8.4

Dynamic Slack Reclamation with Procrastination
Scheduling in Real-Time Embedded Systems

Ravindra Jejurikar
Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697

jezz@cecs.uci.edu

ABSTRACT

Leakage energy consumption is an increasing concern in current
and future CMOS technology generations. Procrastination schedul-
ing, where task execution can be delayed to maximize the duration
of idle intervals, has been proposed to minimize leakage energy
drain. We address dynamic slack reclamation techniques under
procrastination scheduling to minimize the static and dynamic en-
ergy consumption. In addition to dynamic task slowdown, we pro-
pose dynamic procrastination which seeks to extend idle intervals
through slack reclamation. While using the entire slack for either
slowdown or procrastination need not be the most energy efficient
approach, we distribute the slack between slowdown and procrasti-
nation to exploit maximum energy savings. Our simulation experi-
ments show that dynamic slowdown results on an average 10% en-
ergy gains over static slowdown. Dynamic procrastination extends
the average sleep interval by 25% which reduces the idle energy
consumption by 15%, while meeting all timing requirements.

Categories and Subject Descriptors: D.4.1 [Operating System]:
Process Management — scheduling.

General Terms: Algorithms.

Keywords: dynamic slack reclamation, task procrastication, leak-
age power, critical speed, low power scheduling, real-time systems.

1. INTRODUCTION

Portable embedded systems are pervasive with applications in
multimedia, telecommunications and consumer electronics. These
systems are usually battery operated and power management is im-
portant in the design and operation of these systems. A processor is
central to an embedded system and contributes to a significant por-
tion of the total power consumption of the system. The two primary
ways of reducing the processor power consumption are shutdown
and slowdown. To understand the benefits of each technique, one
needs to consider the two distinct contributors to device power con-
sumption: (1) dynamic power consumption arising due to switch-
ing activity in a circuit and (2) static power consumption which is
present even when no logic operations are performed. Slowdown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC’05, June 13-17, 2005, Anaheim, California, USA.

Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

111

Rajesh Gupta
Department of Computer Science
University of California, San Diego

La Jolla, CA 92093

gupta@cs.ucsd.edu

(through dynamic voltage and frequency scaling) is known to re-
duce the dynamic power consumption at the cost of increased exe-
cution time for a given computation task. However, the increased
computation time arising from slowdown results in increasing the
static energy consumption. Shutdown, on the other hand, elimi-
nates the static energy drain. With the increasing static power con-
sumption (a result of increasing leakage currents), a combination
of slowdown and shutdown techniques are important to minimize
the total energy consumption of the system.

Most of the prior works have addressed processor slowdown to
minimize the dynamic power consumption. Slowdown computa-
tion techniques can be broadly classified into: (1) static slowdown,
based on an off-line analysis of the task set characteristics (such as
worst case task execution times and task periods); and (2) dynamic
slowdown, where the slowdown decisions are made on-line based
on the slack arising from varying task execution times. The extent
of slowdown is usually referred to as a slowdown factor, which rep-
resented the operating speed normalized to the maximum processor
speed. Among the earliest works on this problem, Yao et. al. [12]
presented an off-line algorithm to compute the optimal static slow-
down (speed) schedule for a set of N jobs. Dynamic voltage scal-
ing techniques for real-time periodic task systems have also been
the focus of many works in the literature [11, 3, 1]. These works
have extended known feasibility test to compute static task slow-
down factors. While static slowdown factors are computed based
on the worst case execution time (WCET) of tasks, variations in
task execution times result in dynamic slack that can be exploited
for further energy savings. Slack reclamation heuristics have been
proposed in [2, 7] to increase the extent of task slowdown. How-
ever, these techniques are primarily targeted for dynamic energy
minimization.

With the shrinking device dimension, leakage current is rapidly
increasing. A five-fold increase in leakage current is predicted with
each technology generation. Recently, leakage abatement has been
an important focus on the work on power and energy minimiza-
tion. Procrastination scheduling has been shown to minimize the
leakage energy consumption by seeking to maximize idle inter-
vals through delayed task execution. Irani et. al. [4] consider the
combined problem of slowdown and shutdown and propose com-
petitive off-line and on-line scheduling algorithm (for non-periodic
task set). Lee et. al. [8] have extended procrastination scheduling
to periodic real-time systems. Our earlier work [6] proposes an im-
proved procrastination algorithm which works in conjunction with
processor slowdown. The work in [6] is based on statically com-
puted slowdown factors and pre-computed (static) task procrasti-
nation intervals (based on the worst case execution time). In this
paper, we propose dynamic slack reclamation techniques that work

in conjunction with procrastination scheduling. We show that prior
works on dynamic slowdown can be used in conjunction with pro-
crastination scheduling, while ensuring all task deadlines. While
dynamic slack has been primarily used for task slowdown, slack
can also be utilized to (dynamically) extend task procrastination in-
tervals for leakage reduction. We propose slack reclamation tech-
niques, which enable both dynamic slowdown and dynamic pro-
crastination in a system. We achieve energy efficiency by wisely
distributing the slack between slowdown and procrastination. We
show that dynamic procrastination can increase the idle intervals to
up to 1.7 times over static procrastination, which reduces the idle
energy consumption by up to 60%.

The rest of the paper is organized as follows: Section 2 intro-
duces the preliminaries and formulates the problem. In Section 3,
we present dynamic slack reclamation algorithms under procrasti-
nation scheduling. The experimental results are discussed in Sec-
tion 4 and Section 5 concludes the paper with future directions.

2. PRELIMINARIES
2.1 System Model

The system consists of a task set of n periodic real time tasks,
represented as ' = {11,...,T, }. A task 1; is a 3-tuple {T};,D;,C;},
where 7; is the period of the task, D; is the relative deadline and C; is
the worst case execution time (WCET) of the task at the maximum
processor speed. The tasks are independent and scheduled on a
single processor system based on a preemptive scheduling policy.
A task set is said to be feasible if all tasks meet the deadline. The
processor utilization, U = Y/, C;/T; < 1, is a necessary condition
for the feasibility of any schedule [9]. In this work, we assume task
deadlines are equal to the period (i.e., D; = T;, for each task 7;) and
tasks are scheduled by the Earliest Deadline First (EDF) scheduling
policy [9]. Each invocation of the task is called a job and the k'
instance of task T; is referred to as T;;. We use the notation of
a task (7;) and its instance (job Jo = T;;) interchangeably, when
the meaning is clear from the context. A priority function P(J) is
associated with each invocation of a task such that if a job J has a
higher priority than J', then P(J) > P(J').

A wide range of current embedded processors support variable
voltage and frequency levels. We consider a uni-processor system
with support for Dynamic Voltage Scaling (DVS). A slowdown fac-
tor () is defined as the normalized operating frequency, i.e., the ra-
tio of the current frequency to the maximum frequency of the pro-
cessor. Processors support discrete frequency levels and slowdown
factors are discrete points in the range [0,1]. A static slowdown
factor (n;) is assigned to each task T; which ensures feasibility of
the system. With the increasing dominance of leakage drain, per-
forming the maximum possible slowdown need not be the most en-
ergy efficient operating point. Considering the static and dynamic
energy consumption, the processor speed that minimizes the total
energy per processor cycle is called the critical speed, denoted by
Nerie [6]. The critical speed determines the lower bound on the pro-
cessor speed, since execution at a speed lower than 1, requires
more time as well as consumes more energy. The speed N can
be computed for a given processor and is used as a lower bound on
the static and dynamic task slowdown factors.

2.2 Static Task Procrastination

Procrastination scheduling [8, 6], whereby task executions can
be delayed to extend processor sleep intervals, is a part of our
scheduling policy. We say a task is procrastinated (or delayed) if,
on task arrival, the processor is in a shutdown state and continues
to remain in the shutdown state, despite the task being ready for

112

execution. In our earlier work [6], we have presented a procrastina-
tion scheme where the procrastination intervals are based on static
analysis (based on WCET of tasks). Under this algorithm, a max-
imum procrastinated interval, Z;, is pre-computed for each task 7;.
The details of the procrastination algorithm and the computation of
Z; (for each task 7;) can be found in [6]. Note that the processor is
shutdown only when the processor ready queue is empty and tasks
are procrastinated only when the processor is shutdown. (Procras-
tination is handled by an additional controller, which takes over on
processor shutdown.) We have shown that all deadlines are guaran-
teed if each task 7T; is procrastinated by no more than Z; time units.

2.3 Dynamic Task Procrastination

Prior slack reclamation techniques primarily utilize the available
slack to further slowdown task execution. While excessive slow-
down can increase the static energy contribution, it can be bene-
ficial to reclaim slack for extended task procrastination intervals,
thereby minimizing leakage drain. We illustrate with an example
how dynamic procrastination can extend the idle intervals in the
system. Consider a task set consisting of the following two tasks:

1 = {5,5,2} and 1, = {10,10,6}

The task arrival times and deadlines are shown in Fig. 1(a). The
processor utilization (U) for the task set is 100% and no task exe-
cution can be procrastinated based on a static analysis, resulting in
Z1 = Z = 0. The task schedule based on the EDF policy is shown
in Fig. 1(b). At time zero, task Ty | is the highest priority ready task
and it is scheduled for execution. The task completes execution at
time ¢t = 2 and task 15| begins execution. The task instance 15 |
has a shorter execution time than its worst case and completes in
two time units, resulting in a slack of 6 —2 = 4 time units. The pro-
cessor is idle at time 7 = 4 and task Ty > arrives at time ¢ = 5 with a
deadline of r = 10. Since Z; = 0, the task execution is not delayed
and and task Ty 7 begins execution as soon as it arrives. The slack
generated by task T | has the same priority (deadline) as task Ty >
and can be reclaim by task Ty > for slowdown. Assuming the task is
executing at the critical speed, it is not energy efficient to reclaim
this slack for dynamic slowdown. Thus task T » executes at the as-
signed slowdown factor to complete execution at time # = 7 and the
processor is again idle upto time ¢ = 10. During the time interval
[10,20], tasks have a similar schedule and is shown in Fig. 1(b).

‘We show how task executions can be dynamically procrastinated
to extend idle intervals, based on the available slack in the system.
We later prove that a task execution can be delayed by the avail-
able slack with higher or equal priority than the task priority. The
schedule with dynamic procrastination is shown in Fig. 1(c). Task
T1,1 begins execution at time zero which is followed by the execu-
tion of task T2 1. The slack generated by the early completion of
task T | has a deadline of 1 = 10. This slack can be reclaimed to
dynamically procrastinate the execution of task Tj 2, which arrives
at time r = 5. Since 4 units of slack is available at time ¢ = 4, the
execution of task T; > can be delayed upto time ¢ = 8. Task 1y > be-
gins execution at # = 8 to complete execution by its deadline. Thus
dynamic task procrastination can extend the idle interval to 4 time
units, as opposed two idle intervals of 1 and 3 time units. Assuming
a shutdown threshold to be 2 time units, procrastination can enable
a shutdown throughout the idle intervals in Fig. 1(c), which is not
possible in Fig. 1(b). When tasks have statically computed procras-
tination intervals, the maximum of the available slack and the static
procrastination interval can be used to procrastinate task execution.
It is important to note that the available slack cannot be added to
the static procrastination interval of a task (an example illustrating
the same is presented in [5]).

f Task arrival
’t’ is the task execution time

? E====S9 idle interval

task

2]
o 6] []

0 2 4 6 8 10 12 14 16 18
time —=

20 22

(a)Task set description: Task arrival times and WCET at critical speeed

pul 2]
sk S
T
[o 2 4 6 8 10 12 i 16 18 20 (2
time —

(b) Task schedule (without dynamic task procrastination).

delay =3 delay =3
b f [2] 2] f [2]
sk S
T
[o 2 4 6 8 10 12 {14 16 18 20 (2
time —

(c) Extended idle intervals with dynamic task procrastination

Figure 1: Slack reclamation for dynamic procrastination. (a)
Task set description: task arrival times with worst case execu-
tion times. (b) Task schedule under statically computed task
procrastination intervals and many idle intervals. (c) Reclaim-
ing higher priority slack to dynamically extend task procrasti-
nation intervals. Tasks can be delayed by the maximum of the
static procrastination interval and the (higher priority) slack
available on task arrival, while meeting all task deadlines.

3. DYNAMIC SLACK RECLAMATION

Dynamic slack reclamation schemes build upon static task slow-
down factors for further energy savings. Prior works [2, 13] do not
address slack reclamation in the presence of procrastination, which
is the focus of this work.

3.1 Slack Reclamation Algorithm

The static slowdown factors determine the time budget, referred
to as the task run-time, alloted to each task. The run-time for a
task with workload (execution time at maximum speed) C and a
static slowdown factor of 1 is C/m. Each run-time has an associ-
ated priority, which is the same as the job (task instance) priority.
A job consumes run-time as it executes and early task completion
results in dynamic slack (run-time). The unused run-time of a job
is maintained in a priority list called the Free Run Time list (FRT-
list). The list is maintained sorted by the priority of the run-time
with the highest priority run-time at the head of the list. Run-time
from the FRT-list is always consumed from the head of the list (the
highest priority run-time). Similar to known techniques [2], a task
can reclaim run-time with a priority higher than or equal to its own
priority while guaranteeing all deadlines. We use the following no-
tation in the slack reclamation algorithm (similar notation is used
in [13]).

e J; : the current job of task T;.

113

R!(r) : the available run-time of the current instance of task
T; (i.e. J;) at time ¢.

Rf (¢) : the free run-time (slack) available to job J; at time ¢
(i.e. run-time from the FRT-list with priority > P(J;)).

CI(t) : the residual workload of job J;.

R¢" (1) : the run-time required to execute the residual portion
of job J; at the critical speed N¢ir.

Algorithm 1 describes the slack reclamation scheme which can
perform both dynamic slowdown and dynamic procrastination. When
a task arrives in the system, it is assigned a time budget based on
the static slowdown factor (line 2). Each task is eligible to use its
own run-time as well as the higher and equal priority run-time from
the FRT-list (Rf»r (¢) for task T;). The dynamic task slowdown factor
is set to the ratio of the residual workload to the available run-time.
The algorithm ensures that the slowdown is never set below the
critical speed, since it is not energy efficient to execute at a speed
lower than the critical speed (line 13). The algorithm also states
how the dynamic slack can be used to extend task procrastination
intervals. Let Z; be the statically computed procrastination interval
for each task 7; and Rf (¢) be the available run-time on task arrival
time . The dynamic procrastination interval (ZiD) of each task T;
is limited by max(R!'(t),Z;), which guarantees all task deadlines
(line 5). Similar to the procrastination algorithm in [6], a timer is
maintained to ensure that no task (7;) is delayed by more than its
computed procrastination interval (ZiD).

Algorithm 1 Slack Reclamation Algorithm

: On arrival of a new job J;: {J; is an instance of task ;}
t RI(t) %;
: Add job J; to scheduler Ready Queue;
. if (processor is in sleep state) then
Set ZP to any number in the range [0, max(Z;, R ())];
if (Timer is not active) then
timer « ZP {Initialize timer}
else
timer + min(timer,ZP);
end if
: end if

TOYRXRIINLERN 2

—_—

: On execution of each job J; :

: setSpeed (max(Mcrit, %UR)F([))),

[—
w N

14:
15:

On completion of job J; :
Add to FRT-list(R} (¢), P(J;));

16:
17:
18:
19:

On expiration of Timer (timer = 0):
Wakeup Processor;

Scheduler schedules highest priority task;
Deactivate timer;

20:
21:

Timer Operation:
timer — —; { Counts down every clock cycle}

The following rules are used in consuming the run-time.

e As task T; executes, it consumes run-time at the same speed
as the wall clock (physical time). If Rf (¢) > 0, the run-time
is used from the FRT-list, else the task uses its own run-time.

¢ When the system is idle (includes shutdown), it uses the run-
time from the FRT-list if the list is non-empty.

The rules need to be applied only on the arrival of a task in the
system and on task completion.

Note that Algorithm 1 does not explicitly determine the distribu-
tion of slack among slowdown and procrastination, but describes
how slack can be utilized in either case. The two key points of this
algorithm are: (a) the limit on dynamic task procrastination (line
5); and (b) the limit on dynamic task slowdown (line 13).

THEOREM 1. All tasks meet the deadline when scheduled by
the dynamic slack reclamation algorithm (Algorithm 1) with pro-
crastination scheduling.

The details of the proof are given in [5].

3.2 Slack Distribution Policy

Given additional run-time (slack) for a job, using the entire slack
for either dynamic slowdown or dynamic procrastination need not
be an energy efficient solution. Slack reclamation should be wisely
performed since the slack used for procrastination influences that
(slack) available for slowdown and vice versa. Given the system
is idle, using the entire slack for dynamic procrastination is not
energy efficient if the incoming task has a static slowdown factor
greater than the critical speed. On the other hand, leaving the slack
entirely for dynamic slowdown need not be beneficial since the task
might not be able to utilize the entire slack. Execution below the
critical speed is not energy efficient and the extra slack available
can result in many small idle intervals and increase leakage energy
consumption. Once the processor is turned on and executing jobs,
each task reclaims the slack to execute at the lowest permissible
speed greater than or equal to the critical speed (this minimizes the
energy consumed in executing the task).

Algorithm 2 describes a policy for distributing the slack between
slowdown and procrastination. Determining the extent of dynamic
procrastination for a task, when the processor is in the shutdown
state, is crucial. We use the slack available on task arrival and the
static task slowdown factor in computing the procrastination inter-
val. Line 3 checks if the slack is sufficient to execute the task at
the critical speed. If the entire slack would be consumed on ex-
ecuting the task at the critical speed, then the algorithm does not
perform dynamic procrastination (line 4). Given that slack would
be available even after executing the task at the critical speed, then
the extra slack (ZF) is used for dynamic procrastination (line 6).
The dynamic procrastination interval ZiD is the maximum of the
static procrastination interval (Z;) and ZlE (shown in line 7 of Algo-
rithm 2). The timer maintained for procrastination is updated based
on the value of ZiD . The rest of the algorithm is the same as that of
Algorithm 1. When the processor is woken up it uses the avail-
able slack for dynamic slowdown, with the critical speed being the
lower bound on dynamic slowdown. We distribute slack between
slowdown and procrastination in this manner to maximize energy
efficiency.

THEOREM 2. All tasks meet the deadline when scheduled by
the dynamic slack reclamation algorithm according to the slack
distribution policy described in Algorithm 2.

The details of the proof are present in [5].

4. EXPERIMENTAL SETUP

We have implemented the proposed scheduling techniques in
a discrete event simulator. To evaluate the effectiveness of our
scheduling techniques, we consider several task sets, each contain-
ing up to 20 randomly generated tasks. We note that such randomly

114

Algorithm 2 Slack Distribution Policy

1: On arrival of a new job J;:
2: if (processor is in sleep state) then

3: i RE(t)+RI(r) < R¢"(1)) then
4: ZE +0;

5: else

6: ZE « RI(1)+RI(t) — R¢"(1); {Note that ZF < RI'(1)}
7: endif

8: ZP « max(z;,ZF);

9: if (Timer is not active) then

10: timer « ZP; {Initialize timer}
11: else

12: timer < min(timer,ZP);

13: endif

14: end if

15: Rest of the algorithm is same as Algorithm 1

generated tasks is a common validation methodology in previous
works [2, 8, 11]. Based on real life task sets [10], tasks are as-
signed a random period and WCET in the range [10 ms,125 ms]
and [0.5 ms, 10 ms] respectively. Each task is assigned a static
slowdown factor equal to the utilization at maximum speed, which
maintains the system feasibility. If this slowdown factor is smaller
than the critical speed, N, then the slowdown factor is increased
to the critical speed. We generate varying execution times by vary-
ing the best case execution time (BCET) of a task as a percentage of
its WCET. The execution times are generated by a Gaussian distri-
bution with mean, u = (WCET+BCET)/2 and a standard deviation,
6 = (WCET-BCET)/6. The BCET of the task is varied from 100%
to 10% in steps of 10%. Experiments were performed on task sets
with varying processor utilization (U) at maximum speed.

We use the power model for the Transmeta processor, based on
the 70nm technology, which accounts for both static and dynamic
power consumption [6]. As described in the model, the critical
speed of execution is Mgy = 0.41, the processor shutdown over-
head is 483uJ and the threshold idle interval for shutdown is 2.01
msec. We assume that the processor supports discrete voltage lev-
els in steps of 0.05V in the range 0.5V to 1.0V. These voltage levels
correspond to discrete slowdown factors and each computed slow-
down factor is mapped to the smallest discrete level greater than or
equal to it. The upcoming idle interval is assumed to be the time pe-
riod before the next task arrival in the system. Procrastination can
guarantee a minimum procrastination interval (minimum Z; over
all tasks) and this information is used to estimate the minimum idle
interval with procrastination.

‘We compare the energy consumption of the following techniques:

¢ No Dynamic Slack Reclamation (no-DSR): where all tasks
are executed at the static slowdown factor with statically com-
puted task procrastination intervals.

¢ Dynamic Slack Reclamation with Static Procrastination
(DSR-SP): where slack is reclaimed only for dynamic slow-
down of the processor. Procrastination is based on statically
computed task procrastination intervals (Z;).

¢ Dynamic Slack Reclamation with Dynamic Procrastina-
tion (DSR-DP): where slack is reclaimed for both dynamic
slowdown and dynamic procrastination (combined slowdown
and procrastination given by Algorithm 2).

(a) Energy consumption normalized to no-DSR (U=80%)

0.98

DSR-SP ——
| DSR-DP -

0.96

normalized total Energy

50 60 70 80 90 100
% BCET variation

30 40

Idle Energy

(b) Comparison of DSR-SP and DSR-DP (U=80%)

t t T 1.7
Idle Energy —— =
Sleep Interval - >
116 §
=
15 &
o
2]
14 5
<
13 2
K]
12§
g
11 E
o
N <
065 L L k" & & & & * 1
10 20 30 40 50 60 70 80 90 100

% BCET variation

Figure 2: Utilization, U=80% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison of
average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

(a) Energy consumption normalized to no-DSR (U=60%)

0.98 T T
DSR-SP ——

0.97 |DSRDP —x—

0.96 -
0.95 -
0.94 -
0.93 -

normalized total Energy

0.92 -

0.91 |

50 60 70 80 90 100
% BCET variation

Idle Energy

(b) Comparison of DSR-SP and DSR-DP (U=60%)

1 ; ; 18
Idle Energy —— 5
0.95 Sleep Interval —x— | 47 2
09 16 =
3
0.85 15 2
k]
081 14 g
o
f=
0.75 |- 13 @
3
07 12 8
©
0.65 - 11 g
AN f=
0.6 . : L L . % « " 1
10 20 30 40 50 60 70 80 90 100

% BCET variation

Figure 3: Utilization, U=60% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison of
average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

Experimental Results

Figures 2 to 5 compare the energy savings of dynamic slack recla-
mation for different processor utilization (at maximum speed), U.
For each value of U, we compare the following :

e sub-figure (a) (in Figs. 2, 3, 4, and 5) compares the total
energy consumption of DSR-SP and DSR-DP normalized to
the no-DSR policy. The variation of the BCET is along the
X-axis and the normalized total energy along the Y-axis.

sub-figure (b) (in Figs. 2, 3, 4, and 5) compares the average
sleep interval and the average idle energy consumption of the
DSR-DP normalized to DSR-SP policy. The increase in the
sleep interval and the decrease in the idle energy is shown
through two separate Y-axis for the same.

We study the energy gains of dynamic slack reclamation for dif-
ferent values of processor utilization, U. We observe that the en-
ergy gains are greater at higher values of utilization (U) and de-
crease with lower utilization. Higher values of U result in higher
static slowdown factors (which consume more energy) and higher
energy savings are achieved by lowering these slowdown factors
through slack reclamation. As the utilization decreases, the dif-
ference in the energy consumption between the static slowdown
factors and the critical speed decrease and the relative gains are
lower. DSR-DP improves the procrastination intervals as the dy-
namic slowdown factors fall below the critical speed to result in
additional energy savings. This occurs at lower values of BCET for
higher values of U and vice versa.

The energy gains for U = 80% are shown in Fig. 2(a). Re-
ducing the BCET generates additional dynamic slack that can be

115

reclaimed for additional energy savings. At high values of BCET,
dynamic slowdown rarely reaches beyond the critical speed and it
is energy efficient to utilize the entire slack for dynamic slowdown.
From Fig. 2(b), we see that DSR-DP further reduces the idle energy
consumption as BCET falls below 40%. A comparison of DSR-SP
and DSR-DP shows that the average sleep interval under DSR-DP
increases to up to 1.6 times that of the DSR-SP policy. The average
idle energy is seen to reduce up to 70% compared to DSR-SP.

For smaller values of U, dynamic slowdown reaches the critical
speed for higher values of BCET. A comparison of the Fig. 2 -
Fig. 5 shows that DSR-DP results in additional gains below BCET
of 60% at U = 60% and below BCET of 80% at U = 50%. We
see that the sleep intervals under DSR-DP are increased up to 1.7
times and the idle energy is reduced to up to 60%. At a utiliza-
tion U = 40% and lower, all tasks are executed at the critical speed
(Merie = 0.41). Static procrastination intervals are computed for the
tasks, which dominate over the dynamic slack available to extend
procrastination intervals. Task execution time is usually small and
the accumulated free run-time slack rarely outperforms the static
procrastination intervals. Thus DSR-DP does not result in signifi-
cant energy savings at utilization lower than the critical speed.

Note that the total energy gains of DSR-DP over DSR-SP are not
high. This is because majority of the short idle intervals that result
in leakage are already avoided through static procrastination inter-
vals which accounts for the bulk of the savings. However, when the
static procrastination intervals are not long enough for shutdown
to be energy efficient, dynamic procrastination will extend the idle
intervals to result in significant energy savings.

(a) Energy consumption normalized to no-DSR (U=50%)

0.995 : :
DSR-SP ——
0.99 [DSR-DP -

0.985 1
098 |
0.975 |
0.97 -
0.965 |-
0.96 |
| ><

oos|

0.945 .

normalized total Energy

50 60 70 80 90
% BCET variation

10 20 30 40

100

Idle Energy

0.95

09 r
0.85 -
0.8 -
0.75
0.7 -
0.65

(b) Comparison of DSR-SP and DSR-DP (U=50%)

T T T T 1.8
Idle Energy ——

. Sleep,lnte[ygl e 147

116
115
114
113
112
111

normalized length of sleep Interval

1

50 60 70 80 90 100
% BCET variation

30 40

Figure 4: Utilization, U=50% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison of
average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

(a) Energy consumption normalized to no-DSR (U=40%)
1.0005

DSR-SP ——
DSR-DP -
| DSR-DP_--

0.9995 | T
0.999 | e
0.9985 |

0.998

normalized total Energy

09975 |

0.997 ¥

50 60 70 80 90
% BCET variation

10 20 30 40

100

Idle Energy

(b) Comparison of DSR-SP and DSR-DP (U=40%)

1 —_— 14

Idle Energy —— _

0.995 | Sleep Interval —-x-—- g

099 | 1108 £

0.985 3

Qo

0.98 |- {106 2

o

0.975 F 2

[=)]

0.97 | 1104 §

0.965 2

N

0.96 | 41102 ®

>>>>>> E

0.955 - - 5
0.95 L : L - 1
10 20 30 40 50 60 70 80 90 100

% BCET variation

Figure 5: Utilization, U=40% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison of
average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

5. CONCLUSIONS AND FUTURE WORK

We present dynamic slack reclamation techniques that work in
conjunction with procrastination scheduling to minimize the total
static and dynamic energy consumption in a system. We enhance
slack reclamation to enable both dynamic processor slowdown and
dynamic task procrastination. Reclaiming slack for dynamic slow-
down results on an average 10% energy savings compared to no
slack reclamation. Dynamic procrastination further increases the
energy savings by reducing the idle energy consumption up to 70%
(through longer sleep intervals). Such task slowdown techniques
along with combined static and dynamic task procrastination are
important as leakage drain continues to increase. The proposed
techniques are simple and result in an energy efficient operation of
the system. We plan to extend these techniques for energy efficient
scheduling of all system resources.

6. REFERENCES

[1] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez.
Determining optimal processor speeds for periodic real-time
tasks with different power characteristics. In Proceedings of
EuroMicro Conference on Real-Time Systems, Jun. 2001.
H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Proceedings of IEEE
Real-Time Systems Symposium, Dec. 2001.
F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and dvs processors. In Proceedings of
International Symposium on Low Power Electronics and
Design, pages 46-51, Aug. 2001.

(2]

(3]

116

(4]

[5

—

[6

—_

(7]

(8]

(9]
(10]

(11]

[12]

(13]

S. Irani, S. Shukla, and R. Gupta. Algorithms for power
savings. In Proceedings of Symposium on Discrete
Algorithms, Jan. 2003.

R. Jejurikar and R. Gupta. Leakage aware dynamic slack
reclamation in real-time embedded systems. In CECS
Technical Report #04-31, UC Irvine, Nov. 2004.

R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded systems. In
Design Automation Conference, pages 275-280, Jun. 2004.
W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack time analysis. In DATE, Mar. 2002.

Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling
techniques for reducing leakage power in hard real-time
systems. In EcuroMicro Conf. on Real Time Systems, 2003.
J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

C. Locke, D. Vogel, and T. Mesler. Building a predictable
avionics platform in ada: a case study. In Proceedings IEEE
Real-Time Systems Symposium, 1991.

Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors. In
Proc. of ICCAD, pages 365-368, Nov. 2000.

F. Yao, A.J. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. In Proceedings of IEEE Symposium
on Foundations of Computer Science, pages 374-382, 1995.
F. Zhang and S. T. Chanson. Processor voltage scheduling
for real-time tasks with non-preemptible sections. In
Proceedings of Real Time Systems Symposium, Dec. 2002.

