SLA is an SLA negotiated every time before the service is to be provided. Services to be negotiated are
resource provisioning services, they are required to provide higher level services, such as “solve a complex problem”,

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1



“run a given application”, etc. Those services require the use of various resources like computing nodes, network
connections, storage areas or any combination of these.

Resource consumption evolves in time and is sometimes dependent on the successful completion of previous
tasks. An orchestrator communicates on behalf of customers(end-users in our use-cases) with several local resource
managers to negotiate and create dynamic SLAs. In the rest ofthe document, for reasons of clarity, we will limit the
problem scope to problems where computing and network resources are needed, and to a grid scheduler as orchestrator.

The grid scheduler is the component that has to negotiate, select and schedule resources in order to execute a
user’s job and fulfil its requirements. As we will see, co-ordinating the access to multiple resources at the same time
requires specific protocol features that negotiation and agreement protocols do not necessarily have. The purpose of
this introduction chapter is to clarify the functionality of a grid scheduler in our use-cases. Fig. 1 describes several
steps performed by a grid scheduler.

Figure 1: Resource selection & reservation

Section 2 describes SLA negotiation and creation problem, how distributed databases’ commit protocol shed light
to this problem. Section 3 describes a Meta-Scheduling service used in a real testbed. Section 4 describes how these
problems can be solved using Web Service (WS) Agreement protocol being a proposed recommendation of the Open
Grid Forum (OGF).

2 Negotiation, creation and commit protocols

In this section negotiation is briefly discussed followed bya presentation of commit protocols in distributed databases
in Section 2.1 and commit protocols for distributed resource management systems in Section 2.2.

To run a job that requires several resources, like networking and computational resources, managed by different
resource management systems (RMS), several steps must be performed by a grid scheduler. UponT receipt of the job
request, the scheduler starts the first phase: resource filtering based on static information and dynamic information.
Static information does not change over time: number of CPUs, operating system, location, etc. Dynamic information
changes over time: availability, load, etc. The second phase is the negotiation process and results in the selection of
resources that can satisfy the job request. The third phase is the SLA creation phase concluded by the commitment of
all service providers (or local RMS) involved leading to a anreservation of the negotiated resources as described in
the SLA. The last phase is the job submission followed by the execution.

Negotiation is a widely studied topic and there are numerouspublications addressing different aspects, e.g. [14] is
a general purpose negotiation journal, [3] is a survey aboutnegotiation in distributed resource management systems,
while [12] and [11] discuss aspects of service negotiation in the Grid. In our context and in the simplest case, a user’s
job has to be executed and the grid scheduler has to select between different target systems. If all systems are identical
and only one parameter influences the selection, i.e. price,this case is similar to a typical business negotiation between
one buyer and several sellers. An auctioning mechanism likethe ones described in [4] can be used. Of course, we take
the point of view of an end user, if we look at things from a resource provider’s point of view, we have several jobs
that compete for one resource, i.e. several buyers and one seller. If we look at the scheduler’s point of view, we have
many jobs that compete for several resources, i.e. many buyers and many sellers. Buyya [4] (page 36) also surveyed
several distributed resource management systems based on price.

Automatic negotiation of SLAs is a complex and time consuming process [9, 15, 8], when even two users have
to find an agreement on multiple criteria. Imagine how difficult the problem becomes when multiple entities have

CoreGRID TR-0082 2



to reach an agreement [5]. When at least two resources are needed at the same time to run a job, e.g. a network
connection and a processing resource, several steps have tobe performed before reaching an agreement between the
resource providers and the consumer. Green [8] cites mainlytwo frameworks for automatic negotiation: ontologies
and web services. According to him automated negotiation has three main considerations: The negotiation protocol,
the negotiation objects and the decision-making models. Heconsiders two options existing in order to achieve this
type of negotiation. One option is for the originating agentto negotiate separately with each Autonomous System
(AS) along each potential path to ensure that an end-to-end path is available. The dominant choice however, is to use
a cascaded approach where each AS is responsible for the entire path downstream of itself. This approach enhances
agent autonomy as it is only responsible for its immediate links. The autonomy of the cascaded approach struggles
however with the issue of price. In a cascading scenario an intelligent agent would need to know the utility functions of
all the downstream domains if the best price combination is to be determined, which is private information. In contrast,
in this paper we limited the scope to protocols that permit the negotiation of agreements between two parties based
on WS-Agreement [1] rather than tackling the full complexity of automated negotiation. These bi-lateral agreements
might then be combined into one single agreement.

2.1 Commit protocols for distributed databases

Distributed transactional systems have been widely studied. One of their objectives is to propagate a consistent state
across several systems, in a way that at any time all systems can show a consistent state to users. The consistent state or
consistent view maintains and propagates between systems alogical coherent state. To provide crash recovery, several
operations are logically grouped into transactions. Thosetransactions permit the change from one consistent view
to another. For instance, you do not credit a bank account if you have not debited another bank account. However,
these are two independent operations. A bank’s distributeddatabase system must group these two operations in one
transaction. Thus it permits the change from one consistentstate “before the transfer” to another “after the transfer”.
Database state changes are visible by other users once a transaction is committed to the system. In distributed systems,
each transaction can impact several different systems not co-located. Thus distributed database experts have developed
commit protocols [2, 10, 13]. As Skeen described in [16], “The processing of a single transaction is viewed as
follows. At some time during its execution, a commit point isreached where the site decides to commit or to abort
the transaction. A commit is an unconditional guarantee to execute the transaction to completion, even in the event
of multiple failures. Similarly, an abort is an unconditional guarantee to “back out” the transaction so that none of its
results persist. If a failure occurs before the commit pointis reached, then immediately upon recovering the site will
abort the transaction. Commit and abort are irreversible.”

When a user needs to make a change in a distributed database, acoordinator will propagate this change on all
systems. As Skeen explains, upon receipt of a change requestthe coordinator forwards it to all distributed systems.
Upon the change request receipt, all slaves go to the wait state. Then they can decide whether or not to accept this
change, and send their response. The coordinator collects all responses to the change request, if one of them is
negative, it goes in the abort state and sends an “abort” to all systems, if all responses are positive, then the coordinator
goes in the commit state, and sends a “Commit” to all systems.Upon receiving a “Commit” (respectively “Abort”) all
systems must commit (respectively “Abort”) the change request. Fig. 2 (left) represents a slave’s two phase commit
protocol finite state machine (FSM). This process is the two phase commit process, supported by a two phase commit
protocol. The problem of this process is that in case of system failure. It’s impossible to know whether the transaction
was committed or aborted. The wait state leads to both commitand abort state. For instance, when the coordinator
fails after having sent a “commit” to some slaves but not all,the remaining slaves can not know whether the transaction
should be aborted or cancelled. The two phase commit protocol is an example of a blocking protocol.

To provide crash recovery, and avoid blocking problems, Skeen introduced a three phase commit protocol. He
added an intermediary state before the commitment as shown in Fig. 2 (middle). This state corresponds to a prepare
to commit. It’s impossible to jump from this state to an abortstate. He proved that if a state transition was possible
between the prepare and the abort state, the protocol would be blocking. As a consequence, from any state on the
slave’s finite state machine it is possible to determine whether the transaction should be committed or aborted in case
of failure. In case of failure a slave in the “Wait” state mustabort, while a slave in the “Prepare” state must commit.

CoreGRID TR-0082 3



Figure 2: Two phase commit slave’s FSM (left), three phase commit slave’s FSM (middle), and SLA negotiation and
creation resource provider’s FSM (right)

2.2 Commit protocols for distributed resource management systems

In an environment with distributed RMS providing guarantees on resource usage, a grid scheduler may create SLAs
with its users. In a co-allocation use case, this SLA takes into account several resources coming from several resource
providers. With each independent resource provider a bilateral SLA has to be negotiated and created. A grid scheduler
has to create these bilateral SLAs on behalf of its users. Forinstance, in VIOLA, users may request network and
computational resources with a dedicated QoS. The grid scheduler has to orchestrate the individual reservation of
network and computational resources. These two reservations are realised as two bilateral SLAs.

The essence of distributed databases’ commit protocol is the transaction: a group of individual operations linked
logically. In a distributed resource management system, co-allocation requires multiple bilateral SLAs. For a user ora
particular service requiring multiple resources, either all of the individual bilateral SLA must be created, or none. The
user SLA creation process is a transaction composed of multiple bilateral SLA creation.

Before reaching an agreement, two steps must be performed: negotiation and creation. The negotiation process
can involve all resource providers. Its results are input toa resource provider selection process. When two resources
are needed, e.g. network and computing, even if the negotiation involves many compute resource providers, only
one computational resource will be selected. For many resources offered, the negotiation process does not lead to an
SLA creation process. This is the main reason why negotiation must neither obligate the provider nor the consumer
of the SLA. However, the SLA negotiation and creation process should minimize the number of discarded agreement
creation requests when it has been previously negotiated. This should occur only when there is a race condition:
when two or more users are competing simultaneously for the same resource at the same time. The separation of
agreement negotiation and agreement creation process and minimising the number of discarded agreement creations
after negotiation are conflicting objectives.

One way to observe atomicity of the SLA creation is to use a transaction and to rely on a two phase commit
protocol. Once resources have been negotiated, the orchestrator starts the SLA creation process by sending an SLA
creation request to the selected resource providers. Then each resource provider responds to the request with yes or a
counter offer. If all providers agree, the orchestrator sends a commit reservation to all systems. Upon receipt of this
message, the reservation is committed and the SLA created. Fig. 2 (right) shows this process.

When the resource provider receives an SLA negotiation offer, its state changes from “Start” to “Nego”. It then
answers the negotiation offer by either accepting it or making a counter offer. In case of a counter offer, it stays in
the “Nego” state. It can also abort the negotiation and proceed to the “Abort” state. Once the orchestrator decides to
start the SLA creation process, upon receipt of the SLA creation request, the resource provider’s state changes to the
“Prepare” state. It stays there if it accepts the reservation otherwise it goes to the “Abort” state. The final “Commit”
state is reached when it receives a “Commit” message from theorchestrator and that resources are reserved and made
unavailable to the rest of the world.

As mentioned above, this simple two phase commit scenario can lead to a race condition during the SLA creation
process. While the resource provider is in the “Crea” state,other users see the previous consistent state where resources
are still available. To prevent this, the “Crea” state couldimply “locking” resources thus providing a pre-reservation
for the transaction lifetime. This prevents other users from reserving the same resource at the same time. In case of a
lock request, second users’ transaction must wait for the lock to be released.

Although the FSMs shown in the middle and on the right-hand side of Fig. 2 look similar, we cannot say that the

CoreGRID TR-0082 4



SLA negotiation and creation process is a three phase commit. It is a blocking protocol as described by Skeen [16].
And it does not provide any guarantees against crashes. One could still imagine a non blocking SLA creation protocol
relying on a three phase commit providing crash recovery. Itwill not be discussed in this article.

3 Resource negotiation with MSS

In the German project VIOLA, Vertically Integrated OpticalNetwork for Large Application, a MetaScheduling Service
(MSS) has been developed [17] to co-allocate network resources as well as computing resources.

The MSS is a grid scheduler capable of orchestrating and co-allocating resources. In order to co-allocate resources
MSS mediates between the RMS involved. During this process,the MSS creates resource reservations, which are
coordinated in time.

The communication between MSS and the involved RMSs can either be done directly or through a standard grid
middleware system. At the moment the MSS supports UNICORE [6] as one grid middleware. UNICORE provides
seamless and secure access to distributed resources and enables the MSS to access computational resources’ manage-
ment functions in a uniform way, even if the resources are located in different organizational domains. However, since
the MSS should be extensible for the future, the integrationof the MSS into UNICORE was done using the adapter
patterns [7]. This allows the MSS to support different grid middleware systems.

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

NJS

TSI

Compute
Resource

RMS

Monitoring

UNICORE
Adapter

GLOBUS
Adapter

Usite A Usite B

UNICORE
Gatewy

UNICORE
Gatewy

UNICORE
Client

MSS

ARGON
Adapter

Network
Resources

ARGON

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

WS-Agreement
Interface

UPL

ArgonWS

Figure 3: MSS architecture

We use the WS-Agreement protocol for the communication between MSS and the adapters. This is a very natural
approach, since the original purpose of MSS was the orchestration and co-allocation of resources using advance
reservation. A reservation of resources is an instance of anSLA, where the availability of the required resources at a
specific time is guaranteed. These atomic SLAs are orchestrated by MSS in order to create more complex SLAs. Such
a complex SLA can for instance contain guarantees that compute resources of different (remote) sites are available
at the same time, and a certain level of network quality of service (QoS) is provided between these sites. The WS-
Agreement protocol provides a standard way to create and monitor atomic as well as complex SLAs.

The following section describe different ways for negotiating and creating SLAs with WS-Agreement.

4 SLA negotiation and creation with WS-Agreement

In order to co-allocate different types of resources and/orresources from different domains, MSS has to negotiate
SLAs for the required resources. The easiest way of SLA negotiation is a one step process, where the context, the

CoreGRID TR-0082 5



subject, and the constraints of the negotiation problem aredefined. The WS-Agreement protocol natively supports
this kind of negotiation by the GetTemplate method. This method returns a set of agreement templates representing
acceptable agreement offers for an agreement provider. These agreement templates only provide hints on agreement
offers which might be accepted by an agreement provider. They do not guarantee the agreement will be accepted. An
agreement template defines one ore more services that are specified by theirservice description terms(SDT), their
service property terms(SPT), and theirguarantee terms(GT). Additionally an agreement provider can constrain the
possible values within the SDTs, SPTs, and GTs by defining appropriate creation constraints within the templates.

The creation constraints in agreement template can be static or dynamic. Typical examples of a static creation
constraints are the minimum and maximum numbers of CPU, nodes, or memory. As these are properties of computing
systems that are not likely to change frequently agreement templates that only contain static information usually are
not restricted in their lifetime.

Agreement templates can also contain more dynamic information. Such dynamic information can be used to
e.g. restrict the guaranteed execution time of a given service based on the current resource availability. Since the
availability of resources is likely to change frequently, templates that contain such dynamic components have a short
lifetime. A grid scheduler can use these dynamic templates to efficiently find suitable time slots in order to e.g.
co-allocate resources.

However, it is not always desired to expose availability information, or sometimes it is even not possible to do this
in a convenient way. A typical example for this is the creation of an SLA in the network domain. Here, it is simply
not possible to include the availability information for all possible network paths in a domain within one single SLA
template. This would make the templates far to complex and therefore practically unusable. Therefore, the efficient
agreement on time constraints in SLAs in only one phase is simply not feasible in this case. More advanced multi-step
negotiations are needed to solve this problem.

4.1 Negotiation of Agreement Templates

Negotiation requires an iterative process between the parties involved. To rely on WS-Agreement and minimize the
extensions to the proposed standard, we suggest not to negotiate SLAs but to negotiate and refine the templates that
can be used to create an SLA. Here, our focus is on the bilateral negotiation of agreement templates.

In the following scenario we describe how an agreement initiator (e.g. the grid scheduler) negotiates agreement
templates with an agreement provider (e.g. a service provider). We propose a simple offer/counter offer model. In
order to use this model in the WS-Agreement protocol, we propose a new function negotiateTemplate. This function
takes one template as input (offer), and returns zero or moretemplates (counter offer). The negotiation itself is an
iterative process. In the following scenario we describe a simple negotiation process. During the negotiation process
we use the term ’negotiation initiator’ for the agreement initiator (e.g. the grid scheduler). Accordingly we refer to the
agreement provider (e.g. the resource provider) as ’negotiation responder’.

1. Initialization of the negotiation process

First, the negotiation initiator initialises the process by querying a set of SLA templates from an agreement
provider. From this templates, the initiator chooses the most suitable one as a starting point for the negotiation
process. This template defines the context of the subsequentiterations. All subsequent offers must refer to this
agreement template. This is required in order to enable an agreement provider to validate the creation constraints
of the original template during the negotiation process, and therefore the validity of an offer.

2. Negotiation of the template

After the negotiation initiator has chosen an agreement template, it will create a new agreement template based
on the chosen one. The new created template must contain a reference to the originating template within its
context. Furthermore, the agreement initiator may adjust the content of the new created template, namely the
content of the service description terms, the service property terms, and the guarantee terms. These changes
must be done according to the creation constraints defined inthe original template. Additionally, the negotiation
initiator may also include creation constraints within thenew created template. These constraints provide hints
for the negotiation responder, within which limits the negotiation initiator is willing to create an agreement.
After the initiator created the new agreement template according to its requirements, the template is send to the
responder via a negotiateTemplate message.

CoreGRID TR-0082 6



When the responder has received a negotiateTemplate nessage, it must first check the validity of the input
document (refined template). This step includes (i) retrieving the original agreement template that was used
to create the input document, (ii) validating the structureof the input document with respect to the originating
template, and (iii) validating the changes of the content inthe input document with respect to the creation
constraints defined in the originating template.

Once this is done, the agreement provider now checks whetherthe service defined in the request could be
provided or not. In the first case it just returns the agreement template to the client, indicating that an offer
based on that template will potentially be accepted. In the latter case the provider employs some strategy
to create reasonable counter offers. During this process the agreement provider should take into account the
constraints of the negotiation initiator. Counter offers are basically a set of new agreement templates that base
on the template received from the negotiation initiator. The relationship between dynamic created templates and
original ones must be reflected by updating the context of thenew templates accordingly. After creating the
counter offers the provider sends them back to the negotiation initiator (negotiateTemplate response).

3. Post-processing of the templates

After the negotiation initiator received the counter offers from the negotiation responder, it checks whether one
or more meets its requirements. If there is no such template,the initiator can either stop the negotiation process,
or start again from step 1. If there is an applicable template, the initiator validates whether there is need for
an additional negotiation step or not. If yes, the initiatoruses the selected template and proceeds with step 2,
otherwise the selected template is used to create a new SLA.

4.2 SLA creation

After the negotiation of an agreement template acceptable for both parties, the initiator needs to create the agreement.
At this point, a problem similar to the transaction problem of distributed database systems arises. The goal of a grid
scheduler is to create a set of SLAs with different resource providers in order to provide co-allocation. Therefore,
the scheduler first negotiates a set of templates with the providers, which identify the possible provisioning times of
the required resources. However, we must not forget that templates only provide hints of what SLAs an agreement
provider might accept. There is no guarantee associated with a template. This means that we are in need of a strategy
to create all SLAs or none. In principle there are two major strategies to achieve this:

1. to use transactions to create the SLAs, or

2. to create each SLA within one step, applying policies to the SLA.

The usage of transaction mechanisms to create distributed SLAs, namely the usage of the two-phase-commit
protocol, was already discussed in this paper. Since there is no support for two phase commit in WS-Agreement today,
we need to extend the proposed standard to address this problem. This process has been started recently in the OGF
working group that created WS-Agreement.

The creation of an SLA within only one step is already possible using today’s WS-Agreement functionality. How-
ever, it is not very obvious how we can solve our co-allocation problem with this approach. In order to achieve this,
we have to investigate the content of an SLA. On one hand, an SLA describes the service and its properties. On the
other hand, it specifies the guarantees for a specific service. In a co-allocation scenario, where a grid scheduler uses
SLAs to coordinate e.g. network and computational resources, it employs execution guarantees in order to assure that
the different services are provided at the same time. These guarantees may also include costs that are associated with
the service if it is provided successfully, as well as penalties that arise when a guarantee is violated. However, an
SLA might be prematurely terminated by the agreement initiator, before the service is actually provided. In fact, this
is a cancellation of an SLA. When a service provider guarantees a certain execution time for a service, this normally
comprises resource reservations. Therefore, the resourceprovider wants to prevent the termination of an existing
SLA. This can be achieved by including a basic payment withinthe SLA. The basic payment is potentially a very
small amount of money that is even charged if the SLA is terminated by the agreement initiator before the service
was actually provided. It is therefore a termination penalty and represents the costs for the overhead produced by the
resource reservation. In order to enable the grid schedulerto efficiently negotiate and create SLAs, there could be a
certain time period in which the SLA can be terminated without penalty. The duration of this period can dynamically

CoreGRID TR-0082 7



be specified during the negotiation process. The Agreement provider could use a certain trust index in order to deter-
mine the maximum length of this period. For example, such a trust index could be computed by the ratio of successful
created agreements and prematurely terminated agreements. This offers a feasible solution for the orchestration of
multiple resources using the current one-step SLA creationof WS-Agreement.

5 Outlook

In this paper we discussed basic functionality for resourceorchestration in grids, namely mechanisms to dynamically
negotiate and create service level agreements using WS-Agreement. SLAs are a basic building blocks for grid resource
orchestration and distributed resource management. We have shown how a bilateral WS-Agreement based negotiation
process is used to dynamically negotiate SLA templates. Forthis we propose a simple extension of the WS-Agreement
protocol in order to support a simple offer/counter-offer model. We did not address extensions to support auctions
based negotiation in WS-Agreement so far. This is still future work.

The second relevant part of the resource orchestration process is the creation of distributed SLAs. We have dis-
cussed two different strategies to co-allocate SLAs in the grid. In future we need to further investigate the advantages,
disadvantages and limitations of one- and two-phase-commit protocols in the distributed resource management do-
main.

6 Acknowledgements

Some of the work reported in this paper is funded by the GermanFederal Ministry of Education and Research through
the VIOLA project under grant #123456. This paper also includes work carried out jointly within the CoreGRID
Network of Excellence funded by the European Commission’s IST programme under grant #004265.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web Services Agreement Specification (WS-Agreement). GWD-R (Proposed Recommendation), Open
Grid Forum, 2007.

[2] B. Bhargava.Concurrency and Reliability in Distributed Database Systems. Van Nostrand Reinhold, 1987.

[3] C. Briquet and P.-A. de Marneffe. Grid resource negotiation: survey with a machine learning perspective. In
PDCN’06: Proceedings of the 24th IASTED international conference on Parallel and distributed computing and
networks, pages 17–22, Anaheim, CA, USA, 2006. ACTA Press.

[4] R. Buyya.Economic-based Distributed Resource Management and Scheduling for Grid Computing, PhD Thesis.
Monash University, Melbourne, Australia, 2002.

[5] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S.Tuecke. Snap : A protocol for negotiation of ser-
vice level agreements and coordinated resource managementin distributed systems. InProceedings of the 8th
Workshop on Job Scheduling Strategies for Parallel Processing, Edinburgh, Scotland, July 2002.

[6] D. Erwin. UNICORE Plus final report. Uniform interface tocomputing resources. Technical report, 2003.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley Professional Computing Series). Addison-Wesley Professional, 1995.

[8] L. Green. Service level negotiation in a heterogeneous telecommunication environment. InProceeding Inter-
national Conference on Computing, Communications and Control Technologies (CCCT04), Austin, TX, USA,
August 2004.

[9] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Automated negotiation:
Prospects, methods and challenges.Group Decision and Negotiation, 10(2), March 2001.

CoreGRID TR-0082 8



[10] W. Kohler. A survey of techniques for synchronization and recovery in decentralized computer systems.ACM
Computing Surveys, 13(2), June 1981.

[11] D. Kuo, M. Parkin, and J. Brooke. A framework & negotiation protocol for service contracts. InProceedings of
the 2006 IEEE International Conference on Services Computing (SCC 2006), pages 253–256, 2006.

[12] D. Kuo, M. Parkin, and J. Brooke. Negotiating contractson the grid. InExploiting the Knowledge Economy -
Issues, Applications, Case Studies, Volume 3, Proceedingsof the eChallenges 2006 (e-2006) Conference. IOS
Press, 2006.

[13] M. Oszu and P. Valduriez.Principles of Distributed Database Systems. Prentice Hall, 1991.

[14] M. Shakun, editor.Group Decision and Negotiation. Springer Netherlands, 2002.

[15] W. Shen, H. H. Ghenniwa, and C. Wang. Adaptive negotiation for agent-based grid computing. InProceedings
of AAMAS2002 workshop on agentcities: Challenges in Open Agent Environments, pages 32–36, Bologna, Italy,
2002.

[16] D. Skeen. Nonblocking commit protocols. InProceedings of ACM SIGMOD Int’l Conf. Management of Data,
June 1981.

[17] O. Wäldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for co-allocating arbitrary types of resources.
In R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski,editors,Proceedings of the Second Grid Resource
Management Workshop (GRMWS 05) in conjunction with Parallel Processing and Applied Mathematics: 6th
International Conference (PPAM 2005), volume 3911 ofLecture Notes in Computer Science, pages 782–791.
Springer, 2005. ISBN: 3-540-34141-2.

CoreGRID TR-0082 9


